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The exchange coupling between rare-earth (R) and transition-metal (T) moments in

R Ty compounds is not so large as to hold the R and T moments rigidly parallel (for light
rare-earth elements) or antiparallel (for heavy rare-earth elements); ionic magnetocrystalline

anisotropy energy can be comparable to this intersublattice exchange. Anisotropy torques
and/or an external field can induce canting between the sublattice moments. %e show that
this canting, even when small, can reduce the macroscopic effective anisotropy by a very

large amount —more than an order of magnitude —from the intrinsic sublattice anisotro-

pies. Consideration of the effects of canting reconcile hitherto conflicting reports, by spin-

wave scattering and moment measurements, of the magnetic anisotropies of Ho2Co/7 and

Ho2Fe». One conclusion of our analysis is that since a huge degeneration of macroscopic
magnetic anisotropy, and hence of the coercivity, comes from sublattice flexing, it seems to
follow that to increase coercivity one should be trying to increase R-T exchange; the ionic
magnetic anisotropy is already greater than its effective value.

I. INTRODUCTION

The lanthanide-rare earth (R)—3d transition-
metal (T) intermetallic compounds' comprise a
dozen structures ranging from the rare-earth-rich
R3T to the transition-metal-rich RMn&2. These
compounds are useful because they combine the
large magnetic interaction and high Curie tempera-
ture of the transition metal with the large anisotro-

py and magnetostriction of rare-earth elements.
The permanent magnets SmCos and Sm2(CoFe)i7,
their complex derivatives, and the magnetostrictive
TbFe2 (Ref. 3) come to mind.

Generally speaking, the exchange interaction be-

tween the transition-metal spins themselves (TT)-
is large and ferromagnetic, the coupling of the
transition-metal spin to the rare-earth spin (R-T) is

much smaller, and the exchange coupling between
the rare-earth elements (R-R) is so small as to be
negligible. Since the magnetic moments of the light
rare-earth elements (g ( 1) are parallel to their spin
angular momenta, while those of the heavy rare-
earth elements are antiparallel to their spin angular
momenta, a consequence of the negative RT ex-

change is. that the light rare-earth moments align
ferromagnetically with the T moments, while the
heavy rare-earth moments align antiferromagneti-
cally to the T moments. For crystal-field reasons,

something more happens in the Sm compounds;
for example, the moment of SmCo5 is less than that
of YCo5, while both PrCo5 and NdCo5 have larger
moments than the yttrium compound. We point
this out here because Sm plays a unique role in per-
manent magnet formulations.

We shall discuss the interplay between the sublat-
tice anisotropies, the intersublattice RT exchange,
the sublattice moments, and the external field. A
major conclusion of this paper will be that under
common circumstances, the macroscopic magnetic
anisotropy is very much less than the sum of the
sublattice anisotropies. The origin of this is sublat-

tice canting, which can cause the moment to point
off axis, change its magnitude, and give it an
unusual temperature dependence and a nonsaturat-
ing field dependence. Under these circumstances,
the macroscopic magnetic anisotropy will not con-
form to any simple field or temperature depen-
dence.

Some of these effects have already been reported.
Rinaldi and Pareti pointed out that in the RT com-
pounds the intersublattice exchange is not strong
enough to enforce complete alignment. Those au-
thors focused on systems in which the two sublat-
tices have magnetic anisotropies of different signs
so that the intrinsic anisotropies induce canting of
the sublattice moments. They show that this can
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point the net moment off at an unexpected angle
and can induce large higher-order anisotropy con-
stants as the two sublattices change their relative
angle as the moment is rotated around by an exter-
nal magnetic field. Lastly, Rinaldi and Pareti show
that these circumstances can lead to the so-called
first-order magnetization process, a jump in the
magnetization curve, as observed.

Noncollinearity of sublattices is in itself not a
novel concept. We think that what is useful here is
the application of this concept to a number of hith-
erto unexplained phenomena in the rare-
earth —transition-metal compounds. ' We hope
that this understanding will assist in the formula-
tion of better permanent magnets and magnetostric-
tive materials.

II. Ho2Co)7 AND Ho2Fe~7

—E2(T)sin 8—E&(T)sin 8

—E4(T)sin68cos6$ . (2.l)

The negative signs in Eq. (2.1) have been chosen to
make the plane easy with the E; positive; this is not
the customary convention, but is convenient here
and avoids a lot of minus signs in later formulas.

The method by which Miller et al. determined

Ei (and other coefficients) —measuring the com-
ponent of the magnetization M induced along the
hard c axis by an external field in that direction —is
a standard one. For simplicity let us ignore coeffi-
cients higher than E2 and the effect of demagneti-
zation (which produces an effective Ki). In a mag-
netic field H along the c axis, the free energy is then

F=KO —Eisin 8—E2sin 8—MH cos8 . (2.2)

Minimizing with respect to the angle of the magnet-
ization, one finds the component of the magnetiza-
tion along the field for small fields (and small devi-
ations from the easy direction) to be

M2
Mcos8- + H +.

4M
(2.3)

where the ellipsis represents terms of higher order.

Our interest was piqued by the following history.
In 1976, Miller, D'Silva, and Rodriquez" reported
measurement of Ki, the energy to rotate the mag-
netization of Ho2Coi7 from the easy plane to the
hard c axis. HoqCo» is a uniaxial crystal and the
free energy can be expanded in the magnetization
angles 8 from the c axis and P in the basal plane:

F(8,$)= Eo(T)—Ei(T)sin 8

Here we have defined

M=—E)+2E2, (2.4)

a combination which recurs. Implicit in this is the
assumption that the magnetization in the plane is
the same as when oae tilts it up toward the c axis.
We shall see that this is not right.

Three years later, at the 1979 International
Conference on Magnetism in Munich, Clausen and
Lebach' reported inelastic neutron scattering stud-
ies of spin-wave excitations in Ho&Co» and

Ho2Fe». Clausen and Lebach observed three spin-
wave bands, one nondispersive and two with signifi-
cant curvatures and with minima at I . Because of
their simple structures, the three branches can be
fitted with six constants —two each—describing
their gaps and curvatures. The flat rare-earth
branch means that the rare-earth —rare-earth ex-

change interaction is negligibly small, as is known

from other evidence. From the curvatures of the
other branches, Clausen finds T-T ferromagnetic
exchange interactions which, using mean-field
theory, are in satisfying agreement with the ob-

served Curie temperatures of Ho2Co» and Ho2Fe».
In both compounds the R-T interaction is antifer-
romagnetic and much smaller than that between the
transition-metal ions:

~
Jzr

~
/Jrr -0.0064 for

Ho2Coi7. (In the iron compound Jrr is smaller and
anisotropic, but the ratio of

~
Jzr

~

to Jr&. is 0.02 or
0.03, three times larger than in the cobalt com-
pound, but still small. ) These results conform with
normal expectation. For example, Steiner's' stud-
ies of R2(Coi „Fe„)i7show the Curie temperatures
of all the R2Co» compounds to be high, about 1200
K, and much the same for all rare-earth elements
(hence

~
Jzr

~

must be much less than Jrr), while
in R2Fe» compounds, the Curie temperatures are

1 1

about 4 to —, those of the cobalt compounds and

vary somewhat from one rare-earth element to
another.

The observed gaps at I are related to the site an-
isotropies of the rare-earth element and transition
metal. (Clausen emphasizes that although a band
model would be more appropriate for the transition
metal, it is simpler to perform the analysis in terms
of an effective localized transition-metal moment
with single-ion site anisotropy. ) From the spin-
wave gaps Clausen arrives at expectations of what
the macroscopic anisotropies should be. His data
appear to suggest that E& should be an order of
magnitude larger than Miller et al."had measured.

Miller et al. had done their moment measure-
ments at 77 K; Clausen did his neutron diffraction
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studies at 4.2 K. To be sure that the large differ-
ence in Ei was not due to the difference in
temperature —implausible but possible —Clausen
and Nielsen' repeated the moment measurements,
but at 4.2 K. They again found results not too dif-
ferent from the 77 K magnetization results, and still
an order of magnitude less than what the spin-wave

gaps seemed to demand. Whyo'

III. THE TWO SUBLATTICE MODEL

In the AzTj7 compounds the 17 transition-metal
spins have a combined moment exceeding that of
the two rare-earth elements. Holmium, being a
heavy rare-earth element, has its moment anti-

parallel to the cobalt or iron moment. In both

HO2CO]7 and Ho2Fei7, both the Ho and the
transition-metal moment prefer the basal plane.
[This is not true at intermediate pseudobinary frac-
tions of Co and Fe on the T sites, the region of in-

terest to Rinaldi and Pareti. One of us has recently
discussed the easy direction of magnetization in the
Rz(Coi „Fe„)&7 compounds as the composition x
and the temperature are varied. '

] In the absence of
a magnetic field both MR and MT, the two sublat-
tice moments, lie in the basal plane and point anti-
parallel to each other (apart from possible effects of
the individual sixfold anisotropies in the plane), to
minimize their anisotropy and exchange energy.
But for a nonzero magnetic field along the c axis,
the dominant MT is rotated up toward the field and
so the smaller M~ is induced by the antiferromag-
netic exchange to rotate downward. (Of course ulti-

mately, when the external field exceeds the ex-
change field, both sublattice moments are pulled up
toward H. ) But the external field and the anisotro-

py of the rare-earth element both oppose this, and
so MR does not rotate down as much as MT swings

up. Canting is induced. Even at the smallest fields,
and with small deviations from antiparallel align-
ment, this induced canting reduces the effective
magnetic anisotropy by an order of magnitude.

I.et E~R and E2R be the first and second anisotro-

py constants (per unit volume) of the rare-earth ele-

ment and E&T and E2T be those of the transition
metal. In a field H along c, MT swings up to angle
1(t and Mii down to angle 8, measured from the c
axis, as in Fig. 1. The energy density of each sub-
lattice is then

A, is the intersublattice Weiss field constant, and we

have dropped all but the two lowest-order anisotro-

py terms of Eq. (2.1); later on we shall consider
higher-order terms. Minimizing Eq. (3.1) with
respect to 8 and Eq. (3.2) with respect to P gives

0= MRH sin8 —EiRsin28 —2E2Rsin 8 sin28

—AMiiMrsin(/+8), (3.3)

0= MTH sing —XiTsin2$ —2XzTsin fsin2$

AMiiMr—sin(/+8) . (3.4)

These equations can be solved on a computer to
find the two angles as a function of H and the
several parameters. But it is edifying to examine
the small-field and small-angle behavior analytical-
ly. We introduce the small angles

(3.5a)

so that

(3.5b)

is the deviation from antiparallel alignment of the
two moments and g and i) are the deviations of each
moment from the basal plane. Up to linear terms in
these small angles, Eqs. (3.3) and (3.4) become

FIG. 1. Direction of rare-earth element magnetiza-
tion M~ and transition-metal magnetization Mz. relative
to external field H.

eR ———MRH cose —K]Rsin 0—E2Rsin 92

+AM+MTcos(/+8),

Er = —MTH cosp Eiz'sin g —Ezrsin g

+AM~MTcos(/+8) .

(3.1)

(3.2)

2cJTR1+
L MT —MR

~R~T
2 A R+Pi T+2 L

. - H , (3.6)
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and

2A T
MT — 1+

L MR

eJTR et' T
2 4 R+4"T+2

, . II , (3.7}
Pl eff —(E]+2XQ ) ff—

2WRWT
~R +~T+

2(MRMT +A AM@ )
1+

LM

(3.12)

5= ~RMT +~TMR H.
L(MIt+MT)+2%"aA T

Here we have defined for convenience

(3.8)

L:—A,MRMT,

and again

~R +1R+2+2R

(3.9a)

(3.9b)

and 4 T similarly, as in Eq. (2.4) for the macro-
scopic effective anisotropy. We see that the canting
angle is linear in H.

The component of the magnetization along the c
axis 1s

M~ MTcosf——+Mg cosO =MT' M—g g, —
(3.10)

M~ ——

&RMT'+~TMR'
2 L

aJY R ed% T4"R+4 T+2

Here we have identified

M =MT —MR, (3.11)

the net ferrimagnetic magnetization when the two
sublattices are antialigned in the basal plane. Forc-
ing Eq. (3.10} into the rigid-moment rotation mold
of Eq. (2.3}, we find that to lowest order in the
magnetic field the effective anisotropy constant is

Formula (3.12) behaves properly in the limit of
large intersublattice exchange; as J+T (and iL and L)
becomes large and the magnetization stiffens, the
effective anisotropy trends to the sum of the sublat-
tice anisotropies. Formula (3.12) appears to suggest
that Pi",g~ goes to zero when MT ——MR. It is rather
that the whole rigid-rotation approach is unreason-
able in that case; the experimentalist would never
have applied Eq. (2.3) to an antiferromagnet.

Now let us apply formula (3.12) to HozCo&7 and

Ho2Fei7. The spin-wave measurements' give most,
but not all, of the parameters. The two sublattice
moments are taken as gJ for the rare-earth element,
with the balance assigned to the Co and Fe to fit the
measured net moment. The intersublattice ex-

change constant JRT is, from the measured curva-

tures, —0.14 meV for HozCot7 and —0.12 meV for
Ho2Fe}7 These convert to the intersublattice ex-

change energies listed in Table I.
From the nature of the three branches observed

Clausen assigns one branch to the 34 Co or Fe
atoms in the unit cell. One nondispersive triply de-

generate branch is clearly an R branch, and the
remaining branch is a nondegenerate R branch
(there are 4 R atoms in the unit cell). Thus there is
one gap energy to employ to fix the transition-metal
anisotropy and two gaps for the anisotropy of the
holmium. Equation (2.1), up the sixth-order terms,
contains four coefficients, and each sublattice T and
E. has its own set of four. To make the problem
tractable Clausen terminates the anisotropy expan-
sion, Eq. (2.1) of the transition metal at the leading

TABLE I. Magnetic anisotropy of Ho&Co» and Ho&Fe&7. A11 energies are to be multiplied by 10 ergs/cm . The
fourth and fifth columns contain the spin-wave data reported by Clausen (Ref. 12). The last column contains data report-

ed by Clausen and Nielsen (Ref. 14). A different breakdown into K&~ and K&~ contributions, equally consistent with

Clausen's spin-wave data produces, by Eq. (3.12) for HozFe&7, a value A,ff——1.85X10 ergs/cm, and also improves the
calculated Ep ff See text following Eq. (3.13).

M~

(M, —M„)'
M~

(MT —Mg )

jeff jeff
+1R K,r K,z pKir [calculated (by moment

L (spin wave) (spin wave) (spin wave) by Eq. 13.12)] measurement)

HoqCoi7
HozFe&q

11.53
4.76

5.72
1.49

19.7
30.3

16.4
20.6

14.4
0

30.8
20.6

1.92
2.76

1.48
2.15
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I =2 term, fixing its value. The observed gap con-
verts to E&T 14——.4X10 ergs/cm for the cobalt
and zero for iron. For the Ho there are two mea-

sured gaps and four coefficients. Clausen assumes
that E2~ and Eq~ are zero and finds K&z and E4+,
the coefficient determining the sixfold anisotropy in
the plane. The values thus found are listed in Table
I. The holmium anisotropy, presumably of single-
ion origin, should be the same in the Co and Fe
compounds. Perhaps the actual small difference is
due to lumping some of Ez into E~ in the cobalt
case, or merely to the very large error bars on the
measured gap, and hence on the determination of
Et+ in the case of Ho2Fe&7.

Clausen assumed that the two sublattices rotate
rigidly antiparallel. Were this so, the macroscopic
anisotropy energy density would be the sum of the
contributions from the two sublattices, the sixth
column of Table I, something like 30 and 20)&10
ergslcm in the two materials. Canting, embodied
in Eq. (3.12), reduces this by a factor of 10 or 15 to
the values entered in the next to last column of
Table I. It will be seen that the softened E's are in
fact close to those reported by moment measure-
ments shown in the last column [and calculated by
the experimentalist by using Eq. (2.3)].

It will be evident to the reader that the M,~f of
Eq. (3.12) will not have the usual temperature or
magnetic field dependence, ' and not merely be-

cause of the mixing in of E2 with E~. But the in-

trinsic sublattice E;~ and ET should have I~+&~2
dependence on their sublattice magnetizations.

Clausen and Nielsen's' magnetization measure-
ments show a difference between the behaviors of
HO2CO) 7 and Ho2Fe] 7. Up to the fields that were
available (10 or 15 kOe) the induced c-axis moment
is linear in field for the Co compound but displays a
decided negative curvature, an H term, for the Fe
compounds. Clausen and Nielsen use an expression
equivalent to the cubic term of Eq. (2.3) to measure

E2 in Ho2Fe~7, and their measured value is entered

in Table II. But this is, of course, subject to reinter-
pretation in terms of sublattice canting. Canting
creates two contributions to the l =4 and higher-
order harmonics. A direct result of sublattice bend-

ing will be a reduction of E2,~f from its intrinsic
sublattice contributions, as with E&,~f. Another and
more harmonious contribution is the echoing in E2
of the modulation of canting induced by E&. The
latter is the point of the work of Rinaldi and Pare-
ti. As the net moment is rotated around by the
magnetic field, the canting angle between the two
sublattices will, because of the intrinsic E& of either
or both sublattices, breathe in and out with the full
crystal symmetry. This symmetric modulation of
the canting will generate higher harmonics —E2 and

Es, echoes of E~—whether or not these are present
intrinsically. These overtones will not have the nor-
mal temperature or field dependence' any more
than will E~,f~. In fact, an indication that canting
is complicating the anisotropy is the presence of
more high-order harmonics than one usua1ly en-

counters, and their unconventional temperature and
field dependence.

Rinaldi and Pareti give an approximation formu-
la for canting-induced higher-order anisotropies.
They show that in systems in which one sublattice
prefers the plane and the other the axis [this is not
the case in Ho2Co&7 or Ho2Fe]7, but does obtain at
intermediate pseudobinaries of Co and Fe, such as
Ho2(Coo 6Feo 4) t7] the induced canting angle is large
enough so that its modulation makes a large contri-
bution to E2,f~. This can cause the magnetization
to lie off at some intermediate angle out of the
plane, and can cause large discontinuous jumps in
the magnetization curve. '

We have also developed an expression for the ef-
fective coefficient Ep ff for small anisotropy ex-

change. The derivation is long and we do not give
it here. Comparing our two-sublattice H term to
that of Eq. (2.3), we find

TABLE II. Magnetic anisotropy of Ho2Co» and Ho2Fe&7. The 1=4, E2 coefficient. A11 energies are to be multipled

by 10 ergs/cm'. E~& and E2q are underdetermined by the spin-wave gap measurement. An assignment of these con-
stants consistent with the measured gap yields K2,ff ———1.79' 10 ergs/cm, and also improves the calculated M,ff. See
text following Eq. (3.13).

Ho~co~7
Ho2Fel7

Mg

)I/
19.7 2.39
30.3 1.22

3.40
2.18

16.4
20.6

14.4
0

~lR ~1T

M
(spin wave) (spin wave)

+2R +2T +2eff
{as assumed (as assumed [calculated

by Clausen) by Clausen) by Eq. (3.12)]

—0.04
—0.27

+2eff
measured

—1.75
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2M,' 2M,L+ ~T+
M M

4

4 4
MT MR

X K2T L+2A"g +K2R L —2A T
2L 2

M
(Mg A T+MTWg )

MT MR
X L+ AR-

M /M/
(3.13)

Note that expression (3.13) is symmetric with
respect to the two sublattices, including terms linear
in M. We see that as L~ oo and the moment rigi-
difies, K2eff ~K2r+K2g as it should. The first two
terms in the large square brackets represent the
softened direct contributions of the individual K2 s
to the effective Kz. Though the form of these
terms is different from (3.12), the idea is the same.
The third term, the product of several factors, is the
overtone, the contribution Rinaldi and Pareti dis-
cuss. It goes to zero as L '; as L increases, it
straightens its hold on the two moments and breath-
ing is suppressed. Note that this contribution arises
from E&+2E2 of the individual sublattices, and
will be present even when the sublattice K2 ——0. In
fact, Ki ——0 is the assignment assumed by Clausen
and listed in our Table II. We see that the harmon-
ic of K,ii into K2 ff contributes only —0.3X10
ergs/cm, compared to the measured —1.75X107
ergs/cm of Ho2Fei7 Most of K2 ff must come
from intrinsic sublattice K2a and K2T contributions.

Clausen, for want of more complete data, made
the sensible simplest choice. An assignment equally
consistent with the measured spin-wave gap of
Ho2Fei7 is K~ i =98.4 X 10 ergs/cm and

KR2 ———47.0X 10 ergs/cm . This choice gives

Kt ff = 1.85 X 10 ergs/cm (compared to the mea-
sured 2.15X 10 ergs/cm; a 14% error) and

Ki ff = —1.79X 10 ergs/cm (compared to the
measured —1.75X10 ergs/cm; a 5% error). Ki ff
is then 5.43 X 10 ergs/cm (compared to Clausen's
estimated 5.65 X 10 ergs/cm; a 4% error).

We have also calculated the sixfold anisotropy in
the basal plane, the K4 coefficient of Eq. (2.1).
Again we follow the rotation of the two sublattices,
but now under torque by a magnetic field in the
basal plane. We find the effective coefficient in-

duced by the intrinsic sublattice sixfold anisotropies

K4R and K4T to be

l.(K4ri +E4T) +36K4aK4T
4cff =

MT RL+36
2 K4R+36 2 K4T

M M

(3.14)

As L~ m, K4,ff ~K4R+K4T as it should. Table
III contains Clausen's spin-wave data, Clausen and
Nielsen's measured K4, and the K4,ir we find by
Eq. (3.14). Moment flexing reduces the power of
the intrinsic sublattice anisotropy by a factor of 43
in the Co case, and a factor of 15 in the Fe case.
Our results are within a factor of the experimental
findings. Better agreement will have to wait upon
more accurate determination at the intrinsic sublat-
tice anisotropy coefficients.

IV. APPLICATION TO OTHER
COMPOUNDS

In deriving the expressions for the effective-
anisotropy coefficients, we took it that both sublat-
tices preferred the basal plane, as in HoiCoi7 and
Ho2Fe~7. On the other hand, it is clear that the ef-

TABLE III. Sixfold basal plane anisotropies of Ho2Co&7 and Ho2Fe&7. All energies are to be multipled by 10
ergs/cm'.

'2
MT

M

'2

I 4R

+4eff
[calculated

by Eq. {3.14)]

+4eff
(by moment

measurement)

Ho2Co~7
Ho2Fef7

19.7
30.3

11.53
4.76

5.72
1.49

2.0
2.5

0.046
0.17

0.066
0.085



3876 ANGIE SARKIS AND EARL CALLEN 26

fects we are describing will be largest when the
canting angle and its harmonic modulation is larg-
est. This will be the case when one sublattice
prefers the plane, the other the axis. This was
recognized by Rinaldi and Pareti, who applied their
analysis to an intermediate pseudobinary of Co and
Fe [the transition-metal subsystem prefers the axis
in R2(Co~ „Fe„)~7 for 0.05 &x & 0.5] with a planar
rare-earth element, such as Pr. The oppositely con-
flicted situation would be Tm2Co~7 or Tm2Fe&7,
since Tm prefers the axis (as do Sm, Er, and Yb)
and the pure transition metals prefer the plane.

And so it is useful to compare all the
possibilities —both anisotropies planar, both axial,
and one of each—to see how big the effects can be.
There is another bifurcation: In the light rare-earth
elements the rare-earth moment Mz is parallel to
MT, and for these ferromagnetic materials there are
again the several possibilities for the signs of Ez
and ET. But the situation is not as complicated as
it seems. When one repeats the calculations of Sec.
III, setting both vectors Mz and MT in the first
quadrant in Fig. 1, and replacing the exchange cou-
pling of the sublattices in Eqs. (3.1) and (3.2) by
—AM+MTcos(8 —1() so that I, and L are still de-
fined as positive quantities, one finds the same re-
sult as for antiparallel coupling. To apply formulas
(3.12) and (3.14) to either antiparallel or parallel

coupling, one always takes L as a positive quantity.
The only difference in application to the two cou-
plings is in the interpretation of M, the macroscopic
moment. For the ferrimagnetically coupled heavy
rare-earth elements M is the (magnitude of the)
difference in sublattice moments; for the ferromag-
nets M is the sum of the sublattice moments
M=M&+MT. This change has a large quantita-
tive impact. Since M occurs quadratically in Eq.
(3.12), and multiplied by L, the much larger mag-
netization which results from ferromagnetic align-
ment has the same sort of effect as stiffening the in-

terlattice exchange —it makes the effective anisotro-

py more like the sum of the sublattice anisotropies.
Thus for permanent magnets ferromagnetic cou-

pling is preferable not only on the score of larger
remanence and induction, but for larger effective
magnetic anisotropy and coercive force as well.

To apply formula (3.13) to the case of parallel
ferromagnetic coupling, one must change the sign
of M~ everywhere, both in M and in the linear
terms in Mz.

We worked out Sec. III for two planar sublat-
tices. When both sublattices prefer the axis every-
thing follows as before, ' one simply inserts the ap-
propriate negative signs for E&& and E».

A more difficult situation is obtained when one
sublattice prefers the axis, one the plane. This is
the case already analyzed by Rinaldi and Pareti.
In general the solution is complicated and expres-
sions for effective anisotropies cannot be given in
closed form. Rinaldi and Pareti do as well as they
can; they analyze in terms of the direction of the
magnetization itself. For small fields the sublattice
moments and the net moment deviate only a small
amount from their zero-field orientations, but these
three can point far from the axis, the plane, or each
other.

There is a regime in which things simplify. Sup-
pose the intersublattice exchange is much larger
than the magnitude of the smaller of the two sublat-
tice anisotropies. Then both sublattice moments
will be substantially parallel or antiparallel, and will
lie as dictated by the sum of the anisotropies-
either close to the axis or to the basal plane. We
can then proceed as in Sec. III and carry those
equations further; we expand to first order in the
small K/L and final simple approximate expres-
sions. For example, Eq. (3.12) becomes

jeff—(~R +~T) (~RMT+~TMR )
1+

L(Wg +MT)M

(4.1)

Equation (4.1) can be used when A z and Pi"T have
opposite signs so long as either Pi z/L or A T/L is
small. [It can also be used, of course, when both
A z and MT have the same sign, but is then less
accurate than is Eq. (3.12).] Equation (4.1) is appli-
cable to both ferro- and antiferromagnetic coupling.
The minus sign in Eq. (4.1) is for antiferromagnetic
alignment and the plus sign for ferromagnetic sub-
lattice coupling.

A glance at Table I will show that A"z/I. is not
small. The intersublattice exchange is not
overwhelming in the R~T& compounds, while the
rare-earth element anistropy is generally large. But
while the cobalt anisotropy is large, that of iron is
not. For example, Eq. (4.1) applied to K~eff of
HozFe&7 gives the result 2.76X10 ergs/cm, the
same answer obtained by the more cumbersome Eq.
(3.12). But Eq. (4.1) gives entirely the wrong
answer for Ho2Co~7 because K&c,/L is not small.
The utility of Eq. (4.1) and the equivalent expan-
sions of Eqs. (3.13) and (3.14) is its applicability to
cases in which the two sublattices have anisotropies
of opposite sign, but where one is small, as in
Sm2Fe&7. On the other hand, some cobalt com-
pounds, such as Sm2Co~7 and perhaps
Ho~(Coo 6Fe04)&7, we expect that the two sublattices
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should point off at large angles from each other and
from the symmetry directions. For these, the
Rinaldi and Pareti approach is in order.

Lastly, we emphasize that since a huge degenera-
tion of macroscopic magnetic anisotropy, and hence
of coercivity, comes from sublattice flexing it seems
to follow that to increase coercivity one should be
trying to increase the R-T exchange, ' the ionic mag-

netic anisotropy is already greater than its effective
value.
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