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Motion of a magnetic soliton about a lattice soliton in a Heisenberg chain
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As an example of interaction between two solitons belonging to different species, a
semiclassical study of the nonlinear dynamics of a coupled magnon-phonon system in a
one-dimensional Heisenberg ferromagnet is made, where both the lattice and the spin sys-

tems are taken with their respective nonlinear interactions. The lattice (Korteweg —de

Vries) soliton is shown to introduce spacial inhomogeneities into the propagation of the

magnetic (nonlinear Schrodinger) soliton resulting in (a) a possible trapping of the mag-

netic soliton in the harmonic field of the lattice soliton and (b) the amplitude and the

width of the magnetic soliton becoming time dependent.

I. INTRODUCTION

Solitons as the nonlinear excitations of a mag-
netic system have been studied extensively during
the past few years. ' After it was shown that, in
the continuum limit, a Heisenberg chain was an
exactly solvable dynamical system, ' both classical
and semiclassical calculations were made to show
the existence of low-amplitude solitons in a Heisen-
berg chain in the presence of the various kind of
nonlinear interactions leading to evolution equa-
tions with nonlinearities of different orders and
thus to different soliton solutions. s 9

The spin precessions in a magnetic chain are
generally coupled to the oscillations of the spin-
carrying atoms or ions about their mean positions.
This fact has been used by some authors' in ex-

tracting a higher-order interaction between the pre-
cessing spins through the indirect spin-lattice-spin
interaction and thus generating a nonlinear evolu-
tion equation with a low-amplitude soliton solution.

The lattice vibrations can, however, be anhar-

monic, and solitonlike excitations may also exist in

the excitation spectrum of lattice vibrations in a

chain, as shown by Ichikawa et al. " This then
leads to a strong possibility of interaction between

the solitonlike magnetic excitations and the soliton-
like lattice excitations in a chain with magneto-
strictive interaction. An approximate study to
probe into this possibility has been undertaken in
this paper, with a view to highlight the perturba-
tive effects of a phonon soliton on the motion of a
magnon soliton in a Heisenberg chain.

II. MODEL

We consider a chain of N atoms, each of mass

m, oscillating about their mean positions due to a
harmonic as well as an anharmonic interaction
with their nearest neighbors. Each atom possesses
a net spin of magnitude S and the nearest-neighbor
spins interact with each other through an anisotro-
pic Heisenberg exchange interaction. %e also in-
clude the possibility of anisotropy together with an
externally applied magnetic field of strength H.
For the Hamiltonian describing this system, there-
fore, we write

N

[Pp +(ntvp) (u —u ~) + 3 mttQ(u —ut ~) ]—4 g J(u; u;+s)(S; S;+—s+S; St+s)
2 2 2 1

ii=1 i,5

——, $J(u; —;u+)SsSt+—s A $(S,') pHQS— (2.1)

Here Po is the linear momentum of the ith atom,
i

v=muo is the spring constant, u is the strength of
nonlinear coupling between atomic displacements

u;, J and J are the exchange coupling coefficients

in the xy plane and in the z direction, respectively,
A is the single ion anisotropy parameter, and

p =gpss is the magnetic constant. For small atom-
ic displacements, we can expand J(u; —u;+s) in a
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J(u; —ui+s) =Jo —(u;+s —ug )Ji,
J(u; u—;+s)=Jp (—u;+s u—; )Ji,

where

(2.2)

Taylor series about its equilibrium value Jp and ap-
proximate it by the first two terms only:

For the convenience of calculations, we confine our
study to a system at sufficiently low temperatures
and with spins of sufficiently large magnitude so
that the spin operators may be expressed in terms
of boson creation and annihilation operators
through

JJ) ——
~(u —u;+s)

We can thus write

Mp +Mph +Mppgp

where the lattice Hamiltonian P ~ is

(2.3)

(2.4)

l 4 l

4S
(2.8)

Q [Po,. +(moo) (u; —u; &)
=1 2

2ptg

+ —,mica(u; —u; &) ],
the spin Hamiltonian 4 ~ is

(2.5)

—A g(S,'} ITHQS—
i

and the spin-lattice interaction P ~ is

P p
———,Ji g (u;+s —u;)(S;+S;+s+S; S;+s)

i,S

z z+ —,Ji g (u;+s —u;)S;S;+s .

(2.6)

(2.7)

M~ = —
4 Jp g (S iS +c+sSi Si++s } p Jo g S(*Si~+s

i,5 i,5

S.=S—a a; .z

1 fi
N' z 2mco(k)

(2.9)

where co(k) are the kth phonon normal-mode fre-
quencies

apk
co (k)=4—sin

Ill 2

We thus obtain

We also express the atomic displacements in terms
of the phonon normal mode operators b and bt:

1/2

(bk+b k)e
ikx, -

with

4 p
' ——g irico(k)(bkbk+ —,),

k

4(ki, kq, k3)5(ki+kq+k )(3b +kb i)(b , ib+ i, )(b +kb k, ),
k)k~k3

(2.10)

(2.1 1)

(2.12)

4(ki, kq, k3) = an fi

2~

3/2

(2')' ' ' ' '[co(k, ) (k )co(k )]

T

k]ap k2ap k3ap
)& sin sin sin

2 2

~NO) = —JpS N —QS N —pHS1V+ (pH +AS +2JpS}g a ' a' JpS g (a'.+]a'+a' a'+ i) (2.13)

~1)~ ~ =
4 Jp ~(a; ac+ia;+ia;+&+a;a;a;a;+i+a; a; a;a;+a;+ia;+&a;+&a;) —Jp Z, a; a;a;+&a;+&

—A~a a aa.s r s (2.14)

2m co(k)

1/2
i'; ikao(bk+b k)e '[Ji(e —1)(a;+ia;+a;a;+i)—2iJisin(kao)a;a;],
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2m')(k)

' 1/2
ikX; g g~p(bk+b k )e —Ji (e —1)(a;a;+ia;+ ia;+ i+a; a;+ ia;+ ia;+ i4

+a; a(aga, + i+ a(a; afa;+ i)

lkop+ Ji(e —1)a;a;a;+ia;+i (2.16)

III. EQUATIONS OF MOTION

iA O—=[O,P ],t
(3.1)

we write down the equation of motion for the
phonon field Bk bk+b ——k and the magnon field

a;. For the phonon field Bk we obtain

Using the Heisenberg equation of motion for an
operator 0

very small compared to Jo and hence to ~. The
second commutator on the right-hand side of Eq.
(3.2) is, therefore, of much smaller magnitude than
the first and hence we neglect it in this equation.
This approximation implies physically that, as far
as the nonlinear dynamics of the phonon field is
concerned, the effect of its coupling to the magnon
field is weak enough to cause any appreciable in-
fiuence. Under this approximation Eq (3.2.}
reduces to a pure phonon equation of motion,

Bk(t) =[Bk(t) ~p]+ [Bk(t) ~tllp 1

Similarly,

(3.3)i%i—at(t)=[at(t), (A ~+A ~p)] .
dt

Equations (3.2) and (3.3) come from a set of cou-
pled equations in the phonon and magnon fields.
We make a decoupling approximation here. We
assume the exchange coupling coefficient to be a
slowly varying function of space both in the xy
plane and in the z direction, so that J& and J& are

iA Bk(t) =—[Bk(t),A p")+[Bk(t),W~") . (3.4)
dt

Defining a variable yk(t} as

yk(t}=
2 (k)

' 1/2

Bk(t),

and considering now yk(t) to be a classical variable
describing the dynamics of a macroscopic state,
one obtains, in the long-wavelength limit"
(kau «1) by neglecting the terms of order k,

82
2

yk(t)+us k' — k' yk(t)+, ~, uok gk'(k —k')yk(t)yk-k( )=
~1/2

where uu is the sound velocity along the chain. Further defining

u (k, t) =ikyk(t),

(3.5)

u(x, t)= »2 gu(k, t)e' (3.6)

one obtains the Boussinesq equation

Uoao 84 &ao 2 8
u (x, t) —uo u (x,t} u(x, t) —uo [u—(x,t)] =0,

at' ' 'ax' ' » ax'

which admits a soliton solution"

(3.7)

u (x,t}=Aosech

'2
aAo

ao

aao
x — 1+ — Ao Uot

6
(3 g)
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Thus, in the above approximation, despite coupling to magnons, the phonons among themselves form a soli-

ton.
Turning now to Eq. (3.3), we get

a
iA a—t(t)=[pH+(2S —1)A+2JoS]at Jo—S(at &+at+&) 2A

I t I
at J—o[at+iat~i+at iat &]at

Bt

+ 4 o[(at+&at+i+ alat)at+i+(al —iat i+2atat)at i+(at+i+at i)atat]J

+Sapu (xt, t)[Ji(at+i+at, ) 2J,—at] . (3.9)

In Eq. (3.9) we have ignored the commutator of the field at(t) with the Hamiltonian A ~ which contributes
such terms to the equation of motion which are negligible in the low-amplitude approximation. We now re-
gard at(t) to be a classical variable too, describing the dynamics of a macroscopic magnetic state. Then in
the continuum limit (ap~0),

a,(t)~a (xt, t),

and we obtain the following nonlinear evolution equation for the magnon field

a
iR a(x—, t) = [ITH —(2S —1)A +2S(Jp —Jo)]a (x, t)+2Sap(Ji —Ji )u(x, t)a (x,t)

—apS[Jp —apJiu(x, t)] 2a(x, t) —2(A +Jp —Jp)
~

a(x, t)
~

a(x, t)2 8 2 (3.10)

For a pure magnetic problem (Ji ——0=Ji), Eq. (3.10) can also be obtained from the Landau equation by
taking the classical analog of the spin Hamiltonian (2.6). In fact, the equation of motion obtained this way
does not contain a term Aa (x, t) present in Eq. (3.10) where it enters as a result of quantum correction
brought in by introducing normal ordering of the bose spin-deviation operators a and a . It reflects the
necessary fact that for a spin- —, system, the easy axis anisotropy A should have no effect on the dynamics of
the system.

IV. TRAPPING CONDITIONS FOR THE MAGNETIC SOLITONS

For a weak coupling between the lattice and the magnetic excitations, the effects of the former on the
latter are expected to be appreciable only in the vicinity of the maximum of the lattice soliton pulse. The
function u (x, t) in Eq. (3.10) may, therefore, be expanded in powers of its argument, retaining only the first
two terms.

In terms of dimensionless variable x' and t' defined through

(A +Jp —Jp)t (4.1)

A+Jo —Jo

Sa p (Jp —a pA pJi )

1/2

(4.2)

and defining a field a'(x', t') by

pH+(2S —1)A +2S[Jp+ap(Ji —Ji }]a'(x', t'}=a (x', t')exp
2 A +Jp —Jp

Eq. (3.10) reduces to

(4.3)
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Q2 a2
, a'+ —&,a'+

~

a'
~

'a'=P(x' gt—')'a'+Q(x' gt—')', ,a',
Bx

(4.4)

where

and

—a SapApJp(Ji —Ji )

(A +Jp —Jp)

1 a Sa+pJ~
2 A+Jp —Jp

(4.5)

(4.6)

a'(x', t') =2v sechz e"'I"~"+'l

, =( P ——, Qv —+4Qp )(g ft')—, (4.1 la)

z =2v(x' —g) (4.10)

The perturbation theory then yields the following
time evolution of the parameters p, , v, g, and 5:

(A/2)(1+ 6 aapAp)up

[Sap(A +Jp —Jp)(Jp —apAp J) )]'~

(4.7)

In the absence of the spin-lattice coupling,
J& ——0=J&, i.e., P =0=Q, Eq. (4.4) reduces to the
standard nonlinear Schrodinger (NLS) equation
with the solution

8Q—pv(g Pt'—),at'

, =2p vr Q —
z 4QI—t,(g Pt')—,

p
Bt' (2v)z

Bt', =2(l '+~)—[P —4Q V '+~)](k—0t')'

+ [P —4Q(v —
IM )]+2QI

48v

(4.11b)

(4.11c)

a (x', t') =2vpsechz e
I I i [(polvo)z+50]

z =2vp(x' —gp), (4.8)

Bpp Bvp
, =0, , =0,Bt' Bt'

(4.9)

with the usual time evolution of the parameters pp,
vp, gp, and 5p.

I= f" z (1—ztanM)
d . (4. lid)

cosh z

Equations (4.11) form a complicated set of coupled
differential equations. Rather than solve them ex-
plicitly at this stage, we look at the distinct effects
of the P and Q perturbations separately We f. irst
consider P perturbation only; i.e., Q =0. Equa-
tions (4.11) reduce to

8gp B5p

Bt' Bt, =2pp, =2(pp+vp) P(g gt')-, — (4.12a)

For a slowly varying exchange function
J(u; —u;+~), the coefficients J~ and J~ are small
and may be regarded as the parameters of a pertur-
bation caused by the lattice soliton on the evolu-
tion of the magnetic soliton. The right-hand side
of Eq. (4.4) can then be taken as a perturbation to
the above-mentioned unperturbed NLS equation.
It is notable that both the perturbation terms intro-
duce spatial inhomogeneities into the evolution of
the magnetic soliton. The P term provides a har-
monic potential from the lattice soliton in which
the magnetic soliton is expected to get trapped or
repelled, depending on the sign of coefficient P.
On the other hand, the Q perturbation affects the
dispersion term of the evolution equation and is,
therefore, expected to make the amplitude, and
hence the width, of the magnetic soliton time
dependent. An application of the soliton perturba-
tion theory' bears out the above expectations as
shown in the following.

For Eq. (4.4) we take the solution

Bv
Bt'

ag
at' =2p s

(4.12b)

(4.12c)

48v', =2(p'+v') P(f, Pt')'—+ —P .

(4.12d)

In a frame where the lattice soliton velocity

uz
——(1+ 6aa+p)up is zero, 1( vanishes and Equa-

tions (4.12) yield the time evolution of magnetic
soliton parameters in agreement with the results of
Kaup and Newell. ' Equations (4.12a) and (4.12b)
specifically show that the magnetic soliton is
trapped (or repelled) in the harmonically perturb-
ing potential generated by the lattice soliton. The
magnetic soliton is trapped if J»J~. On the oth-
er hand, the marked effect of the Q perturbation is
that it introduces time dependence in the otherwise
constant amplitude of the magnetic soliton.
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V. SUMMARY AND CONCLUSIONS

We therefore conclude that, in the event J~ & J~,
the magnetic soliton may get trapped into the har-
monic field of the lattice soliton and oscillate
about it with a time-dependent amplitude and
width.

The physical realization of the situation dis-
cussed in this paper is rather remote. Near-
Heisenberg chains can be realized in the laboratory,
but a chain where the oscillations of the spin-
carrying atoms is also restricted along the chain
direction is not known to the authors. The asymp-

totic deformation of the magnetic solitons as a re-

sult of the perturbation is under study at present
and is planned to be reported elsewhere.
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