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Binuclear unit (Ti2C19): A new development for the exchange
between orbitally unquenched ions
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The problem of exchange interaction between two Ti + (d') ions in a binuclear unit

(Ti2C19) is investigated from a microscopic description of the exchange mechanisms.

With the use of pseudofermion operators, the effective Hamiltonian between the orbitally

degenerate ground terms T2g is determined with the various excited configurations being

taken into account. Further, local trigonal distortion, spin-orbit coupling, and covalency

effects are introduced for describing the real magnetic behavior of the entity. Thus it is
shown that the use of the Heisenberg Hamiltonian for distorted systems is often a poor
approximation. Lastly, a least-squares fitting of the experimental data of CS3Ti2C19 is

proposed from the developed model.

A major part of the work on paramagnetic iso-
lated entities reported in the literature is restricted
to orbitally nondegenerate S-state ions. ' In this
case, all the more complex aspects of cooperative
magnetic phenomena and interaction in presence of
unquenched orbital angular contributions are ir-
relevant so that the problem may be solved exactly,
at all temperatures, using a simple spin formalism
as suggested by Kambe.

Contrastingly, when the interacting ions exhibit
an orbital degeneracy in their ground state the
spins are strongly correlated to the orbital mo-
ments and this approach is no longer valid. All
configurations for each single site must be con-
sidered; this increases the difficulty of the task of
determining the exchange Hamiltonian whose gen-
eral form has already been discussed in several

theoretical papers. " In particular, attempts
have been made to establish the empirical Hamil-
tonian, but it is not always easy, through the pro-
posed approaches, to give physical meanings to the
parameters which could be deduced experimentally.

In a previous study, we have reinvestigated this
problem for the T2 and T& ground-term systems
in commonly observed molecular arrangements (of
D2s, D&s, or D41, symmetry). ' Starting with
Anderson's formalism, ' we have defined a new ex-
pression for the Hamiltonian which takes into ac-
count the energy difference between the various
spin configurations in the polarized states; this as-

pect had been ignored until now. In particular, it
was shown that predictions concerning even the
sign of the spin-spin coupling may strongly depend
on an accurate knowledge of excited configuration
and local distortion energies. This is the reason
why Goodenough's model, ' which provides a use-
ful basis for qualitative interpretations concerning
the interactions, is often deficient when orbitally
degenerate ions are involved.

The purpose of the present paper is to check the
validity of our model on real compounds where the
interacting ions are two Ti + linked by three bridg-
ing ligands; this is the case of (Et2NH2)3Tl2C19, ' '
Cs3Ti2C19, ' *' and Cs3Ti2Br9, ' whose properties
have already given rise to conflicting interpreta-
tions. Among these, we shall mention the study of
Briat et al. ' which is the only one to our
knowledge which has been developed from single-
crystal measurements. The fact that these com-
pounds may be described in terms of well-isolated
binuclear units (Ti2C19), thus avoiding statistical
approximations, is undoubtedly accountable for
this interest.

I. STRUCTURE AND MAGNETIC PROPERTIES

The crystal structure of Cs3Ti2C19 is isomor-
phous with that of Cs3Cr2C19 determined by
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Wessel and Ijdo. ' It corresponds to the hexagonal
symmetry F63/mmc with the cell dimensions
a =7.32 A and c = 17.97 A. In the molecular ar-
rangement each Ti + ion, octahedrally surrounded

by Cl ligands, is connected to another one in or-
der to form binuclear units (Ti2C19) along the c
axis. These units may be schematized as two oc-
tahedra sharing a face so that they show the D3i,
symmetry. Further, they are well separated in the
space since the shortest Ti +-Ti + distance be-

tween neighboring units is about 7.20 A while it is
3.10 A within each unit. Consequently, the mag-
netic behavior will be considered as resulting from
an assembly of noncoupled binuclear entities. The
temperature dependence of the susceptibility has
been measured in the range 4.2 —320 K by Briat
et al."

At first, it may be noticed that the susceptibility
is highly anisotropic, the threefold axis which con-
tains the two centers appearing to play a special
role; the susceptibility measured along this direc-
tion (X~~) is lower than any perpendicular one (Xi).
After correcting for the contributions of impurities
which alter the behavior at very low temperatures
it is shown they both decrease when cooling down
to about 150 K and remain constant at lower tem-
peratures. The anisotropy 6J is then equal to
540)& 10 cm mol

Finally, these data are consistent with antifer-
romagnetic binuclear entities as was expected from
molecular structure. Related studies on

(Et2NH2)3Tl2C19
' ' lead to similar conclusions.

The anisotropy measurements reveal the impor-
tance of the local distortions from the octahedral
symmetry of the environment around each Ti3+

ion. Furthermore, the binuclear units cannot be
adequately described by a simple spin formalism;
the exchange interaction not only depends on the
spin moments of the intervening ions but also on
the orbital ones.

In accordance with our previous paper, ' we now
develop a theoretical approach to this problem; the
specific case of Cs3Ti2C19 is taken up in the last
section.

II. INTERACTION BETWEEN 2T

SINGLE-ION GROUND STATES

Let us consider a given entity built from two
slightly distorted octahedral sites sharing a face
with the overall symmetry D3I, . We assume for
each site a tzz electronic structure corresponding to
a T2g ground term.

In the absence of exchange interaction between
the sites labeled i and j, the entity behaves as two
nonconnected T2g ions; the magnetic moment de-

pends on spin-orbit coupling and trigonal distor-
tions. The calculations have been performed by
Figgis, who also took into account the covalence of
metal —ligand bonds. '

Let us now introduce the effects of an exchange
interaction between the magnetic sites. A practical
method for describing this contribution consists of
starting from Anderson's Hamiltonian'

4 =4; +4;.=g g[b C (i)C ~ (j)+b C' (j)C (i)],
mm' 0

which accounts for the electronic transfers of the i ~j orj~i type. The C~ and C~ are anticommuting
operators which, respectively, create and annihilate particles on an orthonormal set of states

~
mar) b~~.

stands for the transfer integrals between the orbitals m and m'. These integrals couple unpolarized states
(corresponding to the equipartition of the electrons among all sites) to the polarized ones so that the energy
of the system is lowered.

As shown in our previous paper, ' two kinds of polarized states are involved, assuming that spin-spin
intraionic coupling is large compared to the l-l or I-s one. Specifically in the present case, an operator such
as C' (i)C ~ (j) gives rise to two-electron states on site i, belonging to either Ti (S =1) or 'A i+ 'E2 + 'T2
(S =0) representations; these two sets are well separated in energy (Hund s rule). The effective Hamiltonian
resulting from second-order perturbations must be written as

where
~ f, ) and

~ p) are polarized states resulting from i~j and j~i electron transfers, respectively, with

U, and U~ being the corresponding energies. These essentially depend on polarization effects and spin-spin
intraionic couplings.
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For a symmetrical pair of identical cations allowing us to ignore the distinction between U, and U~, we

have

v, =vg=v, '+&1(, ~~'~ q, & .

Finally, defining collective excited states from total spin quantum numbers on each site,
~
S;S;,&

~ S~S~, &, we

get

.™"" (c.*.~ss,, &&ss,, ~ c„,c ..~ss,, &&ss,, ~c„*.,)+~,„.
mm ~g s,.s„. s,.s,, U + U (S;SJ)

nn'

(4)

with A,„standing for the symmetrical part of
the Hamiltonian obtained by interchanging the
subscripts i and j. Such an expression differs from
the generally encountered ones by the distinction
introduced between the various excitation terms. It
results in a tricky but much more convenient ex-
pression when developing the single-ion operators
C' ~S;S;,& &S;S;,~c„g occurring in (4) in terms of
spin and orbital components.

At first sight, the result of this approach strictly
includes the kinetic contribution in terms of An-
derson. Any rigorous extension would have to take
into account the self-energy of the overlap charges
between partly occupied orbitals on adjacent atoms,
namely the potential exchange.

Actually it may be shown that this does not
modify the general form of the Hamiltonian. We
have only to introduce in the constant an addition-
al term

~potential i j 2 i 2 j
~I2

which is always positive. It is generally negligible
but may be important when the orbitals located on

adjacent sites are orthogonal; such a configuration
may be observed in heterobinuclear entities. In
the case we are concerned with it can be readily
neglected.

At this stage of the investigation, let us examine

the transfer integrals playing an effective role
within the exchange interaction. Two models re-
ferred to as I and II may be developed:

(I) Considering only the tzs orbitals involved in
the present system, we assume, in a first step, the
overlaps &xy ~yz&, &xy ~zx &, and &yz ~zx & be-
tween nonequivalent orbitals to be very small and
we neglect the corresponding transfer integrals
(Fig. 1). By contrast, the mechanisms involving
similar orbitals on both cations give rise to signifi-
cant contributions. They are of direct or superex-
change type; however, it is not useful in the
present context to distinguish these contributions

where b stands for the three identical integrals

b~„z, bz, ~, and b~~ and U'(0, 0) and U'(1,0)
refer, respectively, to S =0 and S =1 spin configu-
rations in the t2g manifold.

(II) The second approach does take into account
the previously neglected contribution arising from
nonequivalent orbitals. This results in an exchange
anisotropy (see Appendix) and the useful parame-
ters are now of the form (b /U)(1 —i)), (b /U)(1
+2i)), and (b /U)(1 —i))(l+2i)), where U
represents U,'+ U'(0, 0) or U,'+ U'(1,0). Since i)
should be small we can neglect any g contribu-
tions and the Hamiltonian may then be written as

~II ~I+9~
where A i refers to model I and P ' is the first-
order i) contribution. In fact, when we are con-
cerned with practical problems it is essential to
remember that this last term acts as a small per-
turbation. Freeman and Watson have shown that
exchange integrals for differently orientated orbi-
tals, contributing to A ', are 2 orders of magnitude

~XZ)XZ~- a ~XZ I YZ& = qa ~X Z t X Y) = qa

q(& g

FIG. 1. Comparison between the va.rious orbital con-
figurations and the respective overlap integrals in a
binuclear entity of D3I, symmetry.

I

and we shall mix them into effective parameters Ji
and Jz defined by

$2 Q2

U,'+ U'(0, 0) U,'+ U'(1,0)
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smaller than the integrals for similar ones .Thus,
we have to consider further important effects such
as the local site distortion, the spin-orbit coupling,
and, equally, the electron delocalization toward the
ligands resulting in an orbital reduction factor.
Thus, the system may appear to be overparam-
etrized to describe a set of magnetic data; in the
absence of optical measurements it would be more
realistic to let only J~ and J2 be the adjustable ex-

change parameters. Such a procedure is applied in
the following discussion of a t2s tzs sy-stem.

III. MAGNETIC PROPERTIES
OF A t2g-t2g ENTITY

By taking rl =0, expression (4) only involves
terms of the form

C' iS;Si, )(S;Si, i C„gC iS S,)(SS, i
C„'g,

each one being multiplied by J~ or J2 according to
the (S;,SJ ) pair under consideration. Using the
possibility of describing the T states as eigenstates
of a fictitious L =1 orbital operator, we may ex-
press these quantities in terms of spin and orbital
moment operators. A tedious though straightfor-
ward calculation thus leads to the result

A q
————,J~[1—L~ L2 —(L~ L2) ](1+4S~ S2)

+ —,(J) —J2)(1—L(.L2)(2+L) L2)(3+4S) Sg) .

The first term of this operator describes the ex-
change when one neglects the intraionic spin-spin
coupling while the second one precisely takes it

into account.
Obviously, this Hamiltonian shows drastic

differences with the Heisenberg expression; how-

ever, one can remark the isotropic character of the
interaction clearly results from neglecting q. It
was of interest to compare the results of this ap-
proach for J,=Jz and J&~2 to those of the
Heisenberg Hamiltonian. In this way, let us define
a new set of parameters

1 1J=—,(J)+J2), J'= ——,(J) —J2),

allowing us a direct comparison of the various
models. From the respective energy diagrams (Fig.
2) the following points may be emphasized:

(i) The approximation J'=0 and the Heisenberg
approach lead to a two-sublevel scheme, the energy

gaps being 2J; however, these levels do not possess
the same degeneracy in both models. In the J'=0
case, the low-lying state shows a complex structure
involving, simultaneously, S =1 and S=0 configu-
rations.

(ii) The case J'+0 is more interesting since it
describes real compounds by taking into account
the various excited configurations. It can be
viewed that the fundamental is now a ninefold-
degenerate state

i
i.=1;S=1) corresponding to a

ferromagnetic spin-spin coupling. The first excited
level (sixfold degenerate) S =0 is 4J' above the
ground level. This clearly underlines the impor-
tance of the distinction between J, and J2.

Further investigations of this energy scheme
would not be entirely realistic when ignoring the
effects of spin-orbit coupling and noncubic com-
ponents of the crystal field. All these contribu-
tions can be of the same order so that we must
consider the complete Hamiltonian

4 =P t —kA, QL; S;.
J (3)

l1x

L,S

(21)

l0,1&

L,S

(2q)
i 2y1

l1,0~
I0,1 &

+D +La~ 13H g (2S;—kL—;)

(4)
IO&

(6) t2,0~
IO,O~(15)

I2 00
— l1,1 &

lo', 0~ 4J', (9)
t1,1 &

Heisenberg Anderson present

modet model approach
J' =0.2J

FIG. 2. Energy-level scheme given by Eq. (7) for a
t2g-t2g entity; comparison with the results of the Heisen-
berg and Anderson models.

in which all symbols have their usual meaning.
The use of a fictitious orbital operator l. = 1 re-
sults in the minus sign which affects all L com-
ponents. The Stevens k parameter is an orbital
reduction factor, which reflects the proportion of
ligand character in the magnetic orbitals.

According to the structure of the compound
under consideration we have taken the same trigo-
nal distortion around i and j. Then, in the absence
of other contributions, a positive D value will cor-
respond to an orbital singlet ground state.
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FIG. 7. Influence of the orbital reduction factor k on
the reduced susceptibilities for constant values of the
other parameters.

1.50.3 090.6

kT/A, and reach finite values in the zero-temper-
ature limit. Such behavior results from the com-
bined effects of the various perturbations that split
the originally fivefold-degenerate level into a sing-
let ground state built from ~L„S,) = ~0,0),

~
1,1), and

~
T, 1 ), and two excited doublets. By

mixing the fundamental to the other levels the
spin-orbit coupling prevents the susceptibilities
from vanishing at absolute zero.

Furthermore, in the range of examined D/A,
values, we may notice that the perpendicular sus-
ceptibilities are lower than the parallel ones. Actu-
ally, the opposite situation holds for larger values

(see Fig. 4), resulting from a lower weight of
~L, =1,S,= —1) and ~L, = —1, S,=l) within

the ground state.
I.et us now consider the case of a very large dis-

tortion parameter compared to the other ones and
to the thermal energy available for the system. D
is taken to be positive so that the ground term for
each isolated cation is the orbital singlet A ~, well

separated from the orbital doublet E We are n.ow
dealing with a nondegenerate system with two elec-
trons, each one in an S orbital. The remaining
contributions of 4 act as perturbations and give
an excited triplet at the energy 2J above the singlet
ground state. Distinguishing the two kinds of po-
larized states in the exchange term changes this

gap into 2(J—J').
Finally, for highly distorted environments, we

readily verify that the eigenvalues and degeneracies
of the low-lying levels are just those of the iso-
tropic Hamiltonian

A =2(J—J')SiSp .

The parallel component of the susceptibility may

then be expressed in a much simpler form:

2 2

X~~
= „ I 3+exp[2(J —J')/kT] I '+X„„,

(12)

where the term X„„accounting for the second-order
Zeeman contributions is due to the upper levels lo-
cated around D and 2D (Fig. 4). Thus, it appears
that the proposed model allows us to continuously
describe all systems, whatever their orbital degen-

eracy.
Let its now consider negative D values which

stabilize, contrary to the foregoing case, the E orbi-

tal doublets. The collective singlet ground state in-

volves the states
~
L,=OP, =O) built from the

components +1 of L i, and L2, which give a zero
contribution to the local moment. For decreasing
values of ~D

~
/A, , the states ~L, =1+,= —1) and

~
L,= —1,S,=1) contribute to first order in

A, /
~
D

~

to the ground state. Since they are cou-

pled to higher levels by the magnetic momentum

operator (2S, —kL, ), we get a weak and constant
value of X~~A, /EP in the low kT/A, limit. The
first two excited levels, corresponding to linear
combinations of ~L, =O,S,=+1) and ~L, =+2,
S,=0), give rise to a large maximum of the paral-
lel susceptibility at higher temperature. Another
point of special significance concerns the suscepti-
bility anisotropy X&—

X~~ which is now always posi-
tive at low temperature.

B. Influence of the exchange parameters

We first consider the J'/J ratio varying in the
range 0—0.5 and we assign constant values to the
other parameters. It clearly appears from Fig. 6
that the J' contribution cannot be ignored without
introducing a major error and we shall have to
take it into accotint in the subsequent analysis of a
real magnetic system. In order to explain the in-
crease of the susceptibility maximum as J'/J is
raised, we have to consider the low-lying levels of
the system for given values of J/A, , D/A, , and k.

(i) For J'/J lower than about 0.4, the fundamen-
tal is a nondegenerate level built up from the func-
tions

~
0,0),

~
1,1) and

~
1,1). When J'/J ap-

proaches 0.4 the vicinity of a twofold-degenerate
level containing the states

~
2,0) +a

~
1,1 ) and

~
2r, O)+a

~
1,1) gives rise to a sharp maximum of

susceptibilities in the low-temperature range.
(ii) For J'/J greater than about 0.4, the ground

state is a magnetic doublet; then the parallel com-
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ponent Xiii, /NP diverges as T decreases.
It would also be of interest to consider the role

of J while J' remains constant. Actually, the sus-

ceptibility curves appear to be not very sensitive to
the J values as may be inferred from the level dia-
gram of Fig. 2 which shows that the splitting of
the low-lying levels is J independent. This point
will be of importance when determining the accu-
racy on the various parameters deduced from the
experiment.

C. Covalency effects

In the previous discussion, the Stevens parameter
k has been confined to the value k =1 which cor-
responds to the purely ionic case. In order to illus-

trate the properties of the system in presence of co-
valency effects or configurational mixing, we now

consider k values ranging from 0.6 to 1.0. This
will result in modifying not only the spin-orbit
coupling operator but also the expression for the
magnetic moment. The main result is a sharp in-

crease of the maximum for both parallel and per-
pendicular susceptibilities as k is lowered. Al-

though this point is only of qualitative signifi-
cance, since one considers an average parameter
k =kii ——kz in order to simplify the discussion, this
result is a clear indication of the covalency effects.
In a real compound, the determination of the k
factor will be based, when possible, on optical mea-

surements; then it will be defined as being the ratio
between the measured value in the compound and
the free-ion value. When such measurements are
not available k will be taken as an adjustable
parameter.

TABLE I. Results of the least-squares fitting for two
values of the orbital reduc;ion factor k =0.8 and 0.9.

k =0.8 k =0.9

J
Jl
D

Hi[c
Hlc

549 K
102 K

1200 K
3.04x 10
2.52x 10

520 K
89 K

1180 K
2.90x 10
5.74x 10-'

terion, defined as the sum of the squares of the re-

lative deviations [g(X,b, —X„t,) /X, b, j are report-

ed in Table I; further, a direct comparison between

experiment and predictions can be made from Fig.
8 (for k =0.8). It calls for the following remarks:

(1) The agreement between theoretical and exper-
imental values is excellent since, for k =0.8, it cor-
responds to a mean divergence less than 2.5%%uo on
the whole temperature range. This divergence
slightly increases for k =0.9 but it is, perhaps, un-

timely to draw a conclusion on the k value. Fur-
ther, it may be noticed that the fit gives a very ac-
curate estimate of the susceptibility anisotropy.

(2) Our exchange and distortion parameters
differ from those obtained in previously developed
models. In particular, if we take, for comparison,
2(J—J') as the effective exchange parameter, it ap-
pears that this quantity is a little larger in the
present study while the local distortion of the sites
is significantly lower. Optical measurements in
this spectral region do not allow to infer unambi-

guously on the accurate value of the distortion ef-
fect. Actually, we do believe that the exchange
Hamiltonian cannot be of the isotropic Heisenberg
form, this leading to our disagreement with previ-

V. MAGNETIC BEHAVIOR
OP THE ISOLATED ENTITY (Ti2Clq)

15

In this section, we analyze the experimental re-
sults obtained for both parallel and perpendicular
susceptibilities on CsiTiiC19. We only refer to the
model labeled I since g should be very small com-
pared to unity. This way, the number of adjustable
parameters is reduced but we must remember that
a possible source of anisotropy is thus neglected.

The least-squares refinements of the experimen-
tal data have been computed for two values of the
orbital reduction factor, k =0.8 and k =0.9, gen-
erally considered as the lower and upper limits for
the Ti + ion. The best values of the various
parameters and the corresponding agreement cri-

I'io
0
E

E
V

I0
~SO K
711 K

200 300 4004000
T(K)

FIG. 8. Magnetic behavior of Cs3Ti2C19 {from Ref.
18); comparison with the theoretical curves (solid line)
obtained for J=549 K, J'=102 K, D =1200 K, and
k =0.8.
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ous papers. Such an approximation may only be
accounted for D »J as shown in Fig. 4.

(3) The low-lying level corresponds to a singlet
ground state mainly built up from

Then, we find two excited doublets located at 711
and 780 K with the respective structures

~
L, =+1,S,=+1&

and

iLz +1,—S—,=O& .

This energy diagram is in very good agreement
with ir optical data' giving an energy gap close to
500 cm '(=720 E).

(4) It is worthwhile noticing that one can check
the internal consistency of the values obtained for
J and J' from the fit of the experimental data.
Thus, the transfer integral b is related to both ex-

change parameters, so that it may be easily elim-
inated from Eq. (6), giving

Ji U,'+ U'(0, 0)

U,'+ U'(1,0)

Further, the Coulomb repulsion between the elec-
trons located on the same ion, U,', is obtained by
comparing the ionization potentials for the config-
urations Ti +-Ti + and Ti +-Ti"+. From usual es-
timations and taking into account the polariza-
tion effects, ' we get U,'=1.90 eV. The spin-spin
correlation energies in the excited configurations
T, (S=1) and 'A„'E, 'T2 (S =0) are determined

using Racah parameters. The 'A
i configuration

shows an energy level which differs from the 'E2
and 'T2 ones. However, a convenient estimate
may be obtained by weighting the corresponding
values in the spin singlet states. Finally, we get
U'(1,0)= —0.39 eV, U'(0, 0)=1.17 eV leading to
the value 2.0 for the Ji /Ji ratio, in good agree-
ment with the experimental one 1.5. This agree-
ment could eventually be improved if we were able
to take into account accurately the reduction ef-
fects of covalency on the Coulomb integral in-
volved in the direct calculation of J~/J2.

I

= —2[2L,zL~ 6LizL2, +Li+—L2 +Li L2+

&o

C)
Co
C-

1

1 —2q i+g
1+4'

1 —271

1+q
1 —2q

Then, A ' is expressed as

CONCLUSION

We have been able, through this work, to show
that intraionic spin-spin couplings in polarized
states are an essential feature for superexchange in-

teractions. In particular, it has been shown that
the exchange Hamiltonian must be expressed in a
complex form including both spin and orbital com-
ponents. The proposed approach which has the
advantage of handling, simultaneously, various
contributions, such as exchange terms, local distor-
tions, and covalency effects, has proved to be very
efficient for studying the magnetic behavior of
(Ti2C19) units. We believe that the good agree-
ment between the Ji/J2 value deduced through the
present approach and that directly calculated from
ionization energies and Racah coefficients insure
the quantitative quality of our approach. This
should part and end to the controversies concern-
ing the magnetic susceptibility of this compound.
In the future we wish to apply such a development
to other materials showing orbitally degenerate
binuclear units.
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APPENDIX

Let us introduce the exchange anisotropy for the
D 3~ configuration. The exchange Hamiltonian
may be written (see text)

$+YfP o

The P ' contribution is obtained by introducing
the following corrections when calculating the
terms of Eq. (4):

(Li LigLi, L2++L—i,L i L2+L~+LizL i+Lz L~+L i+L(,Lg,Lz )]

)& [(J+2J')+4JSi.S2]+4Si.S)[4(J—J') —(4J—3J')(L i, +Lz)] .

The first term stands for a pure exchange contribution while the second one mixes spin coupling with a dis-
tortionlike term L &, +L,2,
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