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We explain the compensation effect by counting the ways in which the heat bath can fur-

nish the energy necessary to surmount the barriers.

I. INTRODUCTION

In most thermally activated processes a plot of
the logarithm of the reaction rate versus the inverse
of the absolute temperature is a straight line. This
so-called Arrhenius law may be written

ink =lnA pFb—

where eb, the slope of the Arrhenius plot, is the so-
called activation or barrier energy, k is the reaction
rate, @=1/k~T, king is Boltzmann's constant, T is
the absolute temperature, and 3 is a preexponential
factor [so called because the law can be written
k =A exp( Pub)—]

It frequently happens that the Arrhenius plots of
different members of a family of reactions are
straight lines with different slopes, which (when ex-

trapolated if necessary) intersect at a common

point, at least approximately. The temperature
coordinate of this point is called the compensation
temperature, or the isokinetic temperature T, . Such
behavior is described phenomenologically by writ-

ing A =Apexp(p, eb); evidently, this gives
k =Apexp[ —(p—p, )Eb], i.e., a compensation effect
with isokinetic temperature I/kiiP, . When the ef-

fect is present, a plot of InA versus the different eb's

of the family members gives a straight line of slope

P, . The compensation effect was first reported by
Constable' almost sixty years ago in relation to
dehydrogenation of ethanol on a copper catalyst.
At first, the effect was thought to be limited to
heterogeneous catalysis but subsequently it was

found in other thermally activated rate processes as
well.

Varying the surface treatment of the copper ca-
talyst, Constable found a variation of eb from 20 to
24 kcal/mol, accompanied by a change in A by a
factor of 10, and a compensation temperature of
87S K. An important review is that of Cramer
who listed many examples and also discussed a sta-
tistical distribution in the properties of catalytica11y

active centers as a possible theoretical explanation.
This model fails to explain cases in which the sub-

strate is fixed and the reactants are different, as is
the case, for example, in the decomposition of
ethanol, n-propanol, and n-butanol on Ndz03 (Ref.
5), or in the dissociative adsorption reactions of
methane, ethane, and propane on nickel.

Another example of the compensation effect is
ethane hydrogenolysis on silica-supported metals. 6

In this case the reaction rate is measured at fixed
partial pressure of ethane and hydrogen. The re-

ported results show activation energies between 21.4
and 58 kcal/mol, and prefactors between 4.5&(10
and 3.7X10 mole/seccm . The metals cobalt,
nickel, and rhenium displayed a compensation tem-

perature of 12SS K, while ruthenium, rhodium, pal-
ladium, osmium, iridium, and platinum had a T, of
380 K. It is important to observe that the experi-
mental measurements were made at temperatures
between 400 and 600 K. Thus measurements were
taken at temperatures lower than the compensation

temperature in one case, and at temperatures
highger than T, in the other. The compensation
temperatures (as in most cases) had to be found by
extrapolation.

The compensation effect was also reported in

thermally activated rate processes other than
heterogeneous catalysis. In 1937 Meyer and Nedel

reported a compensation effect for the activated
electron conductivity of oxide semiconductors
(WO3 A1203, Ta205, and Fe203) ~ For this reason
the effect is often called the Meyer-Nedel rule.
Another example is the electrical conductivity of a
single crystal of Cu20, where measurements at
temperatures between 380 and SSS K are in agree-
ment with the Meyer-Nedel rule. The activation en-

ergies varied from 0.3 eV up to O.S eV, and a T, of
815 K was reported. The effect is also seen for NiO
exposed to different oxygen pressures (1.2 X 10 '

up
to 1 atm), with an observed T, of 1500 K.9 Also,
organic semiconductors show the compensation ef-
fect. ' For example, oxidized cholesterol complexes
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yield a T, of 500 K and activation energies between

0.8 and 3 eV." The effect has also been reported
for complex biophysical systems. When Sindibis
virus is heated at temperatures between 317 and 320
K in different concentrations of Na2HPO4 and

MgSO4 the corresponding death-rate —temperature
plots show compensation temperatures of 330 K for
MgSO4 and 329 K for Na2HPOq. ' Denaturation
of proteins such as hemoglobin, egg albumin, inver-

tase, and other biopolymers at different' pH shows
the effect, as does the complex process of the ther-
mal death of bacteria and of yeast. ' Pseudomonas
fragi, Staphylococcus aureus, and two strains of sal-
monella show a compensation temperature of 331
K.

Returning to more ordinary cases, the effect is
also observed in homogeneous phase reactions' in
solutions, e.g., decomposition of triethylsulfonium
in hydroxylic solvents, thermal decomposition, e.g.,
manganese (II) carbonates prepared in the presence
of metal ions' like Al + and Na+; thermal dissoci-
ation of solids under different pressures of selected
gases, ' e.g., carbonates under CO2, etc. In most
cases, the energy transfer from the heat bath to the
reactants can be regarded as absorption, by the reac-
tants, of elementary excitations of the heat bath.
Perhaps the most obvious example is desorption of
an adatom from the surface of an insulator. Here
the heat bath is the solid, and the elementary excita-
tions are the phonons. In reactions over certain
metal surfaces on the other hand, the dominant ex-
citations might be the hole-electron pairs of the sub-
strate, though phonons may also play an important
role. In a homogeneous phase reaction in a liquid,
sound waves may qualify as excitations.

The total probability of a reaction is evidently the
sum of the probabilities that the reactants absorb
one, two, three, etc., excitations with a total energy
exceeding the barrier energy. The probability for
absorption of exactly n excitations with energy e is
the square of the T-matrix element for this process,
multiplied by p„(e), the density of states of n excita-
tions with total energy e. We shall show that the—(p—p, )e
sum over all n tends to behave like e ', where
P= 1 /A T, kz is Boltzmann's constant, and T is the
absolute temperature. P, = I/AT, is a function of
a suitable coupling parameter (not necessarily the
coupling strength itself), and a function of the way
the single-excitation density p~(e) depends on e. In
addition, P, (or T, ) may be weakly dependent on e.
Thus we propose that the compensation effect may
be regarded as resulting from a kind of "dynami-
cal" entropy of the heat bath. It results from
counting the number of ways in which the heat bath

can furnish the energy needed to overcome the bar-

rier. The qualifying adjective is needed because the
various ways are weighted by transition matrix ele-
ments. We shall see, however, that this weighting
does not have a major influence on the proposed ex-

planation.

II. GENERAL FORMALISM

The probability of escape over the barrier may be
written as a sum of all possible processes leading to
escape. We first arrange that sum so as to take
maximum advantage of any helpful features that
the transition matrix elements may possess. The
general formula for the transition rate per unit time
is

PE,

~ X I &f I~I&& I'
f,i

where I i I is the complete set of quantum numbers
of the system in the reactant well and If I is the set
of quantum numbers of the reacted system.

&f I
T

I
i& is the T-matrix element. Z is the

reactant-plus-bath partition function. Formula (2.1)
assumes that the conditions for the validity of abso-
lute rate theory are met, i.e., that quasiequilibrium
conditions prevail during the reaction. Thus we
suppose that thermal equilibration among the reac-
tants levels is very much faster than the rate of
transition to the reaction products. When this is
not the case, the relation between prefactor- and T-
matrix elements is less direct.

In the present case we take Ii & and
I f & to be

dirmt products of reactant states and bath excita-
tion states. The latter are either inherently Boson
excitations (e.g., phonons) or behave very nearly as
such (e.g., hole-electron pairs, magnons, etc.). Thus
we may write

I~&= IE' Inl+m~I&, If&= IEI ImaI&,

E;=E; + g (ml, +ng)eI, ,

Ef Ef+ g mgeg——0

k

where the bath in its initial and final states is
characterized by the excitation number sets

I m~ +n~ I and I nl, I, respectively, where E; is the
reactant energy in a bound state of the reactant well
and where Ey is the energy of the reaction products.
k labels the excitations, and e~ labels the energy of
the kth of these. Neglecting tunneling, we have

E; & eb and E~ & eb, where eb is the barrier energy.
The transition occurs by absorption of the excess nl,
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excitations.
The nature of the bath-reactant coupling is nor-

mally such that:
(a) I (f I

T
I
i ) I

depends on E;,E~, and the sets

Ink I Imk I

(b) Because of the way we shall arrange the order
of summation in (2.1), I (f I

T
I
i ) I

will depend on

Ink I mainly through the sum n =gknk. Related

to this is the fact that it does not depend much on
k. This is particularly clear when k is considered to
be a wave number, and the reactant-bath coupling is

highly localized. The strongest dependence on n is
through the appropriate coupling parameter (see ex-

ample below), which is raised to the nth power.
Any residual dependence of T on the individual dis-
tribution of the mk's (rather than on just gmk) can
be expressed as a minor modification of the simple
excitation state density.

(c) Except in the Born approximation for T,
I (f I

TIi) I
will also depend on

geknk =EI E; =e. —Evidently, this quantity oc-
curs in the energy denominator of all higher terms
in the perturbation series for T. However, this
dependence is not strong, and in cases where the ab-
sorption of n quanta appears only beyond the Born
term, the integration over intermediate states will
tend to reduce the e dependence to simple logarith-
mic.

The sum (2.1) is therefore adequately represented
by

gf, dec ~'Ry(E; +e)
pEO

x g I
T(E~,n, e)

I

a/l I nk I
Zr

which is the density of states of n independent exci-
tations of total energy e, or in other words, the con-
volution of n single-excitation densities of state:

p„(e)= f p(e/)p(ep) . . p(e„)
l

For simplicity, consider only one bound state in the
well, choosing its energy to be zero. Then the result
for the rate R

R = f dee +Ri(e)
~b

x g I
T(n, e)

I
'p, (e) . (2.3)

peP

x g I
T(n, e) I'[p~(p)]"

n=1

(2.4)

where the integration contour runs to the right of
all singularities of the integrand.

A. Compensation effect and radius of convergence

Let

p, (p)= f e ~'p, (e)de.

Then the Laplace transform of p„(e) is Ip&(p)]".
Therefore, the rate is

R = . f dee +RI(e)
iA 'b

X5 e—g nkeI,
'

k
(2.2)

Consider the sum

X=X X
[nk J n gn kn

%'e then have

nl
g 5 E' —g eknk =pz( ),e
n, k

nk =n

where Z„ is the partition function of the reactants
alone. In this formula Ry(E) is the final-state den-

sity of the reaction products at energy E. e, is a
cutoff to be discussed later.

As we shall see, summing over the nk is best done
in the order

g I
T(n, e) I2P)

n =1
(2.5)

a weakly varying function of e. %e shall assume
that 9F is finite (and at least in the example dis-
cussed in Sec. V, it indeed is). Since the

I
T(n, e)

I

are positive, the point p~ 9F(e) in the——p~ plane is a
singularity of the sum (2.5) (see Ref. 18). We shall
assume it to be a simple pole. There may be other
singularities on the circle of convergence, all of
which map into corresponding singularities in the p

as a function of the complex variable p& (not p). Its
radius of convergence in the pl plane is

9P(e)= lim
I
T(n, e)

I
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plane. However, we shall see presently that for a
large class of p&(e), the singularity pt

——9P(e) maps
into a real positive singularity in the p plane, which
is further to the right in the p plane than all the
others. It therefore dominates the contour integral
in Eq. (2.4), for sufficiently large e. If it is a simple
pole at

But

%= f e ~ 'cos(p "e)p~(e)d e

= f e ' p((e)de . (2.8}

f e ~'cos(p"e)p, (e)de& f e 'p~(&)«.

eP, (~)
it yields a residue proportional to e ' . The
dependence of P, on e is generally negligible, partic-
ularly at large values of e. If R/(E) in Eq. (2.4) is
also slowly varying with E, the result of the integra-
tion is very nearly, for P »P„

(2.6)

where the preexponential factor is 9'=(2n/A)R/
times a nonexponential function of P, . The upper
cutoff in the integral (2.4} may be neglected for
P&P, . Formula (2.6) shows that there will be a
compensation effect for any family of reactions in
which eb varies from one member to another, while
the effective coupling to the bath remains the same
for all members. "Effective coupling" here does not
necessarily mean the coupling strength. In the ex-
ample of Sec. V, it is the shape of the interaction
that must be the same, not the strength, and even

the shape enters only weakly, as we shall see. Like-
wise, in the case of weak coupling to conduction
electrons, the metal substrate must stay the same,
not the coupling strength (see Sec. VI}.

The singularities in the p plane are given by

e ~p) 6 E'=p] p (2.7)

Suppose that

pi(0)= f pi(e)de&R

and that p~(e) increases less rapidly with e than an

exponential does. Then p~(p) decreases steadily,
with increasing real p yielding a singularity on the
real p axis, at pp for example. Furthermore, its
value is greater than the real value of other possible
singularities on the boundary of convergence. Sup-
pose there were a root of Eq. (2.7) at p =p'+ip".
Then

Hence p' must be less than pp if (2.8) is to hold.
For a p&(e) for which

8'& f p(E)de,

there are no real singularities, but the complex ones
occur in complex conjugate pairs. The pair with
the largest positive real part then dominates. If that
pair is P,'+i P,",the rate still has the form (2.6), with

P,
'

replacing P, . For cases in which p~(e) has an

upper cutoff energy (e.g. , the Debye energy in the
case of phonons) P,

'
could, in principle, turn out

negative. The extrapolated Arrhenius plots for
various Eb would then intersect at a negative tern-

perature. No observations of such an "anticompen-
sation effect" have, however, been reported in the
literature.

Note that the form of the result (2.6) would be
the same if the dominant singularity were a higher-
order pole or even a branch point. In the latter
case, the integral along the edges of the cut is still
dominated by the value of the integrand at the
branch point. Our method will fail only if the cir-
cle of convergence of the series (2.5), in the p~ plane,
is a natural boundary of the function represented by
(2.5). We doubt if physical examples of this case
can be constructed.

Finally, we note that these results change very lit-
tle when the reactant well has several bound states.
In fact, if the dependence of the T matrix on E; is
neglected, formulas (2.2) —(2.4) remain unchanged.
(The sum over i then just cancels Z„.)

III. DEPENDENCE OF T, ON THE FORM OF pi(e)

For the common case of a power law of p~(e)
[sound waves in fluids p~(e)-e, electron-hole pairs
p&(e)-e, magnons in a continuum theory p, -v e]
we have

I'(v+ 1) 1
Pl(P}=

~o

where I is the gamma function, p~(e)=e'/ep+',
and upsets the energ'y scale (for sound waves
ep-A'uR', u is the sound velocity, and R is the
density; for hole-electron pairs, ep is approximately
equal to Fermi energy, and for magnons ep is ap-
proximately equal to the exchange integral). Conse-

quently, the dominant pole is [I (v+1)]' '+'ep ',
and so

6'p

C k[1 (v+1)]"+'
For the case of p~(e) with an upper cutoff e„
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(e.g., phonons or magnons in ordered solids) the in-

equality p)(0) &SF will not hold for too small a
value of p)(e), or too small a radius of convergence.
In fact, if at fixed 6' the cutoff is steadily reduced
from a large value, the dominant pole moves steadi-

ly towards the origin along the real axis, attaining 0
(infinite T, ) when

»
O'= I p, (e)de.

As e„ is further decreased, the dominant pole splits

into a complex conjugate pair p,'+ip,", and (if

P,
'

& 0) again gives a finite T, =1/p,'. In particular,
for the case of Debye spectrum with cutoff energy

ed we have p((e)=3Ne /ed, where in the simplest

approximation the numerical factor N is 3. For
large N, we get kT, =bd/(6N)' As N. decreases,

kT, increases, reaching 00 at N=1, in the manner

kT, = 4 e~/(N —1). We have not pursued kT, into

the complex plane for this case.

IV. GENERAL BEHAVIOR

In Eq. (2.4) we have a cutoff energy ec. This is
defined as the energy at which other reaction chan-
nels open up at the expense of the one under study.
For the case where p is less then or of the same or-
der as p„ the cutoff energy is important. We can
no longer neglect its contribution to the rate as we
did in the case p »p, . For all p we get, from (2.4),

where A (p, ) is the residue of the function represent-
ed by (2.5) at the pole p, . For example, if the final

state is a "free" state of reaction products,

Rf(e)-pate eb we—get

CV'ec Eb ~—m erfI[(Ec —eb)(p —p, )]' I (B B )eb (B B )e

P—P, 2 [(g, gb)(P —P—)]

where c =A (p, )8 and erf(x) is the error function. Using its asymptotic behaviors' we get

C —(p—p, )»g
R =—e)

C+'sc sb (B, B)e, —
e

—(p—p )»& —(p—p )»
2 e ' —e

R =C3 Qe, —eb

for P»P„P«P„and P=P, .
In the case of p, being the complex pole with the largest real part, we sum the contribution of such a pole

and its complex conjugate. The expression for the rate becomes

R = lA(P, )
l I Rf(e)e ' cos(y P,"e)de-

»b

where

P, =P.'+i'P,"—
and

gr =tan '[ImA (Pc )/ReA (Pc )] .

To illustrate the changes let us consider Rf (e)=8((E Eb) We ge—t, 'f.or all p, the expression

l~(Pc) I II([f((p Pc Pc ~b)e '' ' g((P.P' —P";&b &c)&
' ']

where

(P P,
'

) P,"cos(y P—eb ) —2—P,"(P—P,
"

)—sin(q& —P,"eb )

[(p p,')'+p!']'—
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and

(p—p,')(e, —eb )cos(y —p,"e,)+p,"(e,—eb )sin(y —e,p,")
gl R;R,R, b,(RR' R" e e )=

(p pl )2 p
II2

+fi(p' Pe Pc''e, )

If we compare these results with the case where p,
is real, we notice that the only change in the rate is
a factor of cos(y —p,"e,) for p«p,', and a factor
cos(y P,"—eb} for P »P', (P' »P,").

We have considered, up to now, only one energy
level in the reactant well. For the multilevel case,
we need to add the contribution coming from each
of the levels multiplied by a proper weight factor.
In the case of a Boltzmann population we obtain

R = F(P;P,'P,";eh )e

where

G(p—;p,p, ;e,eb)e

F(P PP eb') = g e 'f (O'Pcpc 'eben )
R

G(p;P;P,";eb,e, ) = g e 'g (P;P,'P;e, ebe, ),
ZR
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FIG. 1. Calculated ln (reaction rate) vs P= 1 lkqT for
various values of the activation and cutoff energies and
the same heat bath.

f and g are functions resulting from the integration
of

—(p—p,')eRf(e)e '
cos(q& —eP,")

between eb —ej and e„and ZR is the partition func-
tion of the reactants in the well. In contrast to the
case of a real dominant pole, we here have some
sensitivity to the number and the character of states
in the reactant well.

Figure 1 depicts the simplest case when Rf(e) is a
constant, p&(e) is linear in energy, there is one ener-

gy level, and the reactants are coupled with the
same strength to any number of heat-bath excita-
tions. Typical experimental values needed in the
rate expression were taken from Ref. 6 and the
values of eb, e, varied from 1 to 8 eV.

V. PHYSICAL MODEL

In this section, we will calculate the sum of pro-
babilities due to absorption of all possible numbers
of excitations. Let us consider desorption of an
adatom 3 at position r, weakly coupled through a
potential V(r —u) to just one surface atom dis-

placed from its equilibrium at the origin by an
amount u due to phonon agitation. The Hamiltoni-
an is

H =H&os, +E+V(r —u)

where Hh„, is the Hamiltonian of the substrate and
E is the kinetic energy of the adatom. The transi-
tion matrix element, for desorption of A by absorp-
tion of a particular set of nj, in the Born approxi-
mation ' is

T(n, e,a;nj', mz ) = (a'
~

VO
~

a)
where

(&q, ) '
J

~n,.!

The az's are phonon operators,
~ g ) is the substrate

ground state, y is A's wave function, and

bj =[nj!mj!/(nj+mj)!]' .
~

a') is a state with 3
desorbed, and with only the set Imk) left in the
substrate.

Retaining only longitudinal phonons we have

u = g),q(a,'+a, )

where y~=(fi/2M¹oe)'~, MN the total mass of
the N host atoms, and q = q/q. Representing
V( r —u ) by a Fourier integral and using the
Baker-Hausdorff formula, (5.1) simplifies into
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k2g 2/2T (n, e,ni, mi ) f 3/2
+ke-

(2m)

NlJ.nj.
X

(mi+ni)!

' 1/2

a' e'"'"exp i g— y k.qa exp i—gy k.qa 0 all

(5 2)

where a =(0
~

[k.u(0)] ~0). To lowest order in y~ we reduce Eq. (5.2) to

' 1/2
m +n. )!

(q, V) '~(r) a
.Inj. teal) .

(5 3)

here P (r ) is a smeared potential

f i k r y a2k2/2—
(2m. )'/

(5.4)

The expression given by (5.3} is used to calculate the rate given by Eq. (2.1). We assume that

E;=g.(mi+ni)ei and Ef g n—i—E~+.e. The sum over initial states translates to unrestricted sums over the

mz's, and over all nz restricted by g, n; =n. For.one energy level in the reactant well and using Ref. 24 we get

for the transition rate per unit time

g e +p„(e)D ~ (e,n)"f
where

28

D~ (n, e)= f f q)~(r ')p~(r)[(V-, V, )"&(r)P"(r ')]q)~(r)q& (r ')dr dr ',

and where p„(e) has a Laplace transform given by [p((p)]" with

—pEi

p) V»»=
3Q

[We see that p„(e) is a state density weighted in favor of long wavelengths. ] Its Laplace transform depends on

P. But the position of the dominant pole in the p plane will depend only weakly on P. The total rate is given

by

R = f &f(e)e ~'. f ep' g gD (e,n) [p((p)]" dp, de . (5.5)

Virtual phonons effects are neglected in the wave function p (r )= (a
~

r ) and this wave function varies with
energy as expti [2m(e —eb )/A']'/

I for a' states. Notice that the double integral, compared with the remain-

ing terms, varies slowly with e, and so does the sum over a'. Closure may therefore be applied, and if there is
only one bound state a, we get

2ll

gD (en)= I(a ~, [(V-, .V, )"P"(r)P (r ')], , ~
a) —D«(e)I . (5.6)

1 n.

The expression (V-, .V-, , )"&(r)W(r ') appearing in (5.6) is better handled if we recall W(r) from (5.4),

f f (P} i k ( r p) —(1/2)k—2a2dk d
(2n. )

The behavior of the series, over n, in Eq (5.5} is go. verned by the large n terms. This fact facilitates an ap-
proximation of the integral over the polar angle in the k space. We used the steepest-descent method to ap-
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—1 "n~
(t)'-, V )"W(r)~(r ')= pV p sin n+2 dp0 a

proximate integrals, and Stirling's formula to get the following expression for large n:
' 1/2

v'n +2r,
sin

v'n +2r,

v'n +2rd
sin

v'n +2rd
(5.7)

where r, —:
~

r + r '
~

and rd ——
~

r —r '
~

. Equation (5.7) reduces the sum over u', given by (5.6) into
2

v2 ax
gD~~ (n, e) = x V sinx dx

a [~(n +2)) ~ o n +2

X 1+(—1)"I IV (r)I

v'n +2
sin 2r

a
dr

v'n +2 2r
a

v'n +2
sin rs

a

v'n +2
"s

a

v'n +2
sin

a

v'n + 2
rd

a

dr dr

The radius of convergence for the sum over n in

(5.5} is given by

~= lim g D~~ (n, e)

and is equal to unity. Thus although the expansion
(5.6) was based on the notion of slow spatial varia-

tion of t", the radius of convergence of (5.5) ulti-

mately does not depend on the details of that varia-

tion.

VI. DISCUSSION

In Sec. V the Born approximation has been used
with respect to coupling strength, but the shape of
the coupling function has been taken into account
to all orders in the number of possible excitations.
The nth term in the series does not involve an nth
power of any of the physical variables; therefore, in
this approximation at least, we have extreme
universality, and the compensation effect should be
very marked in the desorption of very weakly cou-

I

pled adatoms. A similar exponential result of sum-
mation of phonon processes to all orders was noted
by Sham and Sparks in their discussion of energy
transfer of laser radiation to an insulating solid.

By contrast, for strong but weakly curved poten-
tials, n phonons will be absorbed only in nth-order
perturbation theory, so that the radius of conver-
gence of (2.1) would be proportional to e/A, , where

is the coupling strength and e a typical
intermediate-state energy. Thus for stronger cou-
pling, a sharp compensation effect will be observed
only for families with members having equal A, and
various eb. This dependence on k is, however,
weakened by renormalization (due to emission and
reabsorption of intermediate-state phonons}, which
causes e to be A, dependent in such a way as to
weaken the dependence of e/A, on A,.

Another example, to be discussed fully in a later
publication, is that of reactants coupled to a metal
catalyst. In that case the coupling to the conduc-
tion electron density n ( r ) has the form
y= JV(R—r)n(r)dr, seemingly involving only
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one electron-hole pair at a time. However, the resi-
dual shielded Coulomb interaction of the electron
taken to nth order, together with y taken only to
first order effectively couples the reactants to n +1
electron-hole pairs. The dominant pole is then
modified roughly by the ratio (Coulomb energy to
kinetic energy)', but remains independent of y.
The analogous result holds for a weak linear cou-

pling 8' to phonons of a significantly anharmonic
solid. Interaction between the lattice phonons taken
to nth order, together with 8' taken to first order
gives an effective coupling to 3n + 1 phonons; once

again the sum gp„(e) is essentially exponential,

yielding a compensation effect independent of 8'.
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