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A Bardeen-Cooper-Schrieffer-type theory of superconductivity, in which the attractive

electron-electron interaction is represented by a separable anisotropic term and the repul-

sion by an isotropic term, is extended to calculations of a variety of properties of the pure

material and of the effects of both normal and paramagnetic impurities on the transition

temperature, T, . The goals are (1) the identification of properties which are likely to be

quite different for materials with an approximately neutral interaction as compared with

the usual regime in which the attraction dominates and (2) the estimation of maximum im-

purity concentrations which can be tolerated. For the pure material, the main conclusions

are that the mean-squared anisotropy of the energy gap, the ratios of twice the Fermi-

surface average of the gap to T„and of the zero-temperature critical magnetic field, H, (0),
to T„the jump in the specific heat at T„the isotope effect, and the quasiparticle density of
states can all be quite different, whereas the reduced temperature-dependent quantities

4 k(t)/~7(0) and H, (t)/H, (0) are not. Although very sensitive to the value of the mean-

squared anisotropy, it is estimated that the maximum tolerable concentrations of both

kinds of impurities are on the order of 10 % to 10

I. INTRODUCTION

In a recent paper, %hitmore and Carbotte' inves-

tigated the behavior of the superconducting transi-
tion temperature T, of anisotropic materials in
which the effective electron-electron interaction is,
on the average, approximately neutral or even
slightly repulsive. Without referring to any particu-
lar material, they pointed out that systems in which
this could arise are found in the alkalis in which the
electron-phonon mass-enhancement parameter
A, -0.11—0.19 (or perhaps higher for Li), and in
the noble metals in which A, -0.16—0.21; as well,
the effects of paramagnons can be simulated by an
effective Coulomb parameter p', tt which can be as
high as about 0.3, and by an effective A,,tt which is

reduced from A, by about 30%.
With the use of a Bardeen-Cooper-Schrieffer

(BCS) type theory, the interaction was modeled by a
separable, attractive part and by an isotropic repul-

s1on,

V-„g.=(1+a k )V„(1+ay,) —V, .

Vpp, =V+5V[(1+a k )(1+a t, , ) —1], (2)

which is equivalent to (1) if V, the average of V k z „
is chosen to be V,~

—V„and 5V is V,&.
This model leads to a closed expression for T„

namely

T~ = l. 13Q)De (3)
with f given by

Here V,~ and V, are assumed to be positive, and the

anisotropy is incorporated via the a
&

which is as-

sumed to be independent of energy in the energy

range of interest, and to have zero Fermi-surface

average, i.e., (a ) =0. The double Fermi-surface
average of Vz z. is Vz —V„ from which it is seen

that in this model the average interaction is attrac-
tive, neutral, or repulsive depending on whether

V,z
—V, is positive, zero, or negative.

Physically, the first term in (1) can be interpreted

as being due to the electron-phonon interaction, and

V, to the direct Coulomb interaction, but this is not
necessary. An alternative, less specific, model in-

teraction would be

—[N(0)V&(1+(a ))—p~]+I[N(0)V&(1+(a ))—p~] +4N(0)V&p~(a )I'
2N(0)V,&@*(a ) (4)
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In these expressions ~D is the Debye frequency,
N(0) the Fermi-energy density of states, (a ) a
measure of the mean-squared anisotropy of Vk k„
and N(0)V, has been identified as p*, consistent
with the physical interpretation of V-„g, in the

preceding paragraph. Here and throughout this pa-
per atomic units with A=e=m, =l are used. In
these units a temperature of 1.16 K corresponds to
1 meV.

The most remarkable property of this solution for
T, is its existence for all nonzero V,& and p* as long
as (a )+0, which implies, within the separable
model, that a finite T, will exist no matter how

large the repulsion is, as long as there is some aniso-

tropy. A related important feature is the fact that
when N(0)V&-p~, the anisotropy enters the solu-

tion not as (a ) but rather as (a ) '~ . This results
in a larger T, than would otherwise have been the
case. In fact, the simple estimates suggested that at
p~=N(0)V, &, and for (a )=0.1, T, could be on
the order of 50 mK or larger, remaining above 1

mK well into the range p*&N(0)V&. Of course,
these values can be taken as no more than approxi-
mate guides.

Because of the essential role played by the aniso-

tropy, it was anticipated that normal impurities
would have a very important effect on T„since
they are known to eliminate the anisotropy, reduc-
ing T, to the isotropic value. An investigation of
their effect led to the conclusion that T, was indeed
reduced to a very small value, say below 1 mK, by
relatively low-impurity concentrations.

The quantitative results, and even, as Leavens
et al. have pointed out, the existence of a finite T,
for all p*, are dependent on the two major approxi-
mations used, namely, the BCS-type theory and the
separable interaction. By expanding V

& &, in

Fermi-surface harmonics, those authors considered
a simple but nonseparable anisotropy, and showed
that the normal state is not necessarily unstable at
T =0 K. They also emphasized that quantitative
investigation of superconductors, especially if the
coupling is very weak, cannot be based on the BCS
gap equation with a symmetric, temperature-
independent interaction. Finally, they considered
the effect of normal impurities within their model,
concluding that for the parameters they used, for
which p*=N(0)V&/2, the use of the separable
model can exaggerate the impurity-induced reduc-
tion in T, .

However, the present model does provide a tract-
able means of exploring a variety of properties of
superconductors for which the average interaction

is about neutral, which is the purpose of the present
work. It is not the present intention to obtain quan-
titative predictions. Rather, it is hoped only to
identify and provide some insight into those proper-
ties which are qualitatively different in this case,
compared with the isotropic case or the intermedi-
ate one, in which the anisotropy is a small perturba-
tion on the average interaction. This latter case has
been treated in depth by Clem, ' who used the
model interaction of Markowitz and Kadanoff,
which is Eq. (1) with V, =O.

Many of the results will be presented as a func-
tion of the ratio p*/N (0)Vz, which will be denoted
by

s=
N(0) V,p

Clearly, S =0 is the case treated by Clem, in which
p*=0. The situation 0&S&&1 implies the pres-
ence of a relatively small p*, as is the case for most
known superconductors in which the anisotropy is
relatively unimportant. S=1 corresponds to the
case of an interaction which is, on average, exactly
neutral; when S=1 the anisotropy plays an essential
role in that it can greatly enhance T, above the iso-
tropic value. The interest of this paper is focused
primarily on this regime.

In the next section the basic theory and equations
are specified in a little more detail, and two distri-
bution functions for the anisotropy are introduced.
In Sec. III properties of the pure metal are exam-
ined, namely the mean-squared anisotropy of the
energy gap, the ratio 2b,o(0)/T„where b,o(0) is the
Fermi-surface average of the zero-temperature gap,
the temperature dependence of the gap, the
specific-heat jump at T„the zero-temperature criti-
cal magnetic field and the deviation function, the
isotope effect, and the quasiparticle density of
states. Section IV is devoted to the effects of nor-
mal and paramagnetic impurities on T„and in Sec.
V the resultWre summarized.

II. ANISOTROPY MODEL
AND BASIC EQUATIONS

As indicated, a BCS-type theory is used for all

calculations, with the effective electron-electron in-

teraction given by (1). For the pure-metal proper-
ties the standard BCS gap equation is used, which,
combined with (1), is
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b, -„=$' [(1+a q )V~(1+a q, )—V, ]
k'

tanhPE z, /2
X4-k' 2E

where E-„.=(e-„. +b, z.)'~, P=1/T, 6-„ is the en-

ergy gap, co~ the Debye frequency, and the prime
on the sum indicates it is to be restricted to the
range )ez ) &coD, )ez.

~
&con.

To determine the impurity effects on T, it is
more convenient to use the linearized Eliashberg

equations in the imaginary-frequency-axis repre-
sentation. Considerable simplification is achieved
by assuming isotropic scattering ' '9'; the impuri-

ties are described by two parameters, t+ ——1/2irrN
and t = I/2ir~z, where rN and rz are the lifetimes
of electronic excited states due, respectively, to nor-
mal impurity scattering and spin-flip scattering.
The anisotropy enters through the electron-phonon
function [a F(co }]k -„., leading to anisotropic
A. z z,(m n—), which are defined by the usual in-

tegrals involving the [a F(co)]-„-„,. The BCS-type
theory is obtained by neglecting the renormalization
of the Matsubara frequencies by the electron-
phonon interaction, replacing A, i, z.(m n) b—y
N(0) V,~,-:, and restricting the range of m in the

remaining sum to +N, where (2N+1)AT, =con.
This results in

b, -„,(m) 6 k.(n)
Zz(n)=n T,N(0) g [(1+a i, )V&(i+a k, }—V, ] +it(t+ —t

J
co q. (m }

f /
co p (n)

/

co-„(n)=co„+ir(t++t )sgn(co„) . (8)

I

Here, ico„=iirT, (2n 1) are —the Matsubara fre-

quencies (neI), and 6 k (n) is a generalization of the

energy gap to the imaginary axis. It is clear from

(8) that co k (n) is independent of k, and can there-

fore be written co(n). When t+ t =0——, the pure-

metal T, equation is recoverei.
The effect of the anisotropy on some of the prop-

erties to be considered can be characterized by its
mean-squared value (a ) independent of any fur-

ther details. However, in other cases it is necessary

to assume a distribution function P(a). Two dif-

ferent choices have been made:

P, (a}= —,[5(a —A)+5(a +A }]

P2(a)= e(A —a)e(A +a) .
2A

(10)

Each of these is normalized to unity, and for each

(a ) =0. Note however that for Pi(a}, (a )=A,
whereas for Pi(a), (a )=A /3. For the cases in

which this step is necessary, both Pi(a) and Pi(a)
have been employed as a test of the sensitivity of
the particular property to the choice.

Many of the quantities considered here are, for an

isotropic BCS superconductor, universal in that

they do not depend on the values of the parameters

N(0) V or coD. This is not necessarily the case when

the interaction is modeled by Eq. (1). Therefore, all

calculations have been done for the two sets of
parameters used in the previous work. ' One
choice is N(0}V,&

——0.28S and coD—-32 meV, lead-

I

ing to a T, of about 1 K when (a ) =0.04 and

p*=0.13; this corresponds approximately to Al.
The second choice is N(0) V,~ =0.41 and coD =21
meV, so T,=10 K when (a ) =0.04 and p ~ =0.12,
as is roughly the case for Nb. This latter choice is

clearly outside the weak-coupling region, but it is

still of interest to explore the predictions of the

theory in this region, and, in particular, to see to
what extent the results are independent of N (0)Vr.

III. PURE-METAL PROPERTIES

The mean-squared anisotropy of the gap, denoted

by R, is defined by

R = (11)
2

k

With the use of the present model Vk k. , 6-k has
the form b-„=kp+a k b, i, which, since (a) =0,
implies Ri=(ai)r, where r is the (temperature-
dependent) ratio r =

~
6i/bp j. The gap equation

can be converted into two equations in two un-
knowns, r and the ratio of twice the average gap to
T„2dkp/T, . The first step in doing so is the con-
version of the sum over k' to averages over
constant-energy surfaces, and an energy integral

with the density of states replaced by its Fermi-

energy value N(0). The resulting equation is aver-

aged over the Fermi surface (in the k variable), and

then multiplied by a z and averaged. After divid-

ing the second result by (a ), the two following

coupled equations are obtained:
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hp=b, i
—p ((bp+a „,b, ,)I(h-„,) &', (12)

b, , =N(0) V~((1+a-„)(&p+a i, ~i)I(~i, ) &'

(13)

where

tanh(PE z, /2)
I(b- )= dE-k, .

k Ek
(14)

At T =0 this integral is approximately
arcsinh(con/I b i, . ~

), which in the weak-coupling
I

limit of
~

b k.
~

&&con becomes in(2pin/
~

b k.
~

).
If the anisotropy were a small effect, then the

b, k, could be written bp[1+a z.(b, i/hp)], and the
logarithm expanded in terms of the small parameter

ak, h&/60, as was done by Clem. However, the
primary interest in the present case is precisely the
situation in which this parameter is not necessarily
small; the expansion is not appropriate and so to
evaluate the averages the distribution functions are
employed. With the use of Pi(a), eliminating coD in
favor of T, through the T, equation (3},and further
rearranging the result, (12) and (13) are transformed
into

e ~ 2ho i 22 i 1 —Ar
1 =r+@ ln + —,ln

~

1 Ar —
~

—,Ar —ln

—
2 (1+Ar)F(Pb p(1+Ar) ) z(1 —Ar)F(Pb, —p(1 Ar) )— (15)

r =—N(0)V, (1+A r)ln + —,(1+A r)ln
~

1 Ar
~

——,—A(1+r)ln
3.53 T, 1+dr

—
2 [1+A (1+r)+A r]F(php(1+Ar)) —

~ [1—A (1+r)+A r]F(pb p(1 Ar))—(16)

NL)

F(pb, z)=2 f dek f(Ek) sinh
k 7i

Similar, albeit somewhat more complicated, equa-
tions arise when P2(a) is used.

The zero-temperature values of these properties,
R and 2hp(0)/T„are examined first. In this limit,
F(Php) =0, so the relevant equations are just (15)
and (16), but without the last two terms of each. As
will be the case for each property to be considered,
the two special cases of p~ &N&(0) V~ (or zero),
and p*=N (0)Vz, will be examined in particular, as
well as general results presented throughout the
range 0&p" &1.25N(0)V~ where appropriate. In
the first case, the anisotropy represents a small ef-
fect, and these equations can be solved approxi-
mately with the result that, to lowest order in (a &,

(a'&
(1—S)2

and

26p(0)

Tc
=3.53(1——R2) . (19)

The last result is that obtained by Clem, with the
qualification that in his case, with p ~ =0,
R'=(a'&.

In the region S=1, similar expressions are more
difficult to obtain, primarily because of the func-
tions In

~

1+Ar ~, since Ar is not small. However,
with the use of Pi(a) it can be shown that Ri= 1

when S =1—(a &, which is a slightly attractive po-
tential. With the use of P2(a}, the nearly identical
result of R =1 occurs when

S= 1 —(a &[1+0.08N(0)V,r] .

An expansion of r in p* can be made about this
point, with the result that in the region of S=l, to
low order in (a &,
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1 (S—1)
(g 2 }1/2 2 ( 2) 1/2

leading to the special case that at S= 1

R 2=1+(a'}'/'[1+0. 08N (0)V„] .

0.21N(0) V,p(S —1)
+ t z +0.04p*+0.09[N(0) Vep] (S —1}Ig2 1/2 (20)

(21)

A similar expansion cannot be made for P1(a) because of a singularity at S=1. The derivative

(tir/t)p*)s 1
——0, but the second derivative, (t) r/t)p )s 1, is discontinuous and divergent, with values + ~,

rendering an expansion impossible. In either case R is found to be one for an interaction which is slightly at-
tractive, and somewhat greater than one when S =1. This is very different from the usual case in which
R =(a }or slightly larger.

Approximate expressions for 2ho(0)/T, can also be obtained. For example, at S = 1 using P2(a),

2bo(0) 3 53 2 1
exp ~ —(a } 0.44 1+.0.08N(0)Ve&—

~c 1 91 8N(0) Veq
(22)

It is clear from this equation that the ratio is signi-
ficantly reduced from the value of 3.53. However,
it should be emphasized that this expression must
be considered as quite approximate because neglect
of relatively small terms of higher order in (a ) in
the arguments of the exponential could lead to large
effects on the value of the complete expression.

The numerical results are illustrated in Figs. 1

and 2. In agreement with Eq. (18), R starts off at
the value of (a ), remaining within a factor of 2 of
this value until S=0.3, after which it increases rap-
idly, becoming 1 at S=1—(a ) as predicted earlier,
and increasing beyond that. The illustrated curves
were obtained using P1(a) and N(0}V&——0.285.
The results using P2(a) are indistinguishable from
these for 0&S (1, and differ by about 4% at the
most up to S =1.25. Clearly, the general behavior
is independent of this choice. Furthermore, al-

I

though the relevant equations do depend on
N (0)V,„, choosing N(0) V,z

——0.41 resulted in
differences too small to be seen on this graph.

As seen from Fig. 2, 2bo(0)/T, does begin at ap-
proximately 3.53(1—3/2R ), and is reduced to just
about 3.53/2 when S =1, with further reductions
for larger S. This exhibits the qualitative predic-
tions of Eq. (22) which in fact turns out to be
surprisingly accurate. In this case changing to
P2(a) has a slightly larger effect but in no way
alters the general behavior. As with R, the effect
of altering N(0) V,z is negligible. It is apparent that
in this region both R and 2b,o(0)/T, are also rath-
er independent of (a },depending primarily on the
fact that S=1.

The temperature dependence of 60 and b, ~ can be
investigated by returning to the finite-temperature
equations (15)—(17), for which the function F is

24'(0)
Tc

+WN(0)v, p

FIG. 1. Mean-squared anisotropy of the gap 8 as a
function of p~/N(0)V~, for (a') equal to 0.05 ( . )
and 0.1 ( ). These curves were derived using
N(0) V~ =0.285 and Pl(a). The minor effects of chang-
ing N(0) V,~ and P(a) are described in the text.

I

0.5
P+/N(0)Vgp

FIG. 2. Ratio 250(0)/T„as a function of
p~/N(0)V~, for (a ) equal to 0.05 (. ) and O. l
( ) using P~(a), and (a ) =0.05 using P2(a)
(———). In each case N (0)V,~ =0.285, but the effect of
changing to 0.41 is too small to be seen on this graph.
The BCS value, illustrated by the top horizontal line, is
3.53 up to p*=N(0)V,~.
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8

7g(3)
r

' 1/2
f7 Tg

X +f+(1 t)—(23)
p

At T=T, (r =1), r has the value r, =1+p~f, en-

evaluated numerically. Typical results are illustrat-
ed in Fig. 3 where ho(t)/ho(0) has been plotted as a
function of the reduced temperature t =T/T, . It is
clear that although there is some deviation from the
isotropic result, choosing p*=N(0)V,

&
does not

alter the general behavior. There is also a slight
dependence on the choice of P (a), but no significant
dependence on the value chosen for N(0)V,~. The
ratio r(T) is nearly independent of temperature, re-
sulting in b, i(t)/b, i(0) being not much different
from ho(t)/ho(0), and so this is not shown. As
pointed out by Markowitz and Kadanoff, this is
consistent with early experiments on Al by Masuda
and Redfield" and by Masuda. '

By analyzing the behavior of the gap near T„an
expression for the discontinuity in the specific heat
at the transition can be derived. The first step is
obtaining a limiting expression for the function
F(Pb k ) for small Pb, k. Using

f(Eq )= —,[1—tanh(PEq /2)]

and the well-known expansion of tanh(pE z /2) in

terms of the Matsubara frequencies, one can obtain

by standard methods'i the first two terms in the ex-

pansion. Employing these in (15) it can be shown

that for t ( 1, to lowest order in 1 —~,

suring bo(1)=0. With the use of the expansion in

(16} instead of (1S) an expression analogous to (23)
can be derived, which can be combined with it to
show that, to lowest order in 1 —t,

r=r, +a(1 t),—

where

2(a )p~r, (1—(a )r, )

1+6(a'}r,'+ ((a'}r,')'

(24)

(25)

This result can then be inserted into (23) to obtain

1+(a'}r,'
b,o(t)= 3.06T,

X(1—t)'" . (26)

The corresponding behavior for b, i(t) is easily relat-
ed to Eq. (26) through the fact that, to lowest order,
hi(t)=r, ho(t). It should be pointed out here that r,
and hence ho(t), do not depend separately on
N(0)V,&, but only on S (as well as (a )). This ex-
pression is based on the use of P, (a), but the depen-
dence on this choice was seen to be small in Figs. 2
and 3.

The calculation of the specific heat differs only
slightly from the standard procedure, coming from
C, = —(BS/BP) with the entropy S given by

S=2 N ek e~
1+e

+1n(1+e ") I, (27)

with Ek ——
~
ez

~

above T, and E), =(eg+b, k
}'

below. The discontinuity in C„at T, is found to be

I.o
CS-CN

Cz

t

FIG. 3. Ap(t)/kp(0) as a function of reduced tempera-
ture t, for the isotropic BCS case ( ), and the aniso-
tropic case with (a')=O. l using P~(a) with p*=O
( . ), and p =N(0)V~ ( ———), and (a~)=0. 1,
p*=N(0) Vpps using P2(a) (—- —.—~ ). The choice of
N(0) V,~ has no significant effect.

I

0.5
y, /Nt0)Vep

FIG. 4. Specific-heat jump (Cz —Cz)/C& at T, as a
function of p*/N(0)V~. The upper solid curve is the
isotropic BCS result of 1.43. The other two curves are
for (a~) =0.05 (. . ) and (a2}=0.1 ( ), using Eq.
(42) which is based on P&(a).
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Pl&7I
s CN —20.'( f N(E-„)de-„—, +2a"„(Los )+a'-„ (28)

In these expressions Cs and Civ are the specific heat
of the superconducting and normal states, respec-
tively, and P, =1/T, . Because the ek are free-

electron energies, the Fermi-surface average in-
volves only the functions a&,' with the use of
(a ) =0, Eq. (26) for ho(t), and the related expres-
sion for b, i(t), a procedure similar to the standard
one yields

Cs —CN (1+(a )r, )= 1.43
1+6(a')r,'+((a'),')'

(29)

which, like bo(t) and b, i(t) near T„does not depend
separately on N(0)V,&. This reduces to the usual
value of 1.43 in the isotropic case, and, to lowest or-
der in (a ), to 1.43(1—4(a )) in the anisotropic
case with p*=O, in agreement with Clem. %hen
p~=N(0)V, ~, the jump is reduced to just about
one-half this value,

Cs —Civ 1.43 (a
C~ 2 8

(30)

Although this is only to first order in the anisotro-

py, it is very close to the full result, as seen from
I'ig. 4. The solid curve indicates a continual reduc-
tion in this jump up to S=l, followed by an in-
crease as p~ is increased beyond N(0)V,&

This re-.
flects the very rapid increase in R, and hence in
b ~, as p* is increased beyond about S =1. It is also
apparent that, as for R and 2b,o(0)/T, in the re-
gion S 1, the value of the specific-heat jump is
determined primarily by simply being in the regime
S=1.

The critical magnetic field H, (T) is, as usual, ob-
tained from the difference between the free energies
of the normal and superconducting states. The re-
sult can be expressed

small S, and with (21) and the observation that
26 o(0) /T, is very nearly 3.53/2 for S =1, to show
that in these limiting cases

H, (0) 1.77(1—R ), S«1
4mN(0)T 1'77 S =1 .

(32)

H, (t)
D(t)= —(1—t ) .

H, (0)
(33)

Because D(t) differs little from the usual case, rath-
er than provide a detailed analysis of this quantity,

Hc(0)
/4rN(Q) &c

These have a slight dependence on the choice of
P(a) through R and 26o(0)/T, . The first result is
that of Clem with the earlier noted qualification
that R =(a ) in his case, which is the same
behavior which occurred in the present calculation
of 2b, (o0) /T, . When S=l it is apparent that, rela-
tive to T„H,(0) is reduced by a factor of t/2.

The full curve is shown in Fig. 5. It is very simi-
lar in behavior to (Cs —C~)/C~, ' notice in fact that
like this quantity, fH, (0)/v'4m N (0)T, ] begins at
somewhat less than the isotropic value and is re-
duced to about one-half of that when S=l, and
then increases beyond that. There is some depen-
dence on the choice of P(a) here, but no significant
change is found when N (0)V,~ is changed.

A related quantity is the deviation function de-

fined by

H (T) 2 i 2'= bo(1+R ) — T
4irN 0 3

f(E~)
+2 ek+E k dek

k

(31)

At zero temperature only the first term remains.
This can be combined with Eqs. (18) and (19) for

FIG. 5. Zero-temperature critical magnetic field H, (0)
exhibited as a function of p*/N(0)V, ~. The isotropic
BCS result is the upper solid curve, which is 1.77. The
results using P~(a} are exhibited for (a ) =0.05 ( }
and 0.10 ( }, and using Pi(a} for (a ) =0. 1

(—.——.}. There is no significant difference for dif-

ferent values of N (0)V,~.
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Bm 2m
(36)
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With these preliminaries, differentiation of Eq. (3)
immediately yields the following result, which is in-
dependent of P (a):

1 —N(0}Vq(a )f
1 —(p* )'

2 1+N(0)V&p~(a )f
(37)

1

0.5
I

1,0

FIG. 6. Deviation function D(t) as a function of t .
The upper solid curve is the BCS result. The two inter-

mediate curves are found using P~(a) with (a ) =0.1

and p*=0 ( . ) and p*=N(0)V~ ( ———). The
lowest curve corresponds to Pi(a), (a ) =0.1, and

p* g(Q) V ( ~ e ~ )

which is exactly ——, for the isotropic or anisotro-

pic case when p, ~=O, and ——,[1—I/(I —S) ] for
the isotropic case when p, ~+0, in agreement with

Rickayzen. ' This latter result diverges as
p*~N(0)V,&, but in this case T, vanishes ex-

ponentially. When S =1, to low order in the aniso-

tropy,

only the numerical curves are presented in Fig. 6.
The detailed shape is seen to depend somewhat on
the choice of P(a), but it is clear that the case
p*=N(0)V,

&
does not change significantly from

p*=O. For example, for some strong-coupling ma-
terials, D(t) &0 throughout, a much larger differ-
ence than that found here.

The dependence of T, on isotopic mass m is
described by the isotope parameter P, defined via

(34)

In the T, equation the variables which could de-
pend on m are coD, N(0)V~, and p*. The simplest
approximations are to assume harmonic phonon
frequencies, so that coDccm ', and to identify
N (0)V~ with the electron-phonon mass-
enhancement parameter A, , which is independent of
m. ' Following Ref. 14 it is assumed that the mass
dependence of p~ can be approximated through the
relationship

4 a~ (3&)

which again illustrates this divergence for the iso-
tropic case. This equation illustrates the interesting
feature of a reduction in P with increasing anisotro-

py, reflecting the fact that at S=l there is a delicate
balance between p~ and N(0}V&, which becomes
less delicate as the anisotropy becomes more impor-
tant.

As seen from Fig. 7, P remains close to its usual
BCS value of ——, up until S=0.4, after which it
begins to increase, becoming positive in the neigh-

P
I+pin(eF/co, )

' (35)

where co, is determined by the phonon frequencies,
and so has the same mass dependence as coD, and p
is N(0) times the average of the screened Coulomb
interaction for scattering at the Fermi surface,
which is independent of m. From this it follows
that

0.5

/ N(0)Vep

FIG. '7. Isotope-effect parameter p, defined by Eq.
(47), as a function of p*/X(0)V,~ for the isotropic case
( ), (a )=0.05( . ), and(a )=0.1(—~ ——).
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borhood of S=0.5 to 0.7 depending on (a ), and
then increasing rapidly resulting in a large inverse
isotope effect. Consistent with Eq. (38) the actual
value of P in this region is a sensitive function of
(a ). Finally, it is pointed out that since both
N(0)V,&f and p~f depend only on S, this result is
also independent of N (0)V,z except through S.

The final function considered in this section is
the quasiparticle density of states defined by

P(Q)da Re
N(0) [ 2 (g +&g )2]1/2

(39)

For the two different distributions rather different
results are obtained, which are found simply by
analytically performing this integral. With the use
of Pi(a), the result is

bp

2

—(1+R')
1/2 +

hp

'2
—(1—R)

& 1+R
p

N (ro) c0

N(0) 2b,p

6p
—(1—R)

1 R
i « 1+R

p
(40)

0, &[I—R[
p

whereas using P2(a)

1+v 3R
sin

1 —V 3R Co—sin, & +

1 —V3R——sin
2 co /kp

N(ro) 1 ro J

0, & ~1 —V3R~ if V3R&1'
dp

&1+V3R
5p

(41)

& ~1 —V3R
~

ifv3R)1.
6p

These are illustrated in Figs. 8 and 9. Large differ-
ences for the two different choices of P(a) are
clearly seen, and they both differ very much from
the isotropic limit. The curves which are shown are
for the isotropic case and for the anisotropic cases
with S =0, S= 1, and S= 1.2. The last of these has
been included to show the behavior for large R . In
each case there is a slight dependence on N(0) V,„,
through the dependence of R.

Consider first the Pi(a) result (Fig. 8). The one
singularity at ~=hp for the isotropic case is re-
placed by two singularities at ro =b p ~

1+R
~

. When
S=1 and R =1, this causes peaks close to co =0 and
out at co=2hp. As p* is further increased, the inner
singularity is moved back out away from the origin,
whereas the outer one is pushed further beyond 24p.

5.0 -1
I

I

I

I

I
z.o —I

Ntat)

N(0) )

I

I

I

I

I

I

I

I

il
1'-

:I

I

i '.
h

1 .1
i.o- )

l I
I

I

I

I

A.o

FIG. 8. The quasiparticle density of states
N(co)/N(0) as a function of co!60(0) using P)(a). The
solid curve which diverges at co/50(0) =1 is the isotropic
BCS result. The rest are all for (a ) =0.1 with @~=0
( - - ), p*=N(0)V,~ ( ———), and p*=1.2 N(0)V,~
(—"—.~ —). The value of N(0) V,~ has little effect.
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At any rate, when S=1 a large value is found when
co (Ap and a second peak is located at co=26p.

Turning now to the Pz(a) result (Fig. 9) it is seen

that the BCS singularity is replaced by a finite peak
when S =0 and (a )+0, and by two peaks when

@~+0, which are quite small when S&1. The
outer peaks are well beyond the region of co=2hp,
whereas the inner peaks are within Ap(co(24p.
There is a finite value for N(co) down to co =0.

From these graphs tentative conclusions can be
drawn, first, that although the quasiparticle density
of states depends sensitively on P(a), for S & 1 both
choices indicate the presence of a nonzero N(co) at
frequencies well below co=hp, and second, that
N(co)/N(0) has a two-peak structure with the outer
peak at or beyond co=2hp. In passing it is pointed
out that for to»b, o(1+R) an expansion of either
result can be made, resulting in the expression ob-
tained by Schachinger and Carbotte' for the case
p~=0 in a small (a ) expansion. They then used
this for a range of co, attributing some of the ob-
served structure in N(to)/N(0) to the use of this
approximation where it is not valid.

2
Tc (peV)

t, (I ev)

FIG. 10. Reduction of T, by normal impurity scatter-
ing in the presence of paramagnetic impurities. All
curves are for coD ——32 meV, N (0)V,~ =0.285, and
(a ) =0.1, and each is labeled by the value of t
describing the paramagnetic impurities. The solid curves
(—) correspond to p*=E(0)V,~, and the dotted ones
(. - . ) to p*=1.05K(0)V,~.

(42)

IV. IMPURITY EFFECTS ON T,

The dependence of T, on normal and paramag-
netic impurities is dealt with in the present BCS
model through Eqs. (7) and (8). From these it is
clear that b, z (n) has the form

Furthermore, they are found to satisfy

—N(0) Vpo~hc+[1 —(a )N(0) Vq, o )]6)——0,

( I+p*02)ZO —Z&
——0,

(43)

(44)

6-„(n)=ho(n)+a k b, &(n),

where o ~ and cr2 can be expressed in terms of the di-
gamma functions g(x) as

analogous to the form for the energy gap b, k. Sub-

stituting this form into (7) and (8) it is found that
b &(n) is a constant, say 6&, as is

coD+n(t++t )

(45)

N(ee}

N(0)

Tc(mev)
0.2

s.o
«/he(0)

I

4.0
t+(meV)

FIG. 9. &(~)/N(0) as a function of u/60(0) using
P2(a). The notation is the same as in Fig. 7.

FIG. 11. Reduction of T, by impurities. The host
parameters are as for Fig. 10, except that p*=0.13.
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Ro

TctpaeV)

ti (p,eV)

FIG. 12. Reduction of T, by impurities. All curves

correspond to coD ——21 meV, N (0)V,~ =0.41, and

( a ) =0.1. The notation is the same as for Fig. 10.

coL) +2m.t

2 Z
(46)

Nontrivial solutions for the gap occur if the
determinant of the coefficients of b,o and Z& in

these equations is zero, leading to the T, equation

(o' )N(0)V»p*oio2+[N(0) Ve» P*1o—2

+(o ) N( 0),V„o' —i 1=0 (47)

Tc(moV)
I.o

t- =0meV

This result for T, is independent of the choice of
P(o), depending on the anisotropy only through
(a ). Figures 10—13 illustrate T, as a function of
normal scattering t+ for different values of the
spin-flip scattering parameter t The first. two of
these both refer to the first representative material
in which roD 32 meV a——nd N (0)V,»

——0.285; Fig. 10

is for the case of present primary interest in which
pa=N(0)V, », whereas Fig. 11 refers to the usual

case of p, *=0.13. The last two figures are obtained
with ron ——21 meV and N(0)V»=0. 41; again the
case of p, a=N(0)V& is illustrated first, and then,
for comparison, the case of pa =0.12 is shown. In
all cases (a ) has been chosen to be 0.1 for pur-
poses of illustration.

The most striking features of these graphs are

that they all look much the same and that the scales
of t+ and t are reduced considerably for the case

p =N(0)V,» as compared with the usual case.
Beyond the establishment of the form of these
curves in this regime, the most important experi-
mental quantity is the maximum impurity concen-
trations which can be tolerated. As has been em-
phasized, because of the various approximations in-
herent in the calculations, and because only
representative parameters are used for the hosts, no
accurate quantitative results can be obtained. In-
stead, the philosopy here is simply that order-of-
magnitude estimates of the concentrations are of
use as a guide in any attempt to observe the regime
focused on in this work.

Comparison of Fig 10 w. ith 11, and of Fig 12.
with 13, indicates that the scales of t+ and t are
reduced by about 2 —3 orders of magnitude for the
case pa=N(0) V,», as compared with the usual case
for the illustrated choice of (o ) =0.1, which prob-
ably represents an upper limit for the anisotropy.
This implies that the maximum allowable concen-
trations are reduced by about the same factors since
t+ and t are proportional to the concentrations.

Experimental work on Fe impurities in In
fjlms, 7' and Gd jn LaA12 9' La and
La3In, for which the "pure" T, 's are in the range
of about 3 to 9 K, indicates that the concentrations
of paramagnetic impurities which destroyed super-
conductivity were in the range of 0.5% to 2%.
This suggests then that for the case pa=N(0) V»,
with little or no normal scattering (t+ -0), no more
than perhaps 0.001% to 0.01% paramagnetic im-
purities can be tolerated.

If there is even a small amount of paramagnetic
impurity present, the figures indicate that normal
impurity scattering will drive T, to zero. Simple es-
timates of the relevant concentrations can be made
in different ways. The first comes from the defini-
tion t+ ——1/2nr~ and from th. e relation

t+tmeV)
+N

=~OVF &N~N (48)

FIG. 13. Reduction of T, by impurities. The host
parameters are as for Fig. 12 except that p ~ =0.12.

where no is the host atomic density, typically about
10 cm, vz is the Fermi velocity, about 10
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cms ', crN is the normal scattering cross section
per atom, typically 10 ' cm, and cz is the con-
centration of normal impurities relative to host.
These parameters lead to values of t+ per atom in
the range of about 1 —10 meV, in agreement with
data used by Markowitz and Kadanoff. Combin-
ing this with the scales of Figs. 10 and 12 implies a
range of cz of about 0.001% to 0.01%. This is also
in reasonable agreement with a second approach
based on the observation that, in the usual regime,
normal concentrations wash out the anisotropy
when cz is a few percent. Comparison of Fig. 10 to
13 indicates that the values of t+ for which T, =0
when p~=N(0)V,&, are roughly 2—3 orders of
magnitude smaller than the values of t+ which

essentially eliminate the enhancement of T, by the
anisotropy when p *=0.12 and there are no
paramagnetic impurities present. This again leads
to values of c~ of about 0.001% to 0.01%. It is
thus concluded that the maximum tolerable impuri-

ty concentrations of either type are somewhere in

the vicinity of 0.001% to 0.01%, but these esti-
mates are only very crude, and also are only for a
highly anisotropic material with (a )=0.1.
(Smaller values of (a ) are considered presently. )

An interesting feature of the curves is that T,
vanishes for some finite t+ in at least some cases.
The equations for T„(45)—(47), provide a means
of determining the conditions for this occurrence
and the corresponding critical t+, and alternatively
the critical t' for which T, ~O in the absence of
any normal scattering.

Consider first the case of t +0. When T, ~O,
the arguments of the digamma functions diverge, so

g can be replaced by its asymptotic logarithmic ap-
proximation, simplifying o.l and O.z. Employing
this in (47) one finds

C

1 N(0) Vqo2
exp 1—

N(0) V~(a') I+p*o2

(49)
I

with

~a+ 2m't
0-2 ——ln

2mt
(50)

This result indicates that t+ —+ 00 when the denomi-
nator vanishes, so for finite t'+ the argument of the
exponential in the denominator must be positive.
This leads to the condition

COD

277

0, S)1.

1

N(0)V~ —p~
(51)

If this condition is satisfied, then t'+ is given by (49}
for S & 1, and by a simplification of (49) resulting

from oz~ ao when t =0 for S & 1, namely,

1

p~ —N(G)V~
exp

N(0) V pp ~(a2)

t =0.

(53)

with

(52)
The exact mathematical result is, of course, of lit-

tle relevance. The interesting result that is obtained
is that for a situation in which the average interac-
tion is repulsive, a finite concentration of normal

impurities will destroy superconductivity. If S&1
some paramagnetic impurities are required, as
determined by Eq. (51).

The other question asked here is the value of t' .
Anticipating that t' &&co&, one finds that

o2 ——OI —ln2, which can be substituted into (47)
leading to a quadratic equation for ol. By defini-

tion o.
~ and o2 must both be non-negative, and this

can be used to eliminate one of the two solutions of
the quadratic. As long as N(0)V&(a ) &1/In2,
which is certainly the case for any sensible values of
these parameters, it is found that

CODt'= e

and

—x + (x +4N (0)V ~p ~ (a ) I 1+[N (0) V z
—p ~]ln2I ) '~

2N(0)V,qp*(a )
(54}

x =N(0)V&(1+(a ))—p* N(0)V&p~(a2)ln2 . — (55)

Again, the precise results are of little relevance. However, without exhibiting more figures these equations
can be used to provide some indication of how the maximum tolerable impurity concentrations depend on
(a2). For example, if (a2) =0.05, Eqs. (52) and (53) predict reductions in r'+ and t' by about 2 orders of
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magnitude, implying corresponding reductions in the concentrations. It is again useful to consider the limit-

ing cases of this result, which are

COg
exp

t' ='
Q)D

exp

1+N (0)V,&ln2
p~ —0

N (0)Vep(1 ~ (a 2) )

1

N(0}Vp(a
p N(0)Vgp

(56)

where the second case has been taken only to lowest
order in (a ). Once again, whereas in the usual
case of S« I the anisotropy is a small effect ap-
pearing in a factor 1+(a ), when S =1 its dom-
inant effect appears through a term of order
(a )'~, not (a ). This behavior is the same as
that of the original expression for T, for the pure
material, in this limit.

V. SUMMARY AND CONCLUSIONS

In this paper a number of properties of supercon-
ductors in which the anisotropy plays an essential

ro1e have been considered. This is the regime in
which the average effective electron-electron in-

teraction is about neutral or even slightly repulsive,
and in which T, would be zero or very tiny in the
absence of anisotropy. It has been emphasized that
because of the use of a BCS-type theory and a sim-

ple separable representation of the anisotropy, the
results are in no way to be considered quantitative

predictions. The main goal has instead been the
identification of pure-metal properties which

behave quite differently in this regime as compared
with the usual regime in which the interaction is
dominated by the attraction and the anisotropy has
a relatively minor effect. A second goal was the es-

timation of the maximum normal and paramagnetic

impurity concentrations which can be present
without driving T, to zero.

For all the pure-metal properties studied, there
was little or no dependence on N(0)V,~ or p*
separately, but only on their ratio S =@*/N(0)Vez.

In this sense the quantities are in effect universal; in

the isotropic BCS case they are exactly universal,
being independent of the BCS parameter N(0)V.
For the temperature-dependent functions the
universality is present in the dependence of the vari-
ous quantities on the reduced temperature
r =T/T, .

The properties which are significantly different
are summarized first. The mean-squared anisotro-

py of the gap, which is normally on the order of

t

(a ), and thus is about 0.05 to perhaps 0.1, is
found to be about 1 or larger and, in fact, rather in-

dependent of the actual value of (a ). The ratio of
twice the average zero-temperature gap to T„
2b, o(0 }/T„ is reduced from slightly less than 3.53
to just about one-half this value when

p* N(0) V,~, again nearly independent of (a ).
The relative jurnp in the specific heat

(Cs —CN )/C~ is also reduced to about one-half the
isotropic value of 1.43. This is, however, not as sig-

nificantly characteristic of this regime as it might

appear at first sight, because even when @~=0, if
(a ) )0 the jump is reduced, for example, to about
1.1 when (a )=0.1.

The zero-temperature critical magnetic field

H, (0), relative to T„ is described by the ratio

H, (0)/v 4rrN (0)T, . This is reduced to about
1/v 2 of its isotropic value, or approximately a
30% reduction. However, in a way similar to the

specific-heat jump, much of this reduction may be

caused by the anisotropy alone, even with @*=0.
An inverse isotope effect appears when

@*=0.5N (0)V z to 0.7N (0)V z, becoming very

large when p=N (0)Vz. Its magnitude is inverse-

ly proportional to (a ), reflecting the fact that as
(a ) becomes smaller, the balance between the at-
tractive and repulsive parts of the interaction be-

comes more delicate, finally resulting in a diver-

gence for the isotropic case when @*=N (0)V,z
The quasiparticle density of states N(co)/N(0)

differs significantly and as well, it depends on the
details of the anisotropy of the interaction. It is
tentatively suggested that the characteristics of the
regime p* N(0)V& are a two-peak structure with

the outer peak near or well beyond co=26,o(0), and a
nonzero N(co)/N(0) well below co=-ho(0).

An additional remark can be made regarding
three of these properties. In the isotropic BCS case
each of 2b,o(0)/T„(Cs —C~ )/C~, and

fH, (0)/&4~N(0)T, ] has a universal value for
p, *&N (0)Ve& and is zero for p,

~ & N (0)V,& In the.
anisotropic case with p, ~ =N(0) V z each of these is
reduced to just about one-half the corresponding
isotropic value, nearly independent of the actual
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value of (a ) in each case.
Of the properties considered here those that are

not significantly different from the usual case are
the reduced quantities hp(t)/hp(0), bi(t)/&&(0),
and the deviation function D(t) which is a measure
of H, (t)/H, (0). The zero-temperature value of
each of 5p kt and H, is different, as, of course, is
the scale of temperature since T, is relatively low.
But after this overall rescaling the resulting varia-
tions with t are not much different from the isotro-
pic BCS result. The mean-squared anisotropy of
the gap is nearly independent of t.

Finally, the effects of impurities are summarized.
The first observation was that T, depends on nor-
mal and paramagnetic scattering in much the same
way whether p, *=0.12 or p*)N(0) V,z, except for
a reduction of the energy scales by about 3 orders of
magnitude or more. The results were used to sug-
gest that when (a ) =0.1, for otherwise typical ma-
terial parameters with typical impurities, the max-
imum tolerable concentrations of either normal or
paramagnetic impurities are about 0.001% to

0.01%. Reducing (a ) by a factor of 2 caused a
further reduction in these numbers by a factor of
about 100. This estimate could easily be incorrect
by at least 1 order of magnitude due in part to its
reliance on the use of typical parameters, but more
fundamentally because of the approximations in-
herent in the model.

In analyzing the conditions under which T, van-
ishes, it was found that if p &N(0)V& a finite
concentration of normal impurities can destroy su-

perconductivity even in the absence of any
paramagnetic atoms. If on the other hand
p*&N(0)V&, some magnetic atoms are required
for T, to vanish. In all cases a finite concentration
of paramagnetic atoms can destroy superconductivi-
ty when no normal impurities are present.
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