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The simple, but ad hoc, prescription for bond shifting in the Migdal-Kadanoff approxi-
mation is replaced by a systematic calculational procedure. In this method, the free energy
is required to be preserved exactly by means of matching series expansions. The resulting
renormalization group is characterized by a small parameter, and can be extended by work-
ing to higher order. A significant quantitative improvement over the standard Migdal-
Kadanoff method is obtained with little increase in calculational effort. This approach is
ultimately limited, however, by being restricted to a one-dimensional interaction parameter

space.

The fundamental problem of statistical mechan-
ics is to evaluate the free energy, but since it is gen-
erally not possible to do this exactly, approximate
methods must be used. In the Migdal-Kadanoff!
(MK) approximate renormalization-group tech-
nique, the free energy of the calculation is known
rigorously to be a lower bound to the exact free en-
ergy of the system. The MK approximation is easy
to implement and thus has enjoyed wide usage;
however, the quantitative level of accuracy is rather
low. To improve the calculation, several modifica-
tions have been studied,” often involving a free
parameter which is adjusted to optimize the bound
on the free energy.’ In this paper, we study a new
implementation of the basic MK scheme in which
the free energy is actually preserved exactly through
a given order in a high- or low-temperature series
expansion. Thus, we are able to develop a position-
space renormalization-group transformation which
is characterized by a small parameter, in contrast to
the usual situation, and is still very simple to utilize.
Quantitative results are markedly improved over the
MK method, though, as is shown below, the restric-
tion of the calculation to a one-dimensional parame-
ter space will ultimately limit this approach. In
what follows we first briefly recapitulate the basic
MK approximation, then explore the consequences
of preserving the free energy exactly.

For clarity, we study the simple nearest-neighbor
Ising model, though this same approach can be ex-
tended to more complex systems as well. Thus,
consider the reduced Hamiltonian,

—BXH(K;{s})=K 3 s;5;, (1)

(ij)
where s;=+1, and K >0 corresponding to a fer-
romagnetic interaction. Figure 1(a) displays the ori-
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ginal system on a two-dimensional (d =2) square
lattice, characterized by N spins and a reduced free
energy

f(K):_Llnze—ﬁﬁr’(K;[s}) . (2)
N

The goal is to calculate this free energy, and in the
MK approach this is carried out in two steps. The
first is to restructure the original lattice by moving
away some of the bonds, and strengthening those
bonds that remain, so that the lattice of Fig. 1(b) is
obtained. This lattice again has N spins, but the
free energy now has a different functional form,
which we denote by f(K), where K represents the
strengthened couplings. The prescription followed
by MK is to require that the total bond strength of
the restructured lattice be equal to that of the origi-

K K

(c)

FIG. 1. (a) Lattice of original system with nearest-
neighbor coupling K. (b) Restructured lattice with
strengthened couplings K. (c) Result of decimating out
the variables labeled by crosses in (b). This lattice is
identical to the original, but with lengths rescaled by a
factor of 2 (b =2) and couplings renormalized to K’. In
MK, K=b%"'K; in this approach K is a function of K
determined so as to preserve the free energy.
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nal lattice. For example, in this case it is clear that
the number of bonds in Fig. 1(b) is half the number
of bonds in Fig. 1(a), and thus K is taken to be twice
the strength of K. In general, if all lengths are re-
scaled by a factor of b on a d-dimensional hypercu-
bic lattice, then K /K =b?~! (b =2 in this exam-
ple). Of course, this procedure of requiring the to-
tal bond strength to be preserved is entirely ad hoc
and introduces an error whose magnitude is uncon-
trolled. It is important to note that the approxi-
mate nature of the MK method is due solely to this
restructuring step.

The second step of the calculation is to trace over
those degrees of freedom labeled by crosses in Fig.
1(b). This decimation transformation can be carried
out exactly, and results in the system shown in Fig.
1(c}—note that the lattice constant is now twice that
of the original, and thus b =2. This lattice has
N’'=b"°N spins and a free energy f(K'), that is,
the same functional form as in the original system,
but with a renormalized coupling K’. The expres-
sion for K’ is easily derived and can be written as

;\’b +Arb
K'(K)=+In | ————= 1, 3)
el PO
where
Ap=efre™F, (4)

and K =b?"'K. In addition, the decimation gen-
erates a contribution to the free energy given by

AZb_p%

Ko(K)=7In Z

(5)

This completely defines the MK renormalization-
group transformation.

Returning now to the first step of the transfor-
mation, the lattice restructuring, we seek to go
beyond the ad hoc prescription of MK by introduc-
ing a more systematic approach. Instead of simply
requiring the total bond strength to be the same in
the original and restructured lattices, we specify
that the free energy be preserved to a given order in
a series expansion. For example, if the free energy
is given by f(K)= 3, a,K", the MK relationship
K/K=b%""is replaced by K(K)/K =, b,K"
where the b, are chosen so that the calculated free
energy matches the coefficients a,. The function
K(K) then defines the recursion relations through
Egs. (3) and (4), and the rest of the calculation
proceeds as before. Notice that K(K) can be totally
analytic and still the renormalization-group
machinery produces singular behavior. Thus, by
approximating a fairly simple function like K(K),

and then using the renormalization-group apparatus
to generate singularities, such an approach can pro-
duce improved approximate recursion relations. In
practice, one finds that only the first few terms in
an expansion of f(K) need be kept in order to
achieve a substantial improvement over MK. The
resulting approximation is characterized by the ex-
pansion parameter of the free energy, and can be
systematically improved by working to higher or-
der. Thus, the uncontrolled nature of the original
MK method is replaced by a definite calculational
scheme, the results of which are now examined.

To illustrate the approach in practice, we carry
out the program for various limits. First, when
K— « we have the result

I<li_r}1wf(K)=%qK , 6)
where ¢ is the coordination number of the lattice.
The free energy for the restructured lattice, f(K),
takes on a similar form, namely,

lim f(K)=5¢b~"“""K+an2, @)
K— o

where
a=1-b"1+5q(b—-1]. (8)

The term a In2 takes into account the disconnected
spins in Fig. 1(b). Now, by setting f(K) equal to
f(K) through this order, we obtain

tim KK _pa-

K— o

1— 2a In2

K 9)

Note that the MK prescription of K /K =b%~! is
recovered in this limit, though the approach to this
result varies from one system to another depending
on the value of a. For example, on a triangular lat-
tice with b =2 no disconnected spins result from
the restructuring transformation,® and thus a =0.
Therefore, even to lowest order this method distin-
guishes between the square and triangular lattices,
whereas the MK transformation does not.

While the MK prescription is approached in the
limit K— 0, the results are quite different for
K —0. In this case, the free energy expansion is

11<im0f(K) =In2+d In(coshK)

+d(d2—1)v4+m

=n2+d (K2~ =K%

d(d-—1)

5 K*+0(K"®) , (10)

+



3794 JAMES S. WALKER 26

where v =tanhK, and similarly,

lim f(K)=In2+db~‘®~ln(coshK)
K—0

+b~dﬂd_2:llf,~s+...

=In2+db~9-(K*— =K%
+0(K®), (11

with =tanhK. From these expressions, preserva-
tion of the free energy requires that

lim %’9=b<d—”/2(1+a1<2)+0(x4) ,

K—0
where (12)
g Sd=D+b47V 1
12

So, in this limit, K /K simply approaches the square
root of the usual MK result; the full form must
therefore interpolate between these two limits as K
is varied (see Fig. 3). The fact that K /K =b'¢—1/2
is required as K—O rather than 5%~ means that
the free energy calculated in the MK approximation
will actually start off with the wrong curvature. Fi-
nally, note that the expansion for K (K)/K is even in
K, reflecting the fact that for the square lattice the
free energy itself is even, i.e., f(K)=f(—K). For
the triangular lattice this is no longer true, and then
one finds that all positive powers of K are included
in K(K)/K, again distinguishing the two lattices.

To this point, we have expanded the free energy
only to very low order, but, of course, it is straight-
forward to extend the calculation by including more
terms and thus determine a more accurate expres-
sion for K(K)/K. The error produced in the free
energy from such a calculation is shown in Fig. 2,
where it is compared with the corresponding error
from the MK method. The upper half of the figure
presents the MK results, with a maximum error, at
the critical point K, ~0.4407, of approximately
20%. In the bottom half of the figure errors from
the present calculation are shown; note, however,
that the scale is reduced by a factor of 10 from that
used for MK. Thus, for example, by preserving the
free energy to order v* from high temperature—and
correspondingly to order (e~2%)* from low
temperature—the maximum error is only about
—2%, whereas by working to order v® the largest
error is reduced to —0.5%. As more orders are in-
cluded in K(K)/K, the calculation rapidly becomes
extremely accurate. Also, note that as K is in-
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FIG. 2. Percentage error in the approximate free ener-
gy as a function of K for b =2. Upper half of the figure
displays the MK result. Lower half shows the present
calculation—but with a scale reduced by a factor of 10.
N denotes the order to which the free energy has been
preserved, and K, locates the Ising critical point.

creased from zero, the MK error starts up immedi-
ately, while the series-expansion results have no ap-
preciable error until K is increased considerably.
This reflects the fact that the MK free energy has
an incorrect initial curvature, as mentioned above.

The function K(K)/K that results from preserv-
ing the free energy to order v* (Ref. 5) is plotted as
a function of X in Fig. 3, and, to within the accura-
cy of the plot, this can be considered as the exact re-
sult. The corresponding approximate free energy
has an error which is never more than —0.02%.
Notice in Fig. 3 the amount of deviation from MK
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FIG. 3. K(K)/K as a function of K for the Ising
model on a square lattice. K(K) is determined so that the
exact and approximate free energies match to order
(tanhK)® and (e ~2X)®, This result is indistinguishable
from what would be obtained by preserving the free ener-
gy exactly to all orders. Dashed lines represent the
asymptotic limits for b =2 and K —0, ». Note that the
MK prescription always overstrengthens the bonds.
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required for the free energy to be preserved, and
that this will be greater the larger b and d. Note
also that the MK prescription always overcompen-
sates for the bond shifting by making the remaining
bonds too strong.

Clearly, even to very low order this approach pro-
duces a marked improvement in the approximate
free energy. The fixed-point properties are also
considerably better than in ordinary MK. In partic-
ular, the results obtained by using K(K)/K as
shown in Fig. 3 are K*=0.5006 [as compared to
0.4407 (exact®) and 0.305 (MK)] and v=1.11 [1.0
(exact®) and 1.34 (MK)]. These results are obtained
with a rescaling factor of b =2, but by going to the
infinitesimal rescaling limit, that is b—1, further
improvement develops. We again require the free
energy to be preserved, in which case the condition
for a fixed point can be written

9K o (K*)

* ==
S(K*) 3b b

=+ (A3InA, —A%InA_) .

(13)

In Fig. 4(a) the results for the fixed point K* are
shown as a function of 1/N, where N is the highest
order of v (and e ~2X) that is preserved in the free
energy. It is clear that convergence is rapid, just as
it is for the free energy in Fig. 2. For the exponent
v we have

1

v= , (14)
K [aK'

dob | 3K

0510 ———
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FIG. 4. Results for infinitesimal rescaling, b—1. (a)
K* as a function of 1/N, where N is the order to which
the free energy is preserved. Notice the rapid conver-
gence, though the exact value of K.=0.4407 is not ob-
tained. (b) Critical exponent v vs 1/N. Dashed line indi-
cates the exact result.

and the corresponding results are displayed in Fig.
4(b). Thus, extending the calculation to higher order
results in a rapid and systematic convergence to the
values, K*=0.4965 and v=1.046. These results
are a definite improvement over the standard MK
calculation, but still we see that even if the free en-
ergy is preserved exactly, the limiting fixed-point
properties will not recover the exact values.

We can demonstrate this by considering the
consequences of preserving the free energy exactly
through all orders. So far, we have concentrated
only on the restructuring step of the transforma-
tion, and thus on the relation of K to K; but if we
now perform the exact decimation of the second
step we can express the function f(K) in terms of
the original free energy f. The result is

fB)=an2+5gb~Koy+b~%(K'), (15

where @, K’, and K|, are as defined above. For sim-
plicity consider the case b =d =2, as in Fig. 1, for
which K{ =In2+K’ and the condition f/(K)=f(K)
becomes

fIK)=3In24 K"+ +f(K'), (16)

implicitly defining the relation K'(K). From this
we can see that the fixed point is given by

K*=3[f(K*)—In2] . V)]

It is apparent that K*s£K,, since K, and f(K.) do
not obey such a simple relationship. In fact, using
exact results for the two-dimensional Ising-model

" free energy we find K* is as given above for b =2,

namely K*=0.5006. Similarly, we can linearize
about the fixed point to obtain

, Of
' K |,..
K™ _ LS (18)
aK K* 1+.1_.a_f
2 0K |,

Again, using exact results for 9f/0K we find
v=1.11. The cause of these discrepancies can
readily be seen by considering Eq. (16) as K—K,.
In this case the left-hand side of the equation, f(K),
becomes singular—but there is no corresponding
singularity on the right-hand side of the equation
since K'(K,.)5#K,. The only way for the right-hand
side of Eq. (16) to be singular at K, is for K’(K) it-
self to be singular there. Thus, preserving the free
energy exactly, while restricting the calculation to a
one-dimensional parameter space, results in a recur-
sion relation which is nonanalytic and whose criti-
cal properties need not agree with the exact values.
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Fortunately, the singularities in K'(K) and K(K) are
weak and thus the final results are still rather good.

Therefore, even though the utility of this ap-
proach is ultimately diminished somewhat by work-
ing with only a single interaction parameter, the ap-
proximate results represent an improvement over
the basic MK method. These results also suggest
other simple extensions of MK. For example, we
have seen that the MK procedure always over-
strengthens the bonds, so one way to improve the
calculation is simply to reduce this strengthening
factor. In the simplest case, we can require that
K /K be a constant, and then adjust this constant
between the limits ¢ ~! and 5‘?~"/2 until some
known exact result is recovered. This is a simple
modification, but can result in good quantitative re-
sults,” even for d =3. At the expense of introduc-
ing more parameters in K(K)/K one can easily
write an analytic interpolating form that attains the
correct limits for high and low temperature, and ex-
cellent results for intermediate temperatures.

To recapitulate, the present method is based on
preserving the free energy of the system exactly
through some order in a series expansion. As a re-

sult, the bond strength of the restructured lattice, K,

26

becomes a function of K which interpolates between
the MK result for K— « and the square root of
this value for K—0. If the free energy is preserved
exactly to all orders in this scheme, K (K) develops
singularities which are due to forcing the system to
remain in the limited parameter space of homogene-
ous nearest-neighbor couplings only. If an enlarged
parameter space is utilized, as in the Kadanoff vari-
ational method for instance, then such a scheme of
preserving the free energy has a better chance of
succeeding. An interesting example is the exact dif-
ferential renormalization group of Hilhorst, Schick,
and van Leeuwen,® where the interactions, which
are only nearest neighbor, nonetheless depend con-
tinuously on position so that each bond takes on a
different value. In this sense the parameter space is
infinite, and preserving the exact free energy pro-
duces analytic recursion relations with the correct
critical properties.
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