
PHYSICAL REVIEW B VOLUME 26, NUMBER 7 1 OCTOBER 1982

Numerical study of the spin-glass transition in a dilute Ising model on a triangular lattice
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We study an Ising model with nearest-neighbor antiferromagnetic interactions. It is

placed on a triangular lattice, where each site is occupied by a spin with x probability.
fhere is no applied magnetic field. Randomness and frustration, two essential ingredients

of spin-glasses, are present in this model. We study its critical properties here. The entro-

py is obtained by a transfer-matrix calculation as a function of x at low temperature

(T=0.3J/k&) for systems on a lattice of 10)&20 sites. A fairly shallow minimum appears

near x=0.9, which suggests that this case is the one most likely to show a transition into an

ordered state at low temperature. We study the cases x =1, 0.9, and 0.74, which is about

half-way to the critical percolation. We simulate systems on lattices of 50X50 sites and

30X30 sites by the Monte Carlo method. The specific heat has a broad maximum at
T=0.9 for x=0.74 and 0.9. +so, defined by PsG ——N ' g, (o;ot)~, and the relaxation

time (~) are obtained for T & 0.6J/kz. Both quantities, ~ and +so, turn out to be propor-

tional to exp[A/(T Tp)'] and —0& Tp &0.4; a fit with Tp ——0 yields c =1 for x =1 but

c =2 for x =0.74 and 0.9.

I. INTRODUCTION

Quenched randomness is an essential feature of
spin-glasses. ' It occurs in meta1lic spin-glasses,
such as CuMn or AuFe, where the Inagnetic atoms
enter substitutionally at random into the nonmag-
netic metal and occupy fixed lattice sites after the
system is quenched. It also occurs in insulators or
semiconductors, such as Cd~ „Mn„S (Zn and Hg
instead of Cd may be used, and any element in the
Periodic Table column below S may also be used in-
stead of S). Frustration (the impossibility to mini-

mize simultaneously all pairwise spin interactions in
the system) is believed to be the other essential in-

gredient of spin-glasses. It occurs in metallic
spin-glasses because the random location of the lo-
cal magnetic moments (spins) and the oscillatory in

sign nature of the long-ranged Ruderman-Kittel-
Kasuya-Yosida spin-spin interaction produce a ran-
dom mesh of ferromagnetic and antiferromagnetic
interactions which cannot be minimized simultane-

ously. Frustration occurs in the case of
Cd~ „Mn„S because (a) of the geometrical structure
of the fcc or hcp lattice where the Mn atoms enter
substituting Cd atoms, and (b) the magnetic mo-

ments carried by the Mn atoms interact antifer-
romagnetically and only (approximately) if they are
nearest neighbors. Since two nearest-neighbor
atoms may themselves be nearest neighbors in these
lattices, it follows that not all interaction energies
can be minimized simultaneously, and it is said that
the lattice itself is frustrated. The triangular lattice
is similarly frustrated.

A cusp in the magnetic susceptibility as a func-
tion of temperature at T =TO has been reported
for Cdi „Mn„Te and for Cdi „Mn„Se, but exten-
sive measurements to establish that these results are
not time dependent [by, for instance, studying
Tp(co) as a function of the frequency (co) of the ap-
plied magnetic field] have not been performed yet.

Whether randomness and frustration are suffi-
cient to produce a true transition to the spin-glass
state or whether some additional ingredient, such as
some local anisotropy is necessary, is not yet estab-
lished. The study of models with some or all of
these ingredients is, therefore, of interest to estab-
lish a theory of spin-glasses.

Previous Monte Carlo (MC) simulations of dilute
Ising models on fcc lattices, as well as on triangular
lattices, have shown that there is considerable
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slowing down at low temperature T, which is typi-
cal of spin-glasses, but it did not indicate whether it
occurs gradually as T decreases or whether there is
a critical point. An analytic solution exists only
for x = 1, and it shows that there is no phase transi-
tion in that case.

The purpose of this paper is to determine, by
means of a Monte Carlo simulation, whether a criti-
cal point exists separating the paramagnetic and
spin-glass phases of a dilute antiferromagnetic Ising
model on a two-dimensional triangular lattice, or
whether the system freezes gradually as the tem-
perature decreases. We study systems with the fol-
lowing values of the fraction x of sites occupied:
x =0.74, 0.9, and 1, but concentrate on the case of
x =0.9 for reasons that follow. We are interested
in studying the system most likely to exhibit a sharp
transition, which we expect to be the one with the
lowest entropy S per spin in the T~O limit. By
means of a transfer-matrix computation, we first
determine S as a function of x for a system of
10X20 sites at T =0.3J/ke. The results, exhibited
in Fig. 1(a), show that the minimum value of S oc-
curs for x=0.9. Figure 1(b) shows S vs T for
x =0.74, 0.9, and 1. The transfer-matrix method is
used, instead of an MC simulation, because long re-
laxation times at low temperatures (see Sec. II) turn
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FIG. 1. (a) Entropy per spin as a function of x is

shown for T =0.3J/kq for systems on 10'20 sites. It is

obtained by the transfer-matrix method. The value for
x =1 agrees with the exact result of Wannier. (b) The en-

tropy (in units of k~) is shown as a function of T (in units

of kz) for systems of atomic concentrations x =0.74, 0.9,
and 1, all on 10)(20 sites. The transfer-matrix method
was used to obtain these values. 0 is for x =1 and for
x =0.9, and )& is for x =0.74.

where E is the number of spins in the system, o;(t).
is the ith spin at time t, and ( ) denote time aver-

ages, i.e.,
m

(Ir;(0)o;(t) ) =—g a;(t„)o;(t„~t) .
m

Incidently, if the system is mixing" —which spin-
glasses may not be—then the time average defined
in Eq. (1.2) becomes equal to an ensemble average in
the m —+op limit. We let

q t t, (1 3)

since q (0)= 1.
It is appropriate at this point to remark on the

relevance of the dependence of q(t), which we ob-
tain by the Monte Carlo method, to its experimental
behavior. q(t) evolves experimentally, due to spin-
phonon and dipolar interactions. However, the MC
algorithm does not simulate the effect of these in-
teractions. Nevertheless, we believe that the quali-
tative behavior of q(t) we obtain is the correct one
for the reason that follows: The Arrhenius law
which governs the relaxation of a metastable state is
easily shown (at least for a three-level system) to
follow from the master equation regardless of the
details of the dynamics of the system. The numbers
depend on the details of the dynamic, but the quali-
tative (exponential decay) behavior depends only on
detailed balance being obeyed. Analogously, we ex-

pect that the qualitative aspects of the relaxation
exhibited by spin-glasses (SG) depend on detailed
balance being satisfied, which is the case for the
MC algorithm, and not on the details of the pertur-
bations.

To diagnose whether a critical point exists, it is
also of interest to calculate

Xso——X 'g(cr;o, )2,

MC simulations impractical. Furthermore, MC
simulations do not yield S directly; the specific heat
C must first be obtained as a function of T, and
only then can S be obtained by means of

S =kiI ln2 —f (C/T')dT',

where kz is Boltzmann's constant.
If there is a critical point at some temperature To

separating the paramagnetic and spin-glass phases,
the relaxation time ~ ought to diverge as T~TO
from above, as Kirkpatrick' has stressed. To cal-
culate r we first obtain
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which must diverge at Tp if the associated correla-
tion length g diverges there. To make the relation
between Xso and g tnore explicit, let

g ( r,j ) =N ' g' ( tr;tr~ ) (1.5)

where d is the dimensionality of the system.
The plan of the paper is described next. In Sec.

II the systems studied are described in detail, the
method of calculation is described (including how
we calculate Xso), and the results obtained, which
indicate that both ~ and Xso only diverge as T~ Tp
and that 0 & Tp & 0.4, are presented. Finally, the re-
sults are discussed in Sec. III.

II. PROCEDURE AND RESULTS

We simulate, by means of a Monte Carlo compu-
tation in its METROPOLIS version, an Ising system
on a triangular lattice. Each site is occupied with a
spin with probability x, each spin interacts with its
nearest neighbors only, and it does so antiferromag-
netically. The external field is null throughout this
paper.

We have studied systems on lattices of 50)(50
sites with three values of x: (i) x =1, (ii) x =0.9
(more precisely, 2240 spins), and (iii} x =0.74 (1862
spins}. The same computations were repeated for
all three values of x for systems on lattices of
30X30 sites to check for size effects.

The lattice is placed on a cylinder, that is, period-
ic (free) boundary conditions are used in the hor-
izontal (vertical) direction.

The temperature is expressed in units of J/ks
throughout, where I is the magnitude of the ex-
change constant and kz is Boltzmann's constant.
The time t variable is expressed in units of Monte
Carlo steps per spin (MCS/spin).

We next describe how we performed the MC
simulations. Let T~,T2, . . . , T; be the temperatures
at which runs were made. In one sequence of runs,
all spins are up in the initial state at the highest
temperature T;. The final configuration obtained at
T; was then used as the initial one for T; i. This
procedure was repeated down to the lowest tem-
perature. To test for initial condition effects, runs

where the primed sum is over all i and j such that
r,j is fixed. Now, assuming g(r)-r "f(r/g),

Xso——c I g(r)dr (1.6)

yields

(1.7)

were also made at all temperatures starting from
random-spin orientations. Results obtained from
different initial conditions are displayed in the fig-
ures as distinct points. At each temperature, we let
the system evolve for an equilibration time ti before
we take note of the value of any quantity. The
values of ti used are one order of magnitude larger
than r, defined by Eq. (1.3). These values had to be

guessed, of course, and checked a posteriori. Values
of ti ——3 X 10' MCS/spin were used in some cases at
low temperatures (T (0.7), but t, =10 MCS/spin
was a typical value used at high (T & 1) tempera-
tures. MC runs go on to yield average values, after
the system becomes equilibrated, for a time approx-
imately equal to t&.

To compute q (t), defined in Eq. (1), we used Eq.
(1.2). Note that the first term in the sum corre-
sponds to t„=ti and all other terms are evaluated at
later times. Thus q(t) is an equilibrium correlation
function. Its long time behavior is exhibited in Fig.
2 for a system with x =0.9 at several temperatures.

To obtain Xso it is not practical to find the value
of each average (o;oj ) in Eq. (1.4) since there are
N(N —1)/2 of them, which are too many. Instead,
we first compute the equilibrium correlation func-
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FIG. 2. Long-tine behavior of the equilibrium corre-
lation function, q(t), defined in Eq. (1.1) is shown as a
function of t for various temperatures for a system with
x =0.9. 0 is for T=0.7Jlk&, + is for T=0.8J/k&, 0
is for T=0.9J/k&, )& is for T =J/k&, and Q is for
T =1.2J/kg.
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tion,

Xso(t)=N 'g ([o;(0)oj(0)]

IOO

x [o;(t)0,(t)]), (2.1)

where the average (8 (0)A (t) ) is defined by

m

(8(0)A (t) ) =—g B(t„)A(t„+t),I (2.2)

~ 50—
OC

0
0

Oo
0

oo
o o~o

0

and t~+t corresponds to the last MCS/spin taken
in the run. Now, since ( ) stands for a time aver-

age in Eq. (1.4},it follows that

t~
XSG (2~tf }I (tf t}XSG(t}dt ~ (2.3)

where t~ is the time interval between ti and the end
of the run. To obtain Xso(t), let

A(t„,t)= go;(t„)0;(t„+t) . (2 4)

Then

Xso(t)=N 'm ' g [A(t„,t)]
n=1

kg —tf
(2.5)

Thus storing m spin configurations (200 in our
case), which occur at m equally spaced times
throughout the run after t„allows A(t„,t) to be
computed.

To speed the convergence of +so, as given by Eq.
(2.3), to the t~~ ac limit, we use

t~
Xso 2I(ty——t') I—(ty t)Xso(t)dt, — (2.6)

C =(Nktt T ) '((5E) } (2 7)

where t' is chosen to eliminate the contribution of
the nonasymptotic part of Xso(t) from the integral.
Note that &so=&so in the ty~oo limit since t' is
finite.

Figure 3 exhibits the long-time behavior of Xso(t)
at various temperatures for a system of 50X 50 sites
with 90% of them occupied. It shows that Xso(t)
relaxes to its asymptotic value somewhat faster than
q(t).

Figure 4 exhibits the specific heat C per spin (in
units of Boltzmann's constant kz} versus tempera-
ture for x =0.74 and 0.90. The position of the
maxima of C (T~=0.9 in both cases) serves as a
reference point for a temperature scale. One set of
data points was obtained by numerical differentia-
tion, with respect to temperature, of the mean
values of the energy per spin obtained. The other
set of points was obtained by applying the formula

where 5E =E —(E). Some scattering in the points
shown is observed, since the two methods are only
exactly equal for infinite time averages. Values ob-
tained for systems with x =0.74 and 0.9 on a small-
er lattice of 30X30 sites agreed with the values
shown within statistical errors.

Now that we have described how q(t) and Xso(t)
were computed and the position of the maximum in
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FIG. 4. Specific heat {in units of k&) is shown as a
function of T {in units of J/k~) for systems of atomic
concentration x =0.74 and 0.9 on 50& 50 sites. The MC
method was used to obtain these values, Q and 0 are
computed for x =0.74 and 0.9, respectively, using Eq.
{2.7). V and Cl are computed for x =0.74 and 0.9,
respectively, using C =b, (E) /b, T.
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FIG. 3. Long-time behavior of the equilibrium corre-
lation function PsG{t), defined in Eq. {1.4), is shown as a
function of t {on a logarithmic scale) for various tempera-
tures for a system with x =0.9. 0 is for T =0.7J/k~,
+ is for T =0.8J/k~, Cl is for T =0.9J/k~, and 5 is

for T =1.2J/kq.
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the specific heat has been established to serve as a
reference point in temperature, we turn our atten-
tion to our results obtained for (a) the relaxation
times, defined in Eq. (1.3), and for (b) Xso, defined
in Eq. (1.4).

Figures 5, 6, and 7 exhibit in[in(r )] vs T on a log-
arithmic scale, for x =0.74, 0.9, and 1, respectively.
These results, obtained for systems on 50X50 sites,
are fitted with the rule' (Fulcher's law)

2.5-

h

l.5-
7 ~
X

r=exp[A, /(T —Tp) '] . (2.8)

The dotted (dashed) lines are least-squares fits with

Tp =0 ( Tp =0.4), and the corresponding values of
A, and C, are given in Table I. While the value of
Tp ——0 seems to give better fits for all three values
of x, the value Tp 0.4 can——not be ruled out entirely.
A value of Tp ——0.5 gives significantly worse fits for
all three values of x. Results obtained for systems
on 30)&30 sites are also shown for x =0.74 and 0.9.

Figures 8, 9, and 10 exhibit ln(Xso) vs T for
x =0.74, 0.9, and 1, respectively. These results, ob-
tained for systems on 50)&50 sites, are fitted with
the rule

Xso=exp[A /(T Tp) (2.9)

The dotted (dashed) lines are least-squares fits
with Tp ——0 ( Tp ——0.4), and the corresponding
values of A„and C» are given in Table I. The value

To ——0 gives a better fit for x =0.74, but To ——0 and

Tp =0.4 seem to give equally good fits for x =0.9
and 1 in this case. On the other hand, a value of
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FIG. 6. Quantity in[in(r)] is shown vs temperature,
on a logarithmic scale for systems with x =0.9 on
50X50 sites (X ), and on 30X30 sites (V). The relaxa-
tion r is defined in Eq. (1.3}. The dotted (dashed) line is
a least-squares fit with Eq. {2.8} and Tp ——0 (Tp ——0.4).
The point corresponding to T =0.6 was not taken into
account when finding the best fit because there is a sig-
nificant size dependence then.

Tp ——0.5 gives significantly worse fits for all three
values of x. Results obtained for systems on 30X30
sites are also shown for all concentrations.

Figures 8 and 9 show that Xs~ becomes size
dependent for 1nXsG )3 both for x =0.74 and for
x =0.9, which was to be expected since g becomes
comparable to the linear dimensions of the system
then. This effect produces the size dependence of
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FIG. 5. Quantity in[in(r)] is shown vs temperature
on a logarithmic scale for systems with x =0.74 on
50&(50 sites ( &( }, and on 30&30 sites (V'}. The relaxa-
tion ~ is defined in Eq. (1.3}. The dotted (dashed) line is

a least-squares fit with Eq. (2.8) and Tp=0 (Tp=0.4).
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FIG. 7. Quantity in[in(r)] is shown vs temperature
(in units of Jjk&) on a logarithmic scale, for a system
with x =1 on 50)&50 sites. The relaxation ~ is defined
in Eq. (1.3). The dotted {dashed) line is a least-squares
fit with Eq. (2.8) and Tp ——0 (Tp ——0.4).
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TABLE I. Values of constants, defined in Eqs. (2.8) and (2.9), corresponding to Tp ——0.

Number of
sites

1.0
0.75
0.75
0.9
0.9

50x50
5Ox5O
30X30
50x5O
30X30

1.03
1.84
1.57
2.26
1.78

1.01
1.95
1.93
2.02
1.98

1.37
1.44
1.50
1.58
1.41

2.37
3.52
3.51
3.95
3.83

C„shown in Table I. It becomes quite large in the
case of x =0.9, for T(0.6Jlks, as Fig. 9 shows;
accordingly, the points for T=0.6, x =0.9 were
not taken into account when finding the best fits.

III. SUMMARY AND DISCUSSION

We have studied Ising systems on a triangular
lattice with atomic concentrations given by
x =0.74, 0.9, and 1. The case of x =0.9 is interest-

ing because, as Fig. 1(a) shows, the very low-

temperature (T=0 3Jlks) e. ntropy as a function of
x has its minimum value near x =0.9, which sug-

gests that if there is a transition into an ordered
state for some range of values of x, x =0.9 should

be within that range.
The results obtained for the relaxation time r and

for the generalized susceptibility +so are consistent

with a vanishing critical temperature To for
x =0.74, 0.9, and 1. Both ~ vs T and ps& vs T can
be fitted by exponential functions, given by Eqs.
(2.8) and (2.9) (setting To=0), respectively, for all
values of x studied. The values of C, and C„, de-

fined by these two equations, corresponding to
x =0.74 and 0.9, are about twice as large as their
values obtained for x = 1, as shown in Table I. This
is the only remarkable difference we see between the
case of x =1 and the dilute case. Great and Gabl
had already reported that these dilute systems be-
come very slow for T (0.7. Equation (1.7) implies
that the correlation length (g) diverges with the
same index C„as Xs~, and the value shown in Table
I for x =1 agrees approximately with the known
value. '4

A nonvanishing To cannot be entirely ruled out
since the values obtained for r and for gsG can also
be fitted by Eqs. (2.8) and (2.9) for any value of To
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FIG. 8. Quantity In(&so) is shown vs temPerature for
a system with x =0.74 on 50X50 sites (X), and on
30X30 sites (V). +so is defined in Eq. (1.4). The dot-
ted (dashed) line is a least-squares fit with Eq. (2.9) and
Tp ——0 (Tp ——0.4).

0.6 0.8
( Ji kEI )

FIG. 9. Quantity In(+so) is shown vs temperature for
a system with x =0.9 on 50X50 sites (X), and on
3o X 30 sites (V). +sG is defined in Eq. (1.4). The dotted
(dashed) line is a least-squares fit with Eq. (2.9) and
Tp ——0 (Tp ——0.4).
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FIG. 10. Quantity 1nRsol is shown vs temperature (in

units of J/kq) for a system with x =1 on 50)&50 sites.

+so is defined in Eq. (1.4}. The dotted (dashed) line is a
least-squares fit with Eq. (2.9) and Tp ——0 (Tp ——0.4).

satisfying To & 0.4J/kg. Note, however, that
0.4J/ks is a rather small temperature, since (a) it is
less than a half of the value of the temperature
where the maximum in C occurs (see Fig. 4), and (b)

that C is very small [see Fig. 1(b) for T(0 4] . W. e

next remark on why it is difficult to rule out, by
MC simulations, the existence of a transition at
some To in the range 0 & T & 0.4 for x & 1. As Figs.
(5) and (6) show, r increases extremely rapidly as T
decreases. Extrapolation yields ~ =10 at T =0.5
for x =0.9, and the numbers of MCS/spin taken

must be larger than r to get meaningful results.

Clearly, it is impractical to do MC simulations for
T &0.5. There is one additional reason why it is
unlikely that any numerical method can rule out

the possibility of a transition at any T&0.3. As
Fig. (1) shows, C=O for such low temperatures,
which makes it difficult to distinguish numerically

T =0.2, for example, from T =0. This is in

marked contrast with other spin-glass models, in

which T 'C does not vanish as T~O.
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