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We examine the static tunneling characteristics of ultrasmall Josephson junctions that
are current biased on the zero-voltage dc step. Novel scaling, magnetic, and thermal

characteristics are exhibited by the supercurrent as the device is scaled down from the 1.0
to the 0.01 pm regime. Furthermore, the noise voltage is found to peak for devices in

which the electrostatic energy required to transfer a pair is equal to the interaction energy

between the two superconductors. For such junctions, noise voltages are on the order of
several mV, and the magnitude of the supercurrent is found to be a very sensitive function

of device area and operating temperature. Finally, these features of the junction's

dynamics have technological implications regarding digital applications of such devices.

I. INTRODUCTION

Recently, there has been considerable interest in
the physics and technology of ultrasmall Josephson
junctions. ' This interest is motivated by the digital
applications of these devices as well as the possibil-
ity of novel physical behavior arising from the large
electrostatic energies associated with ultralow capa-
citance junctions. Here we examine the static tun-
neling characteristics of ultrasmall Josephson junc-
tions that are current biased on the zero-voltage dc
step. We are particularly concerned with changes in
the junction s tunneling characteristics that may oc-
cur as the device is scaled down from dimensions on
the order of 1 pm to less than 0.01 pm . Of spe-
cial interest are the influence of electrostatic fluc-
tuations on the magnitude, scaling characteristics,
and phase dependence of the dc supercurrent.
Furthermore, the response of these junctions to
magnetic fields as well as their thermal characteris-
tics are clearly important with regard to their use-
fulness as switching elements in digital devices.
Owing to the small size of the supercurrent, interest
naturally focuses on the current and voltage fluc-
tuations that accompany pair transfer as well as the
signal-to-noise ratio of the pair current. These
features of the junction's dynamics are examined in
detail, although no account is taken of the effects of
fluctuation induced switching on the pair current,
which we shall discuss elsewhere. We note that

these studies not only provide a knowledge of the
physics of ultrasmall Josephson junctions but are of
critical importance for determining the limiting
size, packing density, and switching speeds for digi-
tal applications of these devices. For example, we
find that the supercurrent exhibits a striking depen-
dence on device size and temperature as the junction
area is scaled down from 1.0 to 0.01 )Mm . These
properties in turn impact device fabrication, ther-
mal tolerances, and switching reliability, the degree
depending upon a number of factors, which are dis-
cussed in this paper.

To illustrate the influence of electrostatic effects
on pair transfer we examine and contrast the

junctions tunneling characteristics in three dif-

ferent regimes. These are (1) the tight-binding limit
in which there are no electrostatic effects, (2) the
plasmon regime in which electrostatic effects give
rise to plasma oscillations, and (3) the strong
charge-fluctuation regime where electrostatic effects
quench the phase ordered state between the two su-

perconducting electrodes. In these regimes analytic
expressions can be obtained for various physical
quantities of interest. Numerical results are also
presented to examine changes in the junction's
behavior as it passes from one regime to another.

In Sec. II we present a quantum formulation of
the dc Josephson effect that enables us to examine
the effect of electrostatic fluctuations on pair
transfer for arbitrarily small values of the junction
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capacitance. We also discuss an interesting analo-

gy between a Josephson junction and a two-
dimensional rotating dipole in a dc electric field.
This analogy is useful for understanding many of
the novel features of ultrasmall Josephson junctions.

In Sec. III we examine the tunneling characteris-
tics of the normalized current amplitudes AI de-
fined by

&I (y) =I/(y—) l(»&ny),

where the pair-current matrix elements II are de-
fined by

Il(4) = &el(0—)
I
I

I el(0) & (l2)

Here
~

P~(tI)) ) is the eigenvector for the Ith state and
I is the current operator. We discuss the magni-
tude, phase dependence, and scaling and thermal
characteristics of the various normalized current
amplitudes in ultrasmall Josephson junctions. We
also consider the response of these amplitudes to a
static magnetic field. In general, we find that dif-
ferent junction states exhibit different tunneling
characteristics. These differences arise from and re-
flect the fact that electrostatic fluctuations distort
the phase order of the different

~
f~(P) ) in varying

ways.
In Sec. IV we discuss the tunneling characteris-

tics of the dc pair current in ultrasmall Josephson
junctions. We examine the phase dependence, mag-
nitude as well as the scaling, magnetic, and thermal
characteristics of the supercurrent. Because the dif-
ferent junction states have markedly different pair-
transfer characteristics, novel physical behavior is
displayed by the supercurrent once these states are
thermally activated.

In Sec. V we examine the current and voltage
fluctuations of ultrasmall Josephson junctions that
are current biased on the zero-voltage dc step. Of
particular interest is the fact that the rms noise
voltage peaks when the electrostatic energy required
to transfer a pair is on the order of the interaction
energy of the two superconducting electrodes. For
smaller values of the capacitance, the rms noise
voltage is found to decrease, eventually reaching a
value which is independent of the junction s capaci-
tance and set by the interaction energy between the
two superconductors. We also discuss the current
and voltage fluctuation spectra as well as the
signal-to-noise ratio of the pair current for ul-
trasmall Josephson junctions.

Finally, in Sec. VI we summarize our results and
discuss some of the technological implications of
this research regarding digital applications of ul-
trasmall Josephson junctions.

II. QUANTUM FORMULATION OF THE dc
JOSEPHSON EFFECT

A. Electrostatic parameters

Section II is concerned with a quantum formula-
tion of the dc Josephson effect, which enables one
to determine the influence of electrostatic fluctua-
tions on the static pair-transfer characteristics for
arbitrarily small devices. We are particularly con-
cerned with the regime in which

2e /C&E, (2.1)

where E =fiJ/2e with J the critical current ampli-
tude. It is natural then to characterize the role of
electrostatic fluctuations by the quantity

0—=
2e /C

(2.2)

and note that as 0.—+0 the Josephson effect is
quenched by electrostatic fluctuations. The value
o.=1, defines a critical surface area Sc expressed in
JMm,

1/2

Sc=—1.327
Je

X 10 (2.3)

where t, the oxide width, is in units of 10 m, e is

In this section we review our quantum formula-
tion of the dc Josephson effect for a junction that is
current biased on the zero-voltage dc step. In Sec.
IIA we introduce a number of parameters that are
useful for discussing the tunneling characteristics of
ultrasmall Josephson junctions. In Sec. IIB we re-
view the operator algebra and the tunneling eigen-
value problem for a Josephson junction that is
current biased on the zero-voltage dc step. In Sec.
II C we discuss the relationship of this work, which
is formulated in the definite-number representation,
to more standard treatments that are formulated in
the definite-phase representation. In Sec. II D we
present a model of the external drive circuit using a
density-matrix approach and discuss its nature in
both the definite-number and definite-phase repre-
sentations. We show that Anderson's model of the
external circuit can be extracted from ours for large
junctions that are not driven too far from equilibri-
um. For small junctions this is not the case, and we
discuss this point in some detail. In Sec. IIE we
present an interesting analogy between a Josephson
junction and a two-dimensional rotating dipole in a
dc electric field.
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B. Zero-voltage current-biased eigenstates
and eigenvalues

For our purposes, it is most convenient to work
in the definite-number representation that uses as
basis vectors the pair difference states

I
n ) defined

by6

(2.4)

where
I
N+n ) is the state vector for a supercon-

ductor with n excess pairs in the definite number

representation. The junction Hamiltonian consists
of an electrostatic term plus a tunneling term,

H= (Hr +H—r ),(2en )2

2C
(2 5)

where n is the pair number difference operator and
Hr+ (Hr ) transfers a pair from left (right) to right
(left). The quantum structure of these operators is

set by their matrix elements

(n
I
n

I

n') =n5„„,
Hr'

I

n'& = —,E(n)5., '+i .

A convenient representation of Eqs. (2.6) is

(2.6a)

(2.6b)

the ratio of the oxide's dielectric constant to that of
vacuum, and j is the critical current density in units
of 10' A/m. Typically, l-5, j-l, e-5 so that
S~-0.01 pm, and for a device of this size, J-1
pA, C—10 pF, which defines the junction
parameters of interest to us.

we expand the state vector in terms of definite-
number states, in particular for the lth state

Igt(g, t))=gb„e '" In)e ', (2.10)

where, as we shall show in Sec. IIC, P is the aver-

age value of the phase, the b„' are assumed to be
real, and the st are the junction eigenvalues. If the
junction is biased at zero voltage, the b„satisfy the
Schrodinger equation

etb„= b„—2Ecosg(b„+&+b„, ) .(2en)

(2.11)

Equation (2.11) is the indicial equation for the
we11-known Mathieu functions. There are three
limits which are of particular interest.

1. Tight bindi-ng limit: ¹ electrostatic effects

In the limit that C~ao, the electrostatic energy
required to transfer a pair is zero and the b„satisfy

Etb„' = ——,E cosg(b„'+, +b„' ) ) . (2.12)

Equation (2.12) has two solutions for odd and even

parity, respectively,

b„= 0 for I =1,3, . . . (2.13a)

const for l =0,2, . . . (2.13b)

so that the (un-normalized) state vector and eigen-
value are

n= n n n
n

HP = —, QE(n)
I
n)(n+1

I
.

(2.7a)

(2.7b) Et = —E cosg .

(2.14a)

(2.14b)

Equations (2.7) imply the following commutation
relations:

[n,Hz ]=+HP-
[Hz+,Hr ]= , g E(n)[E(n +—1) E(n —1)]—

(5n') = g n'= m (2.15)

The state vector, Eq. (2.14a), describes a perfectly
phase-ordered state that is not subject to any phase
fluctuations. In particular, we note that the
fluctuations in the pair number difference
(5n ) =(n ) (since (n) =0) are infinite,

x In&(n I
. (2.8b)

[n HT]=+Hr

[Hz+,Hr ]=0.
(2.9a)

(2.9b)

To obtain the junction eigenstates and eigenvalues

If we neglect the voltage dependence of J, then E is
independent of n and the commutation relations
reduce to

as the state vector (2.14a) includes all n states.
Since (5n ) is infinite it follows that there are no
phase fiuctuations.

2. Plasma oscillations: Intermediate
electrostatic effects

If 0cosp»1, then the b„' reduce to Hermite

Gaussians
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b„= 2/n.

o cosP

XHr

'1/4 ' '1/2

2rl

' 1/4
2

0' cosf

respect to inversion through the origin (in n space)
and

I f„(P)& are antisymmetric. If we now turn
on the tunneling interaction, but keep 0.&&1, pair
transfer will split this degeneracy. In particular, us-
ing the

I
P„+—(P) & notation, the energy eigenvalues

are

)&exp[ —n /(2o cosP)'r ],

st —— Eco—sp+truo~(p)(l + —,),

(2.16a)

(2.16b)

eo ————,Eo cos P,1 2

2 —» Ecr cos (I),
2e 1

(2.23a)

(2.23b)

where

2e
cop

—— J cosP

' 1/2

2
"

E) = + )~ Eocos f',2e s

C
2

e2 —— +»Eocos P+. . .Se

(2.23c)

(2.23d)

3. Strong charge fluctuations: Quenching

ofphase order

If tr~~ 1, phase coherence across the tunneling
barrier is seriously disturbed by electrostatic fluc-
tuations. We can best illustrate the physical nature
of this limit by first considering the case or=0,
where Eq. (2.11) reduces to

orb„= b„.(2en)'
(2.18)

The ground-state energy eigenvalue in this limit is
zero and all of the excited states are doubly degen-
erate, i.e., we find the following electrostatic ener-
gies:

is the Josephson plasma frequency. Note, that as
C~ oo, o ~ 00 and Eqs. (2.16) reduce to the tight-
binding limit. Using the virial theorem, we find

(& '&'"=(—,
'

o y)'"&xi+1

so that the rms phase fluctuations decrease as
—1/4

An examination of Eqs. (2.23) reveals the following.
(1) The tunneling interaction splits the doubly de-
generate first excited state to second order in

w+HT=(Hr +HT ) with the asymmetric state lying
below the symmetric one. Note that the pair-
transfer term increases the energy of

I
f&+(P) &, this

feature of the junction's eigenspectrum arising from
level repulsion. As we shall see in Sec. IV, level
repulsion may give rise to surprising thermal
characteristics of the dc supercurrent once these
states are thermally activated. (2) The second excit-
ed state remains doubly degenerate to second order
in Hr, but is split in fourth order by a term of order
(2e /C)(o cosP)". In general, e„+-will be split by a
term of order (2e /C)(crcosg)" +'. (3) As the tun-
neling interaction is further increased in size and
one passes from the strong charge fiuctuations to
the plasmon regime, the following correspondence
can be made between the states

I
11„+-(p)& and the

Hermite Gaussians,
I Pt(P) &,

I
fo+(4) &

I 4o(4) &

(2en )
&n =

2C
n =0, 1,2, . . . .

The ground-state eigenvector
I fo & is given by

(2.19)

(2.20)

(2.24)

and the excited states, denoted by I
g„+-(P) &, are

& 4.' I
n

I fn & =o . (2.22)

We note that the Ig„+(P)& are symmetric with

(P)&= (e 't'I -n&+e'~I n&) . (2.2—1)
2

This particular linear combination arises from the
requirement that the average pair charge imbalance
must be zero, i.e.,

i.e., the antisymmetric (symmetric) states remain
antisymmetric (symmetric). (4) The leading phase-
dependent terms of the energy eigenvalues in the
limit o ~~1 vary as Eo cos P. This has a number
of interesting consequences regarding the phase and
area dependence of the pair current of ultrasmall
Josephson junctions as well as its magnetic and
thermal characteristics. These aspects of the
junction's dynamics are examined in Secs. III and
IV.
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and the m.s number fluctuations are
(2.25)

2
(2.26)

Equation (2.26) implies that the phase is completely
undefined as o decreases in this limit. Despite the
fact that the phase fluctuations are so large, pair
transfer is still possible. This aspect of the
junction s dynamics will be discussed in Sec. IV.

Figure 1 depicts the rms number fluctuations of
the ground state as a function of phase for the
specific cases of (1) 0=500, (2) cr=50, (3) o =5,
and (4) cr= —,. An examination of this figure re-

veals the following.
(1) For large values of o, the rms number fluctua-

tions vary with the pair phase as (cosP)'~, in accor-
dance with Eq. (2.17). Furthermore, near / =0, the
rms number fluctuations decrease as cr '~ as ex-

pected.
(2) As P approaches irl2, the rms number fluc-

tuations rapidly decline to zero indicating that the
junction is approaching a definite number state.
The decline is most noticeable for devices with large
values of o..

(3) For o & 1, the rms number fluctuations rapid-

ly approach a &cosP dependence in accordance
with Eq. (2.28).

To see the consequences of electrostatic fluctua-
tions on the coherence properties of the junction, we

note that to first order in o., the ground-state eigen-
vector is

lfo(4»)&= I0&+-,«e '~l»
+e+'~

l

—1))cosP,

C. Definite-phase representation

(gl pi) =e

Inserting Eq. (2.28) into (2.27), we find

(2.28)

(8
l

n
l

8') =5(8—8') i-
ce

(2.29)

so that, as expected, n~ —i(Bldg) in the definite-

phase representation. For the pair transfer terms,
we require

( 8 la T l
8) =-,' Eg ( 8 ln ) ( &+1

l
8)

n

= —,Ee +-'e5(8 —8') . (2.30)

Thus, the Hamiltonian in the definite-phase repre-
sentation is

28H=- —E cos8,c ae'
(2.31)

where 8 is an operator. The junction wave function
in the definite-phase representation is

Next, we relate this approach of junction dynam-
ics to standard descriptions which are formulated in
the definite-phase representation. We first
transform the various operators that appear in the
junction Hamiltonian from the definite-number to
the definite-phase representation. If the basis vec-
tors in the definite-phase representation are denoted

by l 8), we require (8
l Q l

8') to obtain the opera-
tor Q in the definite phase representation. Thus,
from Eq. (2.7a), we have for n

& 8
l

n
l

8'
& = g n ( 8

l
n ) & n

l

8' &, (2.27)

where

2.8

2.4—

iII (g) (g
l

iP (y)) able+ra(e P)—(2.32)

2.0—

1.6—

(Qp2 +~a

1.2-

To illustrate the role of tI) in this context, we recall
that the b„are the coefficients of the Mathieu func-
tions of order 1. Accordingly, it follows that the
eigenfunctions in the definite-phase representation
are

0.8—

0.4—

0.0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

y / (~/2}

FIG. 1. Phase dependence of the rms number fluc-
tuations at zero temperature for the cases (1) o.=500, (2)
o.=50, (3) o =5, and (4) o.=

2
.

8—
1(i (8)=ce2i,—o cosP

4

even symmetry, l =0, 1,2, . . .
r

8—
fi (8)=se2i, —cr cosP

2

odd symmetry, l =1,2, . . .

(2.33a)

(2.33b)
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where the ce2t(P, q} [se2t(P, q)] are the even [odd]
Mathieu functions of period tr which reduce to
cos21P [sin2lP] in the limit that q~O. From Eqs.
(2.33) it follows that the wave function is centered
at 8=/ and has a width set by (o cosP) '. Note
that as more current is driven through the junction
the wave function broadens in phase space while it
narrows in n space. It is instructive to examine lim-
iting forms of Eqs. (2.33) and to use them to
calculate the rms phase fluctuations,
(5g2)1/2 ((82) y2)i/2

1

where a—:( 2 tr cosP)'/ . Furthermore, the rms

phase fluctuations are

(58 )' =( , t—rcosP) ' (l+ —,)', (2.37)

which increases as more current is driven through
the junction.

9. Strong charge fluctuations: Quenching

ofphase order

If o cosP=O,

1. Tight-binding limit: No electrostatic fluctuations

ft (8)=cosl(8—P),

tbt (8)=sinl(8 —P),

(2.38a)

(2.38b)

As e—+op

ft (8)~5(8—P),

fbi (8)~0,

(2.34a)

(2.34b)

tr /3 if l =0
(58 ) = tr /3+1/21 if l =2,4, . . .

n /3 —1/21 if l = 1,3, . . .

(2.39)

and

(582) I/2 0

2. Plasma oseillations: Intermediate
electrostatic effects

(2.35}

so that the phase is undefined in the sense that
(58 )'/ is on the order of the range over which 8
may vary. The extension to 0 & o cosP « 1 is clear.

Table I summarizes the properties of the
ground-state wave function in the definite-number
and definite-phase representations.

D. The external circuit
If o cosg))1,

mb)(8)~
(n 2 l!)'

Although the discussion above demonstrates that

(b is the average value of the Josephson phase, in the
sense that

—[a(8—P)l /2Xe (2.36} (2.40)

TABLE I. Properties of the ground-state wave function in the definite-number and -phase
representations.

Tight-binding limit Plasma oscillations Strong charge
fluctuations

Wave function in the
definite-number
representation it 0(n) =e'"e

' 1/4

g,(n)= e-'"' ' '
C 't/

!('o(n)=5.,0

Wave function in the
definite-phase
representation $0(8)=&(&—p) !(0(8)=

' 1/2

e
—ta(e —y)] /2

1—a
2

1

2a
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we have not yet shown that P is determined by the
external drive circuit through the Josephson
current-phase relationship. Accordingly, we first
review a model of the external drive circuit which
shows that P is fixed through the relationship

Since the circuit is an external system that drives
the junction, we use a nonequilibrium density-
matrix approach. The density matrix satisfies the
operator equation

In =I($), (2.41)
—le—Plj+pw (2.42)

where Iw is the current driven through the junction
by the external circuit and I(P) is the Josephson
current.

In Ref. 4 we presented a model of the external
drive circuit for a current-biased Josephson junc-
tion. Within this model, we found that the eigen-
value problem reviewed above is unchanged by the
external circuit and that P was fixed by Eq. (2.14).

I

where

A A+ A A+ A+ A
Pw 2~(HT HTP+PHT HT 2HT PHT ) ~

(2.43)

with A set by the current driven through the junc-
tion. Within the definite-number representation,
Eq. (2.42) is

i (2en ) 1 (2en')
2 ( + l» +P++2 + ) +

ir 2g P~»' 2 E(p~, ~' l+P~,—~'+l)
L

—( —,E) &(p,,„—p, l,„ l) . (2.44)

Following the approach taken in the eigenvalue problem, we set

—i(n —n')P
Pnn' e &nn' ~ (2.45)

where o„„is real. Inserting Eq. (2.45) into (2.44), equating real and imaginary parts, yields

i (2en) i (2en')0= —— o„„—, Ecosltl(rr„—,„+o„+2„) +— 0„„2Ecosp(o—„„ i+o„„+,)

and

1 1

( 2 E) '4(rTn, n rrn —l'n I) , 2
' E—(rrn —l, n' on+i, n +rrn, n' 'l n, no1)+—(st'i' n.

(2.46a)

(2.46b)

=2'�( —,E) (2.47)

Setting n =n' in Eq. (2.46b), then multiplying by
and summing over n yields

Iz Jg b„(b„+l b„——
l )n sinP, — (2.48)

where we have used the fact that o„„=b„b„
Rewriting Eq. (2.48) we have

Equation (2.46a) is just the sum of the Schrodinger
equation (2.11) minus its complex conjugate and

therefore contains no new information. However,

Eq. (2.46b) is new and as we shall demonstrate is
the current equation. In particular, we note that

Igr =2e(n ) gr =2e g n(pg )„„

I
A

~

However, the current operator I is defined by

AI:2en = —(HT HT ), —
fi

(2.50)

l 2e
p(8, 8') =——

Pi C g62
—Ecos8 p(8, 8')

i pe2
+—— Ecos8' p(8,8')—

C gg'2

and it is easy to show that (I) is given by the
right-hand side of Eq. (2.49), which proves Eq.
(2.41).

Next, we extract Anderson's model from our Eq.
(2.44). Working in the definite-phase representa-
tion, Eq. (2.44) becomes

Ill ———,Jsing g b„(b„~i+b„ l ) . (2.49) Iw
( 1 e +l(s—ir)

)p( 8 8t)
2e

(2.51)
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Now, if the junction is not driven too far from
equilibrium, i.e., both 8 and 8'«m'/2, Eq. (2.51)
may be written as

2e2 g2
p(8, 8') =—i /iri

BO'
—Icosa

Alp
8 p(8, '8)

2e

2e 2 ()2
+i /A — Ecos—8'

B8'

Pp(n) =b„'e (2.57)

where the b„are given by Eq. (2.16a) and P «m/2.
However, suppose we consider an ultrasmall junc-
tion in which E cosP-2e /C. Then, as seen in Eq.
(2.25), since the state vector consists of only a few
definite-number states, n cannot be treated as a con-
tinuous variable and one should use Eq. (2.44) to
treat the external circuit. It is for this reason that it
is unlikely that the Anderson model of the drive cir-
cuit can be directly applied to ultrasmall Josephson
junction.

8' p(8, 8'),
2e

(2.52) E. Analogy to a rigid rotor in a dc electric field

where cos8=1 —8 l2. However, Eq. (2.52) is
equivalent to

p=(i/A)[H', p],
where, in the definite-phase representation

2e' a' ~wH'=— —E cosO — 9
C &612 2e

=H — 8,AIg

2e

(2.53)

(2.54)

which is just Anderson's phenomenological model
of the external circuit. ' We note that Eqs. (2.53)
and (2.54) are strictly valid only when 8 is small.
Note too, that in this limit cos8=1 —8 /2 so that
Eq. (2.54) is the Hamiltonian of a shifted harmonic
oscillator, i.e., to within a constant

(2.55)

where /=I~/J. The eigenfunctions of (2.55) are
then shifted Hermite Gaussians in agreement with

Eq. (2.36).
Suppose now that we assume Eq. (2.54) is always

valid and let us examine the consequences of such
an assumption. In particular, if we transform H'
back into the definite-number representation, we
find

2I ()g2
pf cosH gt(8)=E—I/i(8) (2.59)

and as noted by Silverman, the solutions of Eq.
(2.59) are the Mathieu functions. Specifically, the
solutions with even symmetry, i.e.,

P(8+ 2' }=g(8), (2.60)

(8)=ceq~($/2, —o), m =0, 1,2, . . .

(2.61)

Recently, Silverman" obtained the exact eigen-
spectrum and eigenfunctions of a two-dimensional
rigid rotor in a dc electric field. These solutions are
formally identical to those that describe the dc
Josephson effect, and there exists an interesting
analogy between these two systems.

For convenience, we first follow Silverman and
recall that the Hamiltonian for a two-dimensional
rigid rotor with moment of inertia I and electric di-
pole moment p in a static uniform electric field fx
(normal to the angular momentum) is

H= —p. f .
2I (2.58)

In the coordinate representation, the Schrodinger
equation is

H'=H —i a
2e Bn

(2.56) where o =pf/(A /2I). Solutions of odd symmetry,
i.e.,

Equation (2.56) implies that n is a continuous vari-
able. Now, for large junctions where
Ecosoc»2e lC, one may treat n as a continuous
variable, which generates the harmonic oscillator
solutions, i.e., Eqs. (2.16). In fact, as expected, one
can show that the eigenfunctions of Eq. (2.56) are

g(8+2ir) = —f(8}, (2.62)

are

(8)=sez~(8/2, —o), m =1,2, . . . . (2.63)

Before making a detailed comparison, we first
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cast the above discussion in a language analogous to
Eqs. (2.4)—(2.11). Let ~M) denote a basis vector
of angular momentum AM. Then, the rotational en-

ergy Htt Lz——!2Ican be written as
In the limit that I—+ oo,

bM ~const,I (2.69)

1. Tight bin-ding limit: No rotational effects

RM
(2.64) independent of M if l =0,2, . . . so that

and the coupling to the electric field is (2.70)

Hg ,pf——y—(~M)(M+1~ + ~M —1)(M
~

)

(HE +—HE ) . (2.65)

A convenient representation for the rotor's eigen-
vector is

~
fi(t) ) = g bM

~

M)e
M

(2.66)

Inserting Eq. (2.66) into the Schrodinger equation,
we obtain

Hence in the coordinate representation the eigen-
function and eigenenergy are

Pt(8) =&(8),

et = pf—
(2.71a)

(2.71b)

In this limit, the rotor is too massive to rotate and
the dipole is aligned parallel to the electric field.
This is entirely analogous to the tight-binding limit
of a Josephson junction in which there are no elec-
trostatic fluctuations and the phase is fixed at 8=/.

slbM= 2I bM ipf(bM+i+bM —1) ~

t I'M t i t t

(2.67)

ce2m
8—

2
, —o cosP

f (p)=
0—se2, —cr cosP

(2.68)

Equation (2.67) is, of course, the indicial equation
for the Mathieu function of argument
tr=pfl(fi l2I), order 1, and is similar to Eq. (2.11)
for a Josephson junction in the limit that p is zero.
More precisely, we can make the following
correspondence: (1) the junction's electrostatic ener-

gy and the rotor's rotational energy are entirely
analogous, (2) the electric-field —dipole interaction
is analogous to the junction's pair transfer term,
and (3) the junction's definite-number basis states

n) are analogous to the rigid rotor's basis states
M ). Note, however, that there is no analog of the

external drive circuit in the rigid-rotor problem as
can be seen by comparing Eqs. (2.10) and (2.66).
This difference can be further appreciated by recal-
ling that in the definite-phase representation the
junction wave functions are

2. Small oscillations: leak rotational effects

l
bM

' 1/2
l

1/2

Ht((2/o)'i M).
X

—M2/~2aXe (2.72a)

(2.72b)

where boa (pf /I )' . In this——limit, the orientation-
al energy is so large compared to the rotational en-

ergy, that the rotor is constrained to carry out small
oscillations of frequency co+ about 8=0. This is
analogous to the plasmon regime of a Josephson
junction in which weak electrostatic effects give rise
to small amplitude plasma oscillations about 8=/
at a frequency co&.

If o &p 1, basis states with very large M will con-
tribute to the eigenvector and M can be treated as a
continuous variable. Approximating

b ~b+ b — bI ~ I
M+1 M —

gM
M+

2 ~My M

we obtain the equation for a harmonic oscillator
with

for even and odd solutions, respectively. A more
detailed understanding can be obtained by examin-
ing a number of useful limits.

3. IVeak coupling lim-it: Quadratic Stark effect

If cr « 1, the molecule will be almost freely rotat-
ing, and the field will induce only a weak quadratic
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Stark effect in the rotor's eigenspectrum. The
ground-state and low-lying level spectrum is given

by, to lowest order in a,

4. Zero fie-ld limit: Free rotations

In the limit that f~0, the eigenvalues reduce to
the free rotational spectrum, i.e.,

1 P
fP/2I

(2.73a) tri M
~M (2.78)

4' 5 pf
2I " A'/2I

(2.73b)

(2.73c)

which is entirely analogous to Eq. (2.19), i.e., the
electrostatic energies s„-. If we choose rotational
states, such that (M) =0, then the eigenvectors

~
it's�) are given by

16% i pf
» " r'/2I (2.73d)

The ground-state eigenvector consists of the M=O
state plus a small mixture of the M =+1 states, i.e.,

~
t/M) = ( ~M)+

~

—M)), (2.79)

which is similar to Eq. (2.21) of a superconducting
tunnel junction in the limit that E—+0. Note that in
the coordinate representation, the eigenfunctions are
given by

~ 1(,)=
~
0)+ (

~
I)+

~

—I ) )+
fi I

(2.74)

cosMg, M =0, 1,2, . . .
1M ) sinM8, M=1,2, . . . (2.80)

Thus, the strong charge fluctuations limit in a,

Josephson junction is forinally equivalent to the
quadratic Stark effect exhibited by a two-
dimensional rotor.

Next, we note that the dc electric field induces an
additional dipole moment pI in the rotor, given by

for even and odd solutions, respectively.
Finally, in Tables II and III we have summarized

this analogy between a Josephson junction and a ro-
tating dipole in an electric field. The quantities

+x„- that appear in Table III are xo 2 x~ 12
5 + 1

pt(f) = — Ei(f) .8
8

In the weak-coupling limit, we find

(2.75)
III. TUNNELING CHARACTERISTICS

OF NORMALIZED CURRENT AMPLITUDES
IN ULTRASMALL JOSEPHSON JUNCTIONS

Po=P~ ~

1

Pi =61&
5

Pi = —6PO ~

(2.76a)

(2.76b)

(2.76c)

(2.76d)

a
et(f) (2.77)

where f=E cosP. Accordingly, in the strong
charge-fluctuation regime, we expect the normal-
ized current amplitudes will exhibit a behavior
analogous to Eqs. (2.76).

Note the sign change exhibited by the higher excit-
ed rotational states. This fetaure of the rotor's
dynamics arises from and reflects its energy-level
structure in the limit that f~0. In the next sec-
tion, we show that the normalized current ampli-
tudes Ai =It/(I sing) are analogous to the induced
dipole moments p~ and are given by

Electrostatic fluctuations will influence the pair-
transfer characteristics of different junction states
in different ways. In particular, on physical
grounds we expect that phase coherence in the
higher excited states will be more seriously distorted
by electrostatic fluctuations than the ground state.
Accordingly, in this section, we examine the pair-
transfer characteristics of the individual junction
states. In Sec. III A we prove that the pair current
associated with the state ~ft) can be extracted
from the energy eigenvalues via the relationship

It($)= et(4 ),2e c)
(3.1)

which is then used to obtain analytic expressions for
the current matrix elements in the tight-binding,
plasmon, and strong charge-fluctuation limits. We
also examine the transition from one regime to
another by plotting the variation of the normalized
current amplitudes, At(P), defined by
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TABLE II. Analogy of a Josephson junction to a two-dimensional rotor.

Property

Basis vector
Kinetic energy

Potential energy

Eigenvector
~

)I(()

Josephson junction

)n)
electrostatic

(2en )

2C
tunneling interaction

—(a, +H )

—E cos8

gb' '"s
~

n-&

Rotating dipole

rotational
M
2I

dipole-field coupling

—P

pf co—s8

gbsr ~M)

Eigenfunctions t[((8)

Induced moment

8—cep(, rJ cos([)—
2

8—se2(, ct co—sp
2

B&t
AI ———

c}

8
ce2t —,—0'2'

8
se2t —,—02'

pt=—

(3.2)

as the electrostatic parameter o cos(() varies. In Sec.
III8 we examine the phase dependence of these am-

plitudes, while in Secs. IIIC and IIID we discuss
their scaling and magnetic field characteristics. Fi-
nally, in Sec. IIIE we discuss the thermal charac-
teristics of the normalized current amplitudes.

TABLE III. Analogy of a Josephson junction to a two-dimensional rotor: Behavior in specific regimes.

Regime

Tight-binding limit
0'—+ 00

P(8)

Small oscillations
0.&g1

f((8)

frequency

Josephson junction

no electrostatic effects
C~ (x)

5(8—()) )Ecos(I)—

o cos())

2

E cosP +firn~(l + l /2)
' 1/2

J cos())

plasma oscillations
E cos()) »2e /C

' 1/2

(8 y ) e
—(()—(()) [(icos/)/2] /2

Rotating dipole

no rotational effect
I~ oo

5(8)

rotational oscillations

pf »A /2I

((~y2)1/28) —(n/2) 8 /2

pf +~s()+ ,)——
(pf/I)' '

Weak coupling

+

strong charge fluctuations
E cos([) «2e~/C

(2en) +
2C

x„Eocos P—-
quadratic Stark effect

pf «R2/2I

2I

Zero-coupling limit
0=0
t[;+(8)

&n
+

Non-Josephson junction
E=0

cosn(8 —(l)) even solutions
sinn (8—P) odd solutions

(2en)
2C

free rotor
f=0

cosn8 even solutions
sinn 8 odd solutions

(fin)
2I
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A. Anomalous dependence of normalized
current amplitudes on tr cosP

tions' . The eigenenergies and pair-current matrix
elements (including the lowest-order anharmonic
contribution) are given by

To prove Eq. (3.1), we multiply the indicial equa-
tion (2.11)by b„', sum over n, and invoke normaliza-
tion to obtain

'

(2en) bt2

2
c.t(P) = E—cosg 1—

cr cosP

1/2

(3.7a)

, E co—sPg b„'(b„'+) +b„' ) ) . (3.3)
1i+ —,

It(P)=J 1—
~&2

sing .
(1/2o cosP )'~

(3.7b)

Differentiating with respect to P and rearranging
terms, we have

,Eg b„—(b„'+~ +b„'+
~ )sing

r

+ ~btI (2en)
+„ay c

—E cosP(bt'v+)+b„' ) )

(3.4)

The second term on the right-hand side of Eq. (3.4)
is just

Note that electrostatic fluctuations suppress the
magnitude of the current matrix elements in the
upper states to a greater degree than the lower states
as expected. Note, too, that the leading anharmonic
contribution to the junction energy is of order 1/o;
however, this term is independent of P (in fact it de-
pends only on the junction capacitance) and hence
does not modify the pair current. It follows then
that the leading anharmonic contribution to the
pair-current matrix will be of order o

3. Strong charge fluctuations: Quenching

ofphase order

Using Eqs. (3.1) and (2.23) we find to first order
ino

which is zero. 'This leaves

2e 8
st ———,Jg b„(b„+~+b„~ )sinII1, (3.5)

n

which by Eq. (2.45) is the pair current. Next, we
examine the pair-current matrix elements in a num-
ber of limits.

1. Tight binding 1i-tnit: No eiectrostatic effects

In the tight-binding limit, the energy eigenvalues
are given by Eq. (2.18b) so that

It=Jsing, l =0,2,4, . . . . (3 6)

Equation (3.6) is just a reflection of the fact that in
the tight-binding limit there are no phase fluctua-
tions and the pair current is not reduced by electro-
static fluctuations.

2. Plasma oscillations: Intermediate
electrostatic effects

As noted in Sec. II, if o cosg&y1, electrostatic
fluctuations manifest themselves as plasma oscilla-

Io(P) = —,Jo sin2$,

I& (P)= —,Jo.sin2$,

I&+ (P ) = ——„Josin2$,

Ij(P ) = ——„Jo. sin2$ .

(3.8a)

(3.8b)

(3.8c)

(3.8d)

An examination of Eqs. (3.8) reveals that the vari-

ous current matrix elements depend on the Joseph-
son phase as sin2$ instead of sing. Since their mag-
nitudes are proportional to Jo.~J C they scale with

junction area as S . Furthermore, in this limit the
current matrix elements vary with temperature as
J ( T) instead of J ( T).

Table IV summarizes the tunneling characteris-
tics of the normalized current amplitudes in the
tight-binding, plasmon, and strong-charge Auctua-
tion regimes. In the tight-binding limit, there are
no electrostatic effects, and the normalized current
amplitudes are all equal to unity. If the electrostat-
ic parameter is large, but finite, the junction is in
the plasmon regime and the normalized current am-

plitudes are all less than unity. Furthermore, an ex-
amination of Table IV reveals that the AI all exhibit
an anomalous phase dependence, as well as modi-
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TABLE IV. Anomalous tunneling characteristics of the normalized current amplitudes.

Property

Magnitude

Scaling characteristics

Magnetic field

Thermal characteristics

Tight-binding

limit Plasma osnllations

l+—1

1—
V(a cosP)/2

l+-, S,1—
Y(cosP )/2

1I+ —,
1—

V'[0[(sinkL)/kL]cosg] /2
l+ —,

I

1—
V'[of(T)cosg]/2

Strong charge

Fluctuations

ox„-cosP+

S
sc

sinkL
kL

I=Jsin(/+ 58), (3.9)

where 58=—8—p is the phase fluctuations operator.
Since the current in the state

~
1(ti ) is (gi

~

I
~ t'ai ),

we have

fied scaling, magnetic, and thermal characteristics.
This feature of junction dynamics reflects the fact
that plasma oscillations give rise to phase fluctua-
tions that tend to suppress the degree of phase order
between the two superconductors. A particularly
appealing way to discuss this regime is to examine
the pair-current matrix elements in the definite-
phase representation. Thus, in accord with Sec. II C
the current operator can be written as

is strongly suppressed by electrostatic effects. In
this regime, the normalized current matrix elements
vary with phase as cosp and scale with junction
areas as (S/Sc ), with magnetic field as
(sinkL/kL) and with temperature as f(T). Fur-
thermore, the sign of the Ai of the second and
higher excited states is opposite to that of the
ground and first excited states. This feature of the
junction's dynamics can be understood by recalling
the analogy between a Josephson junction and a ro-
tating dipole in a dc electric field. In particular, the
pair currents are analogous to the induced dipole
moment. This statement is underscored by rewrit-
ing Eq. (3.1) as

Ai ——1 —, ( gi )
58

( @i—), (3.10) a
Ei(f), (3.11)

where we have used the fact that the wave functions
have definite symmetry with respect to 58 in accord
with Eq. (2.36) and we are considering only har-
monic effects. Application of Eq. (2.37) yields Eq.
(3.7b), and it follows that the amplitude of the plas-
ma oscillations sets the size of the phase fluctua-
tions. In particular, any increase in the magnitude
of these oscillations further suppresses the pair
current. This can be done by either exciting the
junction to higher states or "loosening the spring"
by decreasing the critical current or the capacitance.
An examination of Eqs. (2.37) and (3.7b) reveals
that the magnitude of the phase fluctuations in-
crease and the pair current decreases with increas-
ing l or decreasing 0. in accord with the discussion
above. Furthermore, the scaling, magnetic, and
thermal characteristics of the device deviate more
sharply from the ideal tight-binding limit as these
tendencies are enhanced. If the electrostatic param-
eter is further decreased, until o cosp && 1, the junc-
tion enters the strong-charge fluctuation regime in
which phase order between the two superconductors

PI=—a
Ei(f) . (3.12)

Next, we note that for any system where the level
separation increases with excitation, the induced di-
pole moment is positive for the ground state and
negative for all the excited states provided that the
matrix elements are all of the same order of magni-
tude. For the present case the ground state is the
lowest level of the symmetric tower of states, and
the first excited state is the lowest level of the asym-
metric tower of states. As the junction becomes
partially phase disordered, these towers gradually
take on the character of rotational excitations, and
the current matrix elements become negative for all
excited states, just as it occurs for the induced di-
poles in the quadratic Stark effect.

Figure 2 depicts the dependence of the normal-

where the effective electric field f

=Ecosoc.

Equa-
tion (3.11) should be contrasted with the equation
for an induced dipole moment, pi(f), for a molecule
in an electric field:
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FIG. 3. Phase dependence of the ground-state nor-
malized current amplitude at zero temperature for the
cases (1) a=500, (2) 0=50, (3) a=5, and (4) cr= —.

FIG. 2. Dependence of the ground- and first three
excited-state normalized current amplitudes on o cosP.

ized current amplitudes on the electrostatic parame-
ter o cosP at zero temperature. An examination of
this figure reveals the following:

(1) For large values of o cosP, the amplitudes

vary smoothly with the electrostatic parameter, the
ground state varying the slowest and being the larg-
est in accord with Eq. (3.7b).

(2) For S &crcosp & 10, the excited junction state
current amplitudes exhibit a much more sensitive
dependence on the electrostatic parameter. In par-
ticular, A3 &0 for o cosP=S. Note, however, that
the ground-state amplitude still varies only weakly
with o cosP.

(3) As cr cosP continues to decrease, the various
current amplitudes exhibit novel behavior. For ex-

ample, the 1=2 amplitude switches sign and then
becomes very large and negative in the vicinity of
crcos$=2 In thi.s same regime, the ground-state
amplitude decreases rapidly with o cosP, and cross-
ing occurs between A2 and A3 in the vicinity of
cr cos$=3

(4) For o cosg&1, all of the amplitudes vary
linearly with o cosP in accordance with Eqs. (3.8).

tude depends only weakly on P, showing significant
phase dependence only in the immediate vicinity of
P=ir/2. As o decreases, the range of values of P in
which Ac varies significantly increases.

(2) As o continues to decrease, the pair-current
amplitude decreases in size and exhibits a stronger
phase dependence for even small values of P.

(3) For o = —,, Ac approaches the limiting phase
dependence of cosP.

Figure 4 depicts the phase dependence of the nor-
malized current amplitudes associated with the
ground and first three excited junction states for the

5
case o = —,. Examination of this figure reveals that
the ground-state amplitude depends only weakly on
the Josephson phase for P & rr/4, varying by about

0.8-

0.6—

0.4—

0.2—
Ag

B. Phase dependence of normalized
current amplitudes

0.0

—0.2—

0.2 0.4

0=2

0.5 0.8- 1.0
alt. /»

Figure 3 depicts the phase dependence of the
ground-state current amplitude for the cases (1)

1

o=SOO, (2) o=SO, (3) rr=S, and (4) o= —,. Note
the following:

(1) For large values of o, the ground-state ampli-

—0.4—

FIG. 4. Phase dependence of the ground- and first
three excited-state normalized current amplitudes at
zero temperature.
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3%. The first excited-state current amplitude de-

pends more sensitively on the Josephson phase,
varying by about 1 l%%uo, in good agreement with Eq.
(3.7b). Furthermore, the second and third excited-
state current amplitudes vary by 23% and 42%%uo,

respectively, in this range. Beyond P=m. /4, all of
the current amplitudes exhibits a sharper phase
dependence. For example, the ground-state current
amplitude displays very sensitive phase behavior
once P exceeds 86.5', and the first excited state de-
creases rapidly for P beyond 78.5'. Furthermore, 2 q

and A3 fall below zero, i.e., the pair currents associ-
ated with these states flow in the opposite direction,
for P beyond 81' and 77', respectively.

C. Scaling characteristics of normalized
current amplitudes

Q=O

0.8
9 = 2

Figure 5 depicts the scaling characteristics of the
normalized current amplitudes for a junction with

Sc——0.316)&10 pm . For such a device,
acosg=10 when S=10 pm. An examination
of this figure reveals the following.

(1) For S»Sc, the ground-state current ampli-
tude varies only weakly with S in accordance with
Table IV. Note, however, that the higher excited-
state normalized current amplitudes exhibit a more
sensitive area dependence due to their large ampli-
tude plasma oscillations.

(2) As S decreases, the various different normal-
ized current amplitudes exhibit a stronger area
dependence. For example, for S-3Sc,A3 switches
sign as does A2 for S-2.5Sc. Note that A2 reaches

D. Magnetic field characteristics
of normalized current amplitudes

In the presence of a dc magnetic field H, the tun-

neling matrix element is decreased via

E E, E sinkl

kL
(3.13)

where L is the junction width, k =2e (2A,I.
+ t)H/Pic with A,L, the London penetration depth,

and we have assumed identical superconductors for
convenience.

As a consequence of Eq. (3.13)

sinkLcryo(kL) =o—.
kL

(3.14)

and as kL varies from zero to n; the junction can
pass from the plasm on to the strong-charge-
fluctuation regimes, with marked changes in the
dependence of the At on applied magnetic field.

Figure 6 depicts the anomalous magnetic field
dependence of the normalized current amplitudes of
the ground and first two excited states for a junc-
tion with o cos$=5. For small values of kL, the
ground-state current amplitude varies only weakly
with magnetic field until kL=m/2, at which point
it displays a much more sensitive dependence on the

0.9—

a relatively large negative value in the vicinity of
2Sc.

(3) For S &2SC, the ground-state current ampli-
tude decreases very rapidly with decreasing junction
area.

(4) Finally, for S &Sc, the various current ampli-
tudes scale as S in accord with Table IV.

0.6 0=3.~'
0.7
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0.2
0.3
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0.0, ~0.5 I 1.
l
I—0.2— I

I
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FIG. 5. Scaling characteristics of the ground- and
first three-excited state normalized current amplitudes
for a junction with S~——4.5~10 pm .

0.0 0.6 1.2 1.8 2.4 3.0 3.6 4.2 4.8
(kL/n)

FIG. 6. Anomalous magnetic field characteristics of
the ground and first three excited states for a junction
with o costI)=5.
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amount of flux penetrating the junction. Note the
very strong field dependence for 0.9~&kL & l. lm.

Beyond the first lobe in the diffraction pattern, Ao
displays a field dependence that approaches
(sinkL/kL), i.e., the fourth and fifth lobes. Note
that the first excited state, which initially assumes
the value of A i -0.54, rapidly decreases for
kL &A/2 . Be.yond the first lobe, electrostatic ef-
fects become so large that they virtually quench the
pair current in this state. The second excited junc-
tion state is particularly interesting since it assumes
an initial value of A2-0. 18 at kL=O. Thus, even
for small increases in kL, electrostatic fluctuations
are greatly enhanced, and phase order is significant-

ly suppressed in this state.

E. Thermal characteristics of normalized
current amplitudes

At finite temperatures, quasiparticle excitations
block the pair-transfer process, and this gives rise to
a temperature-dependent tunneling matrix element
E(T). For identical superconductors

1.0

0.8—

0.4—

Aq 02- |) =2

p.p 0 = 3

—0.2-

—0.4—

p6 i I I I I I I I I

0.0 O. l 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
/Tc

FIG. 7. Anomalous thermal dependence of the

ground and first three excited states for a junction with

0 cosg= 5.

at T/Tc 0.9. Be——yond this point, it approaches 0
linearly for 1 T/Tc &—0.05. This particular
behavior is a reflection of the fact that the higher
excited states are more strongly perturbed by elec-
trostatic effects than the lower ones.

E(T)=E(0) tanh —=E(0)f(T),6(0) kT

(3.15)

so that as T~TC, the critical current amplitude as
well as the electrostatic parameter decrease in ac-
cordance with Eq. (3.15). Below, we discuss the
thermal characteristics of the normalized current
amplitudes.

Figure 7 depicts the temperature dependence of
the normalized current amplitude for the case
crcos$=5 Thus, .as T varies from 0 to Tc, the
electrostatic parameter varies from 5 to 0, and the
junction passes from the plasmon to the strong-
charge-fluctuation regime. An examination of this
figure reveals that Ao is virtually independent of
temperature, until T/Tc 0.8; for higher ——tempera-
tures, the ground-state current amplitude varies
much more sensitively with T/Tc approaching the
limiting functional dependence of Table IV when
1 —T/T&-0.01. The first excited-state normalized
current amplitude exhibits a similar behavior, ex-
cept that it shows appreciable temperature depen-
dence once T/Tc 0.7. The second ——excited-state
normalized current amplitude is almost independent
of temperature for T/Tz &0.4. It then decreases
fairly rapidly with increasing T/Tc and is 0 for
T/Tc 0.6. At higher temp——eratures, A2 rapidly be-
comes negative, achieving a minimum value of 0.44

IV. TUNNELING CHARACTERISTICS
OF THE dc SUPERCURRENT IN ULTRA-

SMALL JOSEPHSON JUNCTIONS

Z
(4.1)

where

EilkT—
I

is the partition function, we anticipate that the
junction will exhibit very novel behavior at finite
temperature. In particular, we find that the super-

In this section, we examine the influence of elec-

trostatic fluctuations on the dc supercurrent when

the junction is current based on the zero-voltage dc
step. %e are particularly concerned with the
behavior of the supercurrent when the junction
passes from plasmon regime to the strong-charge-
fluctuation regime as the electrostatic parameter 0.

is varied. Accordingly, we examine the tunneling
characteristics of the junction for vaules of 0. rang-

ing from 500 down to —,. We note that this corre-

sponds to scaling the device size down from
S=22.36Sc to S=0.71S~ and renders a fairly com-

plete picture of the pair current's properties. '3

Since the total supercurrent I is given by
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current is a much more sensitive function of tem-
perature in ultrasmall junctions than in larger ones.
This feature of ultrasmall devices arises for three
reasons.

(1) As T/Tc increases, the electrostatic parame-
ter o(T)=cr(0)f (T) decreases, and this can qualita-
tively effect the supercurrent's tunneling charac-
teristics, especially as the junction passes from the
plasmon regime to the strong-charge-fluctuation re-
gime.

(2) The pair-current matrix elements are, for ul-

trasm all junctions, nonlinear functions of the
temperature-dependent critical current amplitude,
J(T)=J(0)f(T).

(3) Further, as T/Tc increases, thermal activa-
tion of the excited junction states may also occur.
Since the pair-current matrix elements of the higher
excited junction states have the opposite sign of the
lower ones, activation of these states can lead to an
additional suppression of the supercurrent.

In Sec. IV A we examine and contrast the tunnel-

ing characteristics of the dc supercurrent in the
tight-binding, plasm on, and strong-charge-
fluctuation regimes. This provides a description of
the limiting behavior of the device and serves as a
convenient framework for the remainder of Sec. IV,
where we discuss the phase dependence, scaling,
magnetic, and thermal characteristics of the junc-
tion for arbitrary values of 0.. In Sec. IV 8 we dis-
cuss the phase dependence of the dc supercurrent as
it undergoes the transition from the plasmon to the
strong-charge-fluctuation regime. In Secs. IV C and
IVD we examine the anomalous scaling and mag-
netic field dependence of ultrasmall junctions. Fi-
nally, in Sec. IVE we discuss the thermal charac-
teristics of ultrasmall Josephson junctions. Of par-
ticular interest is the effect of thermal activation of
the excited junction states on the tunneling charac-
teristics of the dc supercurrent.

I=Jsing,

2. Plasma oscillations: Intermediate
electrostatic effects

Using Eqs. (3.7) and (4.1) and ignoring anhar-
monic terms, we find

coth(trito& /2k T)
I($)=Jsing 1—

(o cosP)/2
(4.2)

If kT ((Picots,

I($)=Jsing 1— 1

v'(o cosP )/2
(4 3)

in this limit the pair current peaks at

—O. 2cosy = —,o.-" (4.4)

and achieves a value of

and the supercurrent does not exhibit any
anomalous behavior. In particular, the pair current
peaks at P =ir/2 and scales linearly with the device
area. In the presence of a dc magnetic field, the su-
percurrent exhibits the well-known (sinkL /kL) dif-
fraction pattern and, as shown in Table IV, varies
with temperature as f(T), vanishing as T —Tc as

+Tc

I=J(1——,o ") . (4.5)
A. Tunneling characteristics of the dc

supercurrent in limiting regimes

Table V summarizes the tunneling characteristics
of the dc supercurrent in the tight-binding,
plasm on, and strong-charge-fluctuation regimes.
The quantity Jc=J(SC/S).

I Tight binding li.mit: No ele-ctrostatic effects

Since there are no electrostatic effects in this lim-

Thus for o =500, the current peaks at /=81.7' and
is equal to 0.948J, i.e., plasma oscillations reduce
the current by about 5%. An examination of Table
IV reveals that the pair current does not scale
linearly with area but is quenched by a size-
dependent factor 1 ——,(Sc/S) ' due to zero-point

plasma oscillations. The magnetic and thermal
characteristics of the junction are also altered by
zero-point plasmon effects as shown in Table IV.
Note, however, that if an applied magnetic field is
tuned so that
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TABLE V. Tunneling characteristics of the pair current.

Property

Tight-binding

limit Plasma oscillations Strong charge

Current-phase relationship

Ground state

Thermal activation

Phase at maximum current

Ground state

Thermal activation

J sin((

J sing

n/2

11— sing
V(0 cosP )/2

kT1— singE cosP

cosP= (r —0'—0.2

' 1/3
kT

cosP =

sin2$

sin2$

m/4

m/4

Maximum current

Ground state

Thermal activation

J( 1 ~—0.4)
' 1/3

3 kT
2 E

1—Jo.
2

—JoR (T)

Diffraction pattern

Ground state

Thermal activation

sinkL
kL

sinkL
kL

sinkL
1

5/8
kL (cr sinkL /kL)

' 1/3
sinkL

1
3 kT sinkL

kL 2 E kL

' —1/3

sinkL
kL

sinkL
kL

'2

Scaling characteristics

Ground state
S
Sc

L

S
Sc

5 Sc
1 ——

8 S

' 0.8 '3
S

C
C

Thermal activation

Thermal characteristics: T~Tc

Ground state

S
Sc

Jc S
C

1/3
' 1/3 '

1— kT Sc
E(0) S

1— 5/8o
[(&—T!Tc)P'

3
S
SC

Thermal activation

t' ' 1/3
T I 3 T/Tc

I — ' 1 ——
Tc

TT
1 — R (T)

1 —T/Tc Tc

sinkL 3.24
kL — e

(4.6) In the opposite limit, i.e., kT &pkcoz, the current
phase relationship is

the junction is no longer in the plasma regime and
the system is entering the strong-charge-fluctuation
regime. Similarly, once (T —Tz)/Tc (3.24lcr(0)
the device is no longer in the plasma regime and its
scaling characteristics deviates significantly from
Table V.

I =Jsing l— kT
E cos

In this limit, the pair current peaks at

(4 7)
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kT
cosP=

' 1/3

(4.8)

temperatures. At zero temperature

I(P)=
2 Jo sin2$, (4.12)

and achieves a value of

' 1/3

I J 1 ——3 kT
(4.9)

An examination of Table V reveals that the scal-
ing, magnetic, and thermal characteristics of the
junction also deviate considerably from the ideal
tight-binding limits. In particular, the maximum
current does not scale linearly with junction area,
but rather deviates by a factor of 1 —a(Sc/S)'/,
where a —= 1.5[2(kT/Afc)e]'/ . Similarly, in the
presence of a dc magnetic field, its diffraction pat-
tern departs from the (sinkL)/kL behavior

by a factor of 1 b(kL /s—inkL) '/ where
b = , (kT/E)'—/ . Note that once the magnetic field

is tuned so that

I=—pe ' It($) .
1 =0

(4.13)

Now, if 2e /C »E cosP, to first order in o.

I„=J ox„+--sin2$ (4.14)

and to the same order, we find for the total current

which approaches a maximum value at P =a/4, be-

ing I=—,Jcr. Thus, a junction with +=0.1 has a
maximum current of 0.05J, and for a device with
C=10 ' F, 0.=0.1, J=1.64)(10 A, the max-
imum current will be 8 nA.

At finite temperature, one has

sinkL 27k T
kL E

(4.10)

the magnetic field characteristics of the super-
current will depart significantly from Table V as
the device mill no longer be in the plasmon regime.
Finally, when the plasma modes are thermally ac-
tivated, the pair current scales with temperatures as
f(T),

+ —2e2n2/kTC ~ — —2e2n2/k~C
Xn e +~xn e

n=0 n=1jo sin2$

1+2g e 2e n /kTc—

n=1

—:—,Jcrf ( T)R ( T)sin2$ . (4.15)

1/3

f—1/3( T)
2 E(0)

Thus, the current is still a maximum at P =tr/4 and
is given by

so long as I= ,Jof (T)R(T), — (4.16)

Tc 1
8Tc 1+ „E/kTc— (4.11) the precise value depending sensitively upon the ra-

tio (2e /C)/kT.

If T exceeds this value the device will no longer be
in the plasmon regime, and its behavior will deviate
considerably from Table V.

3. Strong charge fiuctuations: Quenching
ofphase order

In this limit, there does not appear to be any sim-
ple relationships for the total supercurrent at finite

B. Anomalous phase dependence
of the dc supercurrent

Figure 8 depicts the phase dependence of the dc
supercurrent for the cases (1) o =500, (2) tr= 50, (3)
o.=5, and (4) o =0.5 at zero temperature. Over this
range of values the junction makes the transition
from the plasmon regime to the strong-charge-
fluctuation regime. An examination of this figure
reveals the following:
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FIG. 8. Phase dependence of the supercurrent at zero
temperature for the cases (1) o.=500, (2) o=50, (3)
o=5, and (4) o.=—.1

2'

FIG. 9. Anomalous scaling characteristics of I/J at
zero temperature for the cases (1) S~——0.64X10 pm2,
(2) S~——0.9)&10 pm, and (3) S~——1.27)&10 pm
with the junction biased at maximum current.

(1) For o » 1, the current varies almost
sinusoidally with phase until it nears the maximum,
at which point it departs from the ideal behavior
rather rapidly. Beyond the maximum, the current
decreases rapidly with increasing P.

(2) As o declines, so does the value of the pair
phase for which I is a maximum. As o~0 this

1

maximum approaches m. /4. For example, at 0.= —,,
the pair current peaks at /=54'.

Sc(T)=Sc(0)f (T) (4.17)

tude varies as S, in accord with Table V.
Figure 10 depicts the scaling characteristics of

the normalized current amplitude for a junction
with J=8.8 (at T =0 K), 1/s= 1, and Tc =10 K
for the specific cases of (1) T/Tc 0, (2)——
T/Tc=0 5 (3) T/Tc=0 75 (4) T/Tc=0. 9, and

(5) T/Tc 0.95. Note——that

C. Anomalous scaling characteristics
of the dc supercurrent

Figure 9 depicts the maximum value of the nor-
malized current amplitude, i.e., I/J, at zero tem-

perature for the specific cases of (1)
Sc—0.64&&1 0 pm, (2) Sc—0.9&&10 pm, and
(3) Sc——1.27X10 p, m . An examination of this
figure reveals the following:

(1) For S»Sc, the normalized current increases
almost linearly with increasing S, in accord with
Table V, which asserts that zero-point plasma oscil-
lations will introduce a factor of 1 ——,(Sc/S) '

in the supercurrent.
(2) For S-Sc, the normalized current exhibits an

anomalous scaling behavior since the junction is ap-
proaching the strong-charge-fluctuation regime.
Note that as Sc increases, this behavior tends to
flatten out.

(3) For S&&Sc, the normalized current ampli-

so that as T/Tc increases so does Sc(T). Accord-
ingly, we anticipate that as T/Tc increases, the
area dependance of the normalized current will tend
to flatten out, provided the excited states are not
thermally activated. For S =3)(10 ' m,
junction capacitance C=2.7)(10 ' F and
creases as S~O. For these parameters, the junction
is always in the ground state and the scaling charac-
teristics of the device tend to flatten out as
T/TC~1

D. Anomalous magnetic field characteristics
of the dc supercurrent

As noted in Sec. III, in the presence of a dc mag-
netic field

o~o(kL)=o.sinks
kL,
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FIG. 12. Excitation spectrum, normalized to 2e'/C,

as a function of o cosP.

become anharmonic, although the lower ones are
still reasonably well described via the harmonic os-
cillator approximation.

(3) As o cosP decreases even further, the higher
excited states become doubly degenerate. For exam-

ple, the fifth and sixth excited states are degenerate
when o cosP & 15, the third and fourth states when
o cos$=5.

(4) As cr cosP +0, th—e levels approach an electro-
static excitation spectrum.

Below we present numerical results regarding the
thermal characteristics of the dc supercurrent and
discuss them in reference to Table V.

FIG. 13. Temperature dependence of the normalized
current amplitude for the cases (1) o =500, (2) can=50,
(3) 0=5, and (4} 0 =

2
for a junction with T~ ——10 K

and a critical current density of 8.8& 10 A/m .

current falls very rapidly since within this tempera-
ture range the junction leaves the plasmon regime
and enters the strong-charge-fiuctuation regime.

1

(3) For o = —,, the normalized current decreases
linearly with T for T/Tc) 0.8 in agreement with
the limiting behavior depicted in Table V.

Figure 14 depicts the actual temperature depen-
dence of the pair current, i.e., I(T)/J(0), for the
same values of the junction parameters.

Thermal actioation of the excited junction states

1. Ground state effec-ts

Figure 13 depicts the temperature dependence of
the normalized current, A(T)=I(T)/J(T), for a
junction biased at maximum current with T~ ——10
K, j=8.8, and t/e= 1. The cases (1) cr=500, (2)
o=50, (3) o=5, and (4) o= —, are considered. For
these values, the junction remains in the ground
state even for T very close to Tc. An examination
of this figure reveals the following.

(1) For large values of tr, the normalized current
amplitude is virtually independent of temperature
except for a narrow range ET=Tc—T in the im-
rnediate vicinity of the transition temperature.
Thus, for 0.=500, AT/T&-0. 03; for cr =50,
hT/Tc 0.05; however, for tr=5, b, T/Tc-0. 15
and for o = —,, hT/Tc 0.35.

(2) Once T falls within this range, A (T)~0 as
T—+T&. For large values of o, the normalized

~e first note that the excitation energy to the
first excited state can be written as

1.0

0.9- G = 50.

0.8—

0 7 o = 5 0

0.6—

l(T) / J(0) 0.5—

0.4—

0.3—
o =0.5

0.2—

0.1—

00 I i

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
T/TC

FIG. 14. Temperature dependence of the super-
current as in Fig. 13.
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A. Noise current

The mean-square current (It ) associated with
the 1th junction state is given by

(It ) = ,J gb„[b—„,(b„+2+b„—2—)cos2$], (5.1)

so that the total noise current (5I ) is

(SI2)=—ge " (I') —I'
I

(5.2)

Below we present analytic and numerical results re-
garding the rms noise current, (5I ) '/ .

I Tight binding .lim-it: No electrostatic effects

(fp ~

I
~ Qp) is of order Jcr in the strong-charge-

fluctuation regime, (fp
~

I
~

tt1p)' is of order J.
Consequently, the signal-to-noise ratio is of order
0. && 1, although this does not necessarily imply that
pair currents in the strong-charge-fluctuation re-
gime are unobservable. In particular, we find that
the spectrum of current fluctuations are peaked at
frequencies in the vicinity of 2e /AC, and this
feature of junction dynamics can be exploited to
probe the physics of the strong-charge-fluctuation
regime.

We also examine voltage fluctuations when the
junction is biased on the zero-voltage dc current
step. Among other things, we find that the noise
voltage peaks in the vicinity of S-Sc, dropping to
0 as S~00 and S—+0 provided that the excited
states are not thermally activated. We have also ex-
amined the spectrum of voltage fluctuations and
find that in the strong-charge-fluctuation regime it
is dominated by high-frequency components that
peak in the vicinity of 2e /A'C.

In Sec. V A we examine the tunneling characteris-
tics of the noise current and in Sec. VB we discuss
the properties of the current-fluctuation spectrum.
In Sec. VC we consider the rms noise voltage
(5V2)'/2, and in Sec. VD we examine the proper-
ties of the voltage-fluctuation spectrum.

2. Plasma oscillations: Intermediate
electrostatic effects

(~I2)1/2 Jcosp
(2tr COSTI) )

/

S/N =(2o cos1I))'/ tang .

(5.6a)

(5.6b)

If the junction is biased at maximum current the
rms noise current and the signal-to-noise ratio scale
as

(5I ) = Jc(S/Sc) '

S/N=2(S/Sc) '

(5.7a)

(5.7b)

so that for S»Sc, the signal-to-noise ratio scales
almost linearly with junction area. Furthermore,
the thermal characteristics of the rms noise current
and the signal-to-noise ratio in this limit are

( f)I2 ) 1/2 (bI2 ) 1/2f P.6( T)

(S/N)T=(S/N)pf ' (T),

(5.8a)

(5.8b)

provided that the excited states are not thermally
activated.

If kT»icos, thermal excitation of the plasma
oscillations dominates the noise characteristics of
the junction and

In this regime, n may be treated as a continuous
variable, and with the use of the virial theorem, Eq.
(5.1) can be written as

2(It') =J2»n2y+ ( +-,') .
(a cos /2

The second term in Eq. (5.4) arises from plasma
oscillations. Summing Eq. (5.4) over all plasmon
states and subtracting (I ), we find the rms noise
current to order a

1/2
coth (fuss /AT)

(5I ) '/ =J&cos2$
2 2o cosP

(5.5)

If 1rtcos »kT, the current fluctuations arise primari-

ly from zero-point plasma oscillations, the rms
noise current, and signal-to-noise ratio S/N, being
given by

In the tight-binding limit, the probability ampli-
tudes are independent of n, so that

(5I )' =Jcosg
E cos

(5.9a)

(5I ) = —,J (1—cos2$) —J sin /=0. (5.3)
' 1/2

S Ecos
tang .

N kT (5.9b)

Thus, as expected, ihe rms noise current is zero in
the tight-binding limit. If the junction is biased at maximum supercurrent
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(5I ) =Jc kT

S/6-
S arc/2e
N kT

'5/6 ' '1/6
S
sc

' 5/6
S

Sc

, (5.1Oa)

(5.10b)

Finally, the detailed temperature dependence is

812) iy2 J(0) fits(T)(kT)5g6 (5 1 la)[E(0)]'"

),
5/6

S E(0) f5'(T
N T kT

and in the limit that T/Tc~ 1,

(5.11b)

the rms noise current and the signal-to-noise ratio
scale as

4.8—

4.4—

4.0—

3.6
3.2—

2.8—
S/N

2.0—
1.6—

102

0.8—

0.4—

0.0
0.0 0.4 Oe8 1e2 1~6 2 0 K4 2e8

S(10 pm }

FIG. 17. Scaling characteristics of the signal-to-noise
ratio at zero temperature for (1) S,=0.64)&10 p
(2) Sp ——0.9)(10 pm, and (3) Sp ——1.27)(10 2 pm'.

(5I } (1—T/Tc)

S/N~(1 T/Tc) —i
(5.12a)

(5.12b)

3. Strong charge fluctuations: Quencntng

ofphase order

In the strong-charge-fluctuation regime,

b„b,+2 &o1 1

so that to zero order in o && 1, we have

(5.13)

(5.14)

It follows that the rms current noise and signal-to-
noise ratio are

below unity once S/Sc & —,. For S S/N
sca es as1 s (S/S ), whereas for S«Sc, the

S 2signa-i nal-to-noise ratio clearly scales as (S/Sc
Figure 18 depicts the temperature dependence o

the signal-to-noise ratio for a junction with j=8.8,
I/q=i, and (1) o=500, (2) o =50, (3) o=5, and (4)
o =1/2. For these parameters the excited states are
not substantially activated so that the junction is
primarily in the ground state. Note that near Tc,
S/N scales roughly as +1—T/Tc in accord wit

Eq. (5.8b), whereas below Tc/2, S/N is almost in-

dependent of temperature.

(sl')'"= (5.15a)

S
N

1
oR sin2$ .

2
(5.15b) 14.0

Thus the rms noise current is independent of phase
while the signal-to-noise ratio peaks at P=m/4.
The rms noise current scales as S/Sc and varies
with temperature as f(T). The signal-to-noise ratio
scales as (S/Sc) if the excited junction states are
not thermally activated and also varies with tem-
perature as f(T). If the excited junction states are
thermally activated, the signal-to-noise ratio will be
further decreased.

The scaling characteristics of the signal-to-noise
ratio are depicted in Fig. 17 for the cases (1)
Sc——0.64X10 pm, (2) Sc——0.9X10 pm, and
3) Sc——1.27X 10 pm with the junction biased as

maximum current and maintained at zero tempera-
ture. Note that the signal-to-noise ratio drops

12.0—

10.0—

S/N

8.0—

6.0—

2.0—

0.0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

/Tc

FIG. 18. Temperature dependence of the signal-to-
noise ratio for (1) 0=500, (2) a=50, (3) cr=5, and (4)
0=—for a junction with T&——10 K and j=8.8.—

2
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B. Power spectrum of current fluctuations

The power spectrum of current fluctuations,
Pt(co) is given by

Pt(~) =g I &Vo II I 4 & I
'gt(~»

l~
(5.16)

where gt(co) is the normalized line-shape function
for the state

I Pt ). For simplicity, we shall assume
that gt(co) is a Lorentzian centered at Qt with a
width I t =Qt/2Q, where Q is the cavity Q. In that
case, the power spectrum of current fiuctuations
Pt(~) is

If the junction is biased at maximum current, the
leading contribution to the spectrum of current
fluctuations is

' 0.4

Pt(co) =Jc S 1

s, (~—n, )'+r', (5.23)

If Icos &&kT, the junction remains in the ground
state and it scales with temperature as

I )/~
P (

.T) J2 —O. sf 1.2(T)
(co —0)) +I" )

(5.24)

I t/~P( )=X I&%IIIV &I'
l~ (co —Qt) +I't

(5.17)

where 0'~ and I"& are the temperature-dependent
transition frequency and lifetime of the first excited
state. At maximum current the position of the line
center scale as

co~(T) =co~(0)f (T)' (5.25)

1. Tight-binding limit: No electrostatic
fluctuations

As noted in Sec. VA, there are no current fluc-
tuations in this limit, so that

and the w&dth as

I )(T)=I )(0)=fo (T) Q
Q(T)

' (5.26)

where the cavity Q is temperature dependent due to
quasiparticle excitation.

Pt(~) =0. (5.18)

2. Plasma oscillations: Intermediate
electrostatic effects

The matrix element of the current, between the
states

I Po) and
I ft) isgivenby

&PoIIIA&= ~iJ+b'(bn+ie '
bn ie—+'

) .

(5.19)

If / =1, Eq. (5.19) becomes

3. Strong charge fluctuations: Quenching

ofphase order

1

2
iJ cosp if l =

I 1( ~ )

y.'-) =
Jsing if 1= lf& ) .

2

(5.27)

To zero order in e, the ground state is coupled to
both the first and second excited state. In particu-
lar,

& Polil Pl&=i (5.20) Since these states are degenerate, the spectrum of
current fluctuations becomes

whereas for I =2

&golI I gz) =, Jsing(a cosP) ~, (5.21)
21/4

Pt(~) = ,J—I /tr

(co—0) +I
(5.28)

Inserting Eqs. (5.20) and (5.21) into (5.17) yields for
the spectrum of pair current fluctuations

Pt(co) =J' g)(co)
cos P

&2cr cosP

in

+2cr cost)) (cr cosp)3

where AQ=2e /C and we have assumed that the
lifetimes of these two states are the same. The spec-
trum scales with junction area as (S/Sc) but also
moves to higher frequencies since 0 ~ 1/S and be-
comes broader. If kT &~2e /C, the excited junc-
tion states will not be thermally activated and the
power spectrum will scale with temperature as

f (T). In addition, it will also broaden due to a de-
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S =~2nQcrR. 0
Eco

(5.15b')

Thus, for a junction with o =0.1, Q = 10, C = 10
F, and b,to=10 Hz, (S/N)t, „=2.2X10 R and
E.-1, since thermal excitation of the higher states
should not occur for small capacitances. On the
other hand, for C =10 ' F, (S/N)g =2.2X10 R
so that so long as R & 10 the current in the re-
gime should be observable.

C. Noise voltage

crease in cavity Q arising from thermal excitation
of quasiparticles.

The frequency structure of Eq. (5.2S) can be ex-
ploited to probe the physics of the strong-charge-
fluctuation regime. In particular, although the
signal-to-noise ratio is less than unity in this regime,
the current fluctuations are essentially high fre-
quency in nature, peaking at co-Q. Accordingly, if
a low-pass band filter of bandwidth ha) «Q is
used, only a fraction of the current fluctuations will

be sensed in a measurement of the supercurrent, and
the signal-to-noise ratio is

r

(5V ) = coth (5.31)

If ~s &&hT, zero-point fluctuations dominate the
noise and the rms noise voltage is

' 1/2

(gV2) )/2 t)

2C
(5.32)

If the junction is biased at maximum current

(5.33)

' 1/2

(gV2)1/2
C

(5.34)

and scales with junction area as S ' . In addition,
the noise voltage varies with temperature as T ',
i.e., it increases with increasing temperature.

Thus, the rms noise voltage scales as 0. and scales
with junction area as S . Hence, as S~oo,
(5V ) / —+0 in agreement with physical intuition.
Furthermore, as C~ Oo, the noise voltage vanishes
in accord with the tight-binding limit. Note that
the noise voltage scales with temperature as f ' (T),
i.e., it decreases with increasing temperature.

If kT &pficoz, the rms noise voltage reduces to the
well-known result

Since the junction is biased at zero voltage, the
mean-square noise voltage (5V) ) associated with
the lth state is

'2

(5.29)

Below, we present analytic and numerical results.

3. Strong charge fluctuations: Quenching

ofphase order

As cr—+0, the junction enters the strong-charge-
fluctuation regime and the eigenfunctions collapse
to Eqs. (2.23) and (2.24). In the limit that the elec-
trostatic parameter is zero, the mean-square noise
voltage associated with the state

~

g„-+(P)) is

1. Tight-binding limit: Ão electrostatic effects 2 2

(5.35)
In the limit that C—+ Do, (5Vt )~0, so there are

no voltage fluctuations despite the fact that
(5n') ~~.

2. Plasma oscillations: Intermeditate
electrostatic effects

Using the virial theorem, we have

If we now turn on the tunneling interaction, but
keep cr »1, only the ground state is significantly al-
tered from Eq. (5.35) and

(yo ~

5V
~ 1')=— cr cos y . (5.36)

2 C

Thus, the total mean-square noise voltage

(gV2) 1 Ecosf
Z v2e

and summing over all the junction states yields

(5.30)
—('ipgg)~/2CkT (2en ) (5 37)

Z „



26

4.0where the sum i„Eq
metric and

'
includes both sym

e ric and antisymmetric states. If kT
the excited states c ivs a es are not thermall activ
the rms noise v lt edo ager ucesto

y c ivated and

(5V2) I/2 E cosp
~~

3.5—

3.0—

2.5

(5.38)
(5V~)~ {mV) 2.0

If ththe junction is biased t
rms noise voltage is

a maximum ccurrent, the 1.5

1.0-
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c = o

-T/Tc = O.3

T/Tc = 0.5

c-o
T/TC —0.9
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(5.39)

(5.40)

which vanishes at T/T —+I ', o e
so long as kT«2 /C h

,~ . Finally, we note

ishes in the limit that 0 b state
e t e rms noise volta e v

a o —+, because the state
is collapsing to the d f '

state vector
o e e inite-number state

~

0).
Figure 19 de icts thp' the scahng characteristic f

t e rms noise volta e at
s ics 0

g zero temperature fo th
speci ic cases (1) Sc——0.64)( 10
S =0.9 10 pm, and (3) Sc——1.27' 10 m
The values of Sc correspond to a

'
n o a ]unction with

n J=4.4, (2) j=2.2, and (3
An examination of this fi ure r

J =1.1.
is igure reveals the following.

e rms noise voltage is a maximum

with junction area in da in accord with E . 5.
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S i accord 'th Ewi q. (5.37).
(2) As j increases so does the rms noi g

i e iscussion above. For exam le in
the plasmon regime (5V ) ' scales

d
'

y as j, whereas in the strong-
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2.0

(5V2) I/2

(2e )
'
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. Furthermore, at finite temperatures
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creases with increasing temperature in the plasmon
regime. This feature of the junction's dynamics
arises from the fact that for C=10 ' F and
o. & 10, the plasma frequency exceeds kT~/h, and
the device is in the ground state. As noted in the

discussion below Eq. (5.38), the rms noise voltage
scales with temperature as f (T) and therefore
should decrease with increasing temperature. As
the electrostatic parameter decreases below five, the
noise voltage also decreases rapidly approaching a
limiting value of E/e at low temperatures. If the
capacitance is fixed, Eq. (5.39) can be written as

(gV2) 1/2

C
(5.41)

so that (5V )'~ decreases linearly with o. Note
that for very small values of the electrostatic
parameter, the rms noise voltage does not vanish.
This is due to the fact that as T/Tc &1, the exci—ted

junction states are partially activated, and the rms

noise voltage is described by Eq. (5.37). Also for
these cases, the higher the temperature, the larger is
the limiting value of (5V ) '

An examination of Fig. 21 reveals that the rms

noise voltage increases with temperature. This
arises because for C = 10 ' F, the excited states are
thermally activated and in the plasmon regime the
situation is described by Eq. (5.34). Furthermore,
the rms noise voltage is independent of o in the
plasmon regime, and as the device enters the
strong-charge-fluctuation regime the detailed

dependence on the electrostatic parameter is very
sensitive to junction temperature. For example, at
T =0, the junction is in the ground state and the
noise voltage is described by Eq. (5.41). At finite
temperature, the noise voltage has major contribu-
tions from the excited states, i.e., Eq. (5.35) and the
terms are independent of o..

Figure 22 depicts the temperature dependence of
the rms noise voltage for a junction with j =8.8,
Tz 10 K, and (1) o =500——, (2) o =50, (3) o.=5, and

1

(4) o = —,. Note the complex thermal behavior exhi-

bited by (5V )'~ in the form of curve crossing as
well as sudden dips near Tz.

2.0—

1.6—

&SV'&/a (mVj 1.2-

0.8—

0.4—

0.0
0.0 0.80.4 0.6 1.0.

/rc

FIG. 22. Temperature dependence of the rms noise
voltage for (1) 0.=500, (2) o.=50, and {4) 0.=—for a

junction with Tc——10 K and j =8.8.

0.2

With ( V) =0 and the insertion of a complete set of
intermediate states into the voltage correlation func-
tion, Eq. (5.42) becomes

Pv(~) +PI(T) I (pt I
V

I lbt ) I'5(co 0„)—,

( I i +I i )/2'
gtt (~)=

(co —Qti )'[(I'i+ I p)/2]'
(5.44)

and the power spectrum for voltage fluctuations is

—EI /kT

Pi (co)= g
I, I'

I (6 I
v

I @t ) I'git (» .

(5.45)

The matrix elements (Pt I
V

I fi ) can be written as

(5.46)

(5.43)

where ih'Qii =Ei et —Onc. e again we take finite-
lifetime effects into account by introducing a
phenomenological line-shape factor gtt (co) defined
by

D. Power spectrum of voltage fluctuations

The power spectrum of voltage fluctuations
Pz(co) is defined by

Pv(co)= f drc soco(r(V( )rV( )0) —(V) ) .

1. Tight binding limit-: Xo electrostatic effects

In the limit that C—+ oo,

(5.42) Pv(co)~0 . (5.47)
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2. Plasma oscillations: Intermediate
electrostatic effects

If we assume that the I t are independent of l,
then

Py(to)=(SV )
(to —&os) +I' (5.48)

as all the 00, that contribute to the voltage fluctua-
tion spectrum are equal to ~~ in the limit that the
plasma mode can be treated as a harmonic oscilla-
tor.

In the limit that Reer »kT, Eq. (5.48) is

Pv() = %cod Q /~
(to —cd�) +I

(5.49)

Near the line center, where co —tor « I, Eq. (5.49)
reduces to

fiPv(to)~
aC ' (5.50)

I' 3

Pv(~) = —'
C 'g (5.52)

An examination of Eq. (5.52) reveals that far from
the line center, the spectrum of voltage fluctuations
scales with the electrostatic parameter as o, and
with junction area as S ' and decreases with tem-
perature as f ' (T)Q(0)/Q(T).

If eicos «kT, the spectrum of voltage fiuctua-
tions is given by

I

p ( )
kT r/m

(~ ~ )2+ Q2

Near the line center

(5.53)

which is independent of the electrostatic parameter,
scales as S ' with junction area, and depends on
temperature only via the cavity Q. Far from the
line center, where to»cos, the voltage fluctuation
spectrum reduces to

3

Py(to) = —
2 icos/ .e 2e

(5.51)
c to Q

If the junction is biased at maximum current

kTPv()~
ng

0.4
Nc

(5.57)

which scales with the electrostatic parameters as
0. , with the junction area as S ', and with tem-
perature as Tf ' (T)Q(0)/Q(T).

3. Strong charge fluctuations: Quenching

ofphase order

In the strong-charge-fluctuation regime we re-

quire matrix elements of the voltage between states
of different symmetry, i.e., (P„+

l Vlf„'). To
zero order in 0.«1, only terms diagonal in n con-
tribute:

(5.58)

If kT «2e /C the junction is in the ground state
and we require the matrix element connecting the
ground state to the state

l g&(P) ):
2e

&Vol vlf& &=
2 C

(5.59)

In this limit the spectrum of voltage fluctuations is,
at maximum current,

2

Pv(a )=
. 2e

r/~
(~ n)'+r—' ' (5.60)

where 0=2e /AC. Near the line center,

Pv(~) ~g~', (5.61)

which decreases rapidly as cr~O. Note that at these
frequencies, the spectrum of voltage fluctuations
scales as (S/Sc) .

which scales with the electrostatic parameter as
o with junction area as (Sc/S) ' and increases
with temperature as Tf (T). Far from the line

center, Eq. (5.53) reduces to

P(to)~
2

&cr cosP .vZ kT
(5.56)

n'co Q

If the junction is biased at maximum current, then
in the far wings

'2

Pv(co) ~kT
2 (o cosP)

2tre

If the junction is biased at maximum current

Py(co) ~ , k T o—WO

~e

(5.54)

(5.55)

VI. DISCUSSION

In this paper, we discussed the influence of elec-
trostatic effects on the static tunneling characteris-
tic of single ultrasmall Josephson junctions that are
current biased on the zero-voltage dc step. We
found that electrostatic effects alter the phase-
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dependence, magnitude as well as the scaling and
thermal characteristics of the dc supercurrent from
the standard expression

I=J sing, (6.1)

which is valid in the tight-binding limit C~oo.
Furthermore, electrostatic effects also modify the
response of the pair current to applied magnetic
fields and give rise to current and voltage fluctua-
tions that accompany the flow of the supercurrent.
The extent of these effects depends critically on the
value of the electrostatic parameter, which in turn
implies a striking sensitivity to junction dimensions
for this class of devices. Nore precisely, since
o=(S/Sc), we have for a Josephson junction
whose oxide interface has dimensions L gL

o=(I./I. c. )
' 1/4

Lc—=Sc ——0.115
&J

(6.2a)

(6.2b)

with Lc expressed in pm. Thus, small changes in L
can give rise to sizable changes in o. which, as dis-
cussed in this study, can profoundly alter the
junction's tunneling characteristics. As a specific
example, we consider a junction with a current den-
sity of 1.1 &(10 A/m, an oxide thickness of 30 A,
and a dielectric constant of 3. The critical surface
area Sc——1.27)& 10 pm and if the junction's di-
mensions are 1.13)&1.13 pm, then the electrostatic
parameter is equal to 10000. The tunneling charac-
teristics of this device are, at maximum current,

J=1.4X 10-' A,

J=1.4 pA,
C=1.12)&10 ' F,
I=0.49 pA,
S/N =0.55,

(M )' =0.89 pA,
(SV'&'"=1.05 V .

(6.4)

Thus, for this case, electrostatic effects have re-
duced the supercurrent to about —, of its tight-
binding value. Hence, scaling the junction down by
a factor of 100 has reduced the supercurrent by a
factor 286. Furthermore, despite the difference in
junction size, the noise current has been reduced
only by a factor of 2 and the signal-to-noise ratio
has decreased to about —,. In addition, the rms
noise voltage has increased by more than 1 order of
magnitude to 1.05 mV, which is equal to the gap

1

voltage of In and is about —, the gap voltage of Pb.
Finite temperatures will further decrease the size of
the supercurrent as well as the signal-to-noise ratio.
Thus, scaling down the junction's dimensions from
the 1-pm regime to 0.1-pm regime will extensively
alter its tunneling characteristics. Below, we sum-
marize our findings and discuss some of the techno-
logical implications of this research.

If S~&Sc, the junction is in the plasmon regime
which in general involves devices whose linear di-
mensions are on the order of 1 pm or more. For ex-
ample, if the junction is operated at low tempera-
tures such that kT &gfico& and biased at maximum
dc current, electrostatic effects will induce phase
fluctuations

C=1.12X 10-"F, (se') =(s,/s)", (6.5)

I=1.38g10 "A,

S/N =79.62,
(6.3)

which will increase as the device is scaled down in
size. Furthermore, these phase fluctuations will
reduce the supercurrent so that its maximum value
is no longer Jbut

(F12) 1 i2

(5V )'i =90 pV.

Thus, electrostatic effects reduce the supercurrent
by about 1.5% from its tight-binding limit, give rise
to a noise current of 1.76 pA, and generate a noise
voltage of 90 pV. Suppose now we consider the ef-
fects of scaling down the junction s linear dimen-
sions by a factor of 10, i.e., L =0.113 pm and
a=1. For this device, we have, at zero temp-ra-
ture,

' 0.8
ScI=J I ——

8 S (6.6)

so that for S= 10Sc, electrostatic effects will
reduce the supercurrent by about 10%. Further-
more, electrostatic fluctuations will alter the mag-
netic and thermal characteristics of the junction
from the ideal tight-binding limit. For example, the
pair-current's response to dc magnetic fields will be
most noticeably altered in the vicinity of the zeros
in the diffraction pattern. Thus, for a range of field
strength's 5H about the diffraction zero,
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1.6

5H =4mnH„
C

N (6.7)

5/8 Sc
(1 T/Tc—)0 S

1/6

(6.8)

provided the excited states are not thermally ac-
tivated If k.T»1ra0~, the supercurrent is further
suppressed,

' 1/3

I(T)=J(T) 1 ——3 kT
(6.9)

and the tunneling characteristics are appropriately
altered.

Associated with the flow of a supercurrent are
current and voltage fluctuations, which are given by

'0.8

(QI2)1/2 I (6.10a)S
' 0.4

(5V2) 1/2

C Sc
(6.10b)

provided the excited states are not thermally ac-
tivated and the junction is biased at maximum
current. Note that the noise current is almost in-

dependent of area, in this regime, but the signal-to-
noise ratio

S S——2
N Sc

(6.11)

decreases rapidly if the device is scaled down in
size. Furthermore, the noise voltage also increases
as the junction area decreases, scaling as S '. If
the excited states are thermally activated, the noise
current and voltage scale as

5/6

(gI2) 1/2

' 1/2

(g V2 ) 1/2

C

the diffraction pattern will be significantly altered
from (sinkL)/kL. In Eq. (6.7), n is the order of the
diffraction zero and H„ the associated field
strength. Thus, for a 1-p,m device with S =10Sc,
SH-0.315H1, where H1 is typically 500 G. In ad-
dition, as T/Tc~l, the pair current varies with

temperature as

I(T)= I(0)[1 T/T—c]

(2en)
7l

(6.12a)

(6.12b)

with corrections of order (S/Sc) « 1, arising from
pair transfer. These perturbations tend to broaden

In general, further reduction in device size gives rise
to smaller pair currents, decreasing signal-to-noise
ratios, slightly smaller noise currents, and large
noise voltages, provided the junction remains in the
plasmon regime. For the ground state, this requires
S & 6SC. However, electrostatic fluctuations are
greater in the excited states which as S decreases
first become anharmonic and then exhibit positive
energy eigenvalues.

If the junction is further scaled down in size, the
excited states can no longer be regarded as plasma
oscillations. For device areas on the order of
several times the critical surface area, these states
become either pairwise degenerate or quasidegen-
erate. In addition, the direction of current flow of
the higher excited states is opposite to that of the
ground and first excited state as S decreases below

5Sc, i.e., /(2&0 for S/Sc &4.73 and /12&0 for
S/Sc & 3.67 when the device is biased at maximum
current. Furthermore, as the junction area is re-
duced from 3Sc down to Sc, electrostatic effects

4 1

reduce the supercurrent from about —,J to —,J.
Within this regime (where o drops from 9 to 1) the
scaling, magnetic, and thermal characteristics of the
Josephson current undergo qualitative changes in its
functional dependence on junction area, magnetic
fiux penetration, and temperature. At zero tem-
perature, the signal-to-noise ratio falls from about
2.6 down to about 0.6, implying that the noise
current varies almost linearly with junction area.
The noise voltage continues to increase reaching a
maximum at S =Sc. For example, if
Sz ——0.64)& 10 JMm, the noise voltage increases
from approximately 1.4 to 2.2 mV. Furthermore,
the smaller the value of Sc, the larger is (5V )'/,
e.g., if Sc——0.45X10 pm, (5V )'/ =2.9 mV
when S=Sz. Typical device sizes in this regime
are ori the order of 0.1 —0.2 pm.

As the junction size is scaled down even further,
so that S &Sq, the device enters the strong-charge-
fluctuation regime where electrostatic effects
quench the phase ordered state and the tunneling
interaction can be regarded as a weak perturbation.
In this regime, the eigenvectors and eigenvalues rap-
idly approach the electrostatic values
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(5n') =
2Sc

(6.13)

which is much less than unity. For example, if
S/So =0.25, the rms number fluctuations is of the
order of 0.03, which implies that the pair phase is

completely undefined in this regime. Despite this
fact, pair transfer is still possible; however, before
summarizing the tunneling characteristics of this
regime, we first estimate typical device dimensions.
For a junction with a critical current density of
1.1X10 A/m, an oxide thickness of 30 A, and a
dielectric constant of 3, Sc——1.27)& 10 pm and

Lc 0. 11 p——m. It follows that typical linear dimen-

sions in this regime are 0.08 pm, so that
S=0.64)(10 pm and o =0.28.

In the strong-charge-fluctuation regime, electro-
static effects dominate the junction's dynamics and

profoundly alter the phase dependence of the pair
current as well as its scaling, magnetic, and thermal
characteristics. In particular, if kT«2e /C so
that the junction is in the ground state,

3

I= , Jc —sin2$,
S

(6.14)
Sc

which implies an extreme sensitivity to the device's

linear dimensions. Specifically, if S/Sc (0.25,
electrostatic effects will reduce the supercurrent to
about 0.03J. Thus if Sc——0.01 pm and the critical
current density is 1.76X10 A/m, then the max-
imum supercurrent will be on the order of 13 nA.
Electrostatic effects alter the super current's
response to magnetic field, so that

I(H) =I(0)
kI.

(6.15)

Note, that the first zero in the diffraction pattern
occurs at field strengths on the order of 5000 6 or
more. Equation (6.15} also implies altered super-

conducting quantum-interference device (SQUID)
characteristics due to the current-phase relation-
ship. For a SQUID consisting of two identical ul-

trasmall Josephson junctions in the strong-charge-
fluctuation regime, the maximum current in the
loop is

'2

I=I cos
S 2e

c
(6.16)

In Eq. (6.17) 4 is the magnetic flux penetrating the

loop, and we have neglected the effects of fiux

the distribution in n space, so that in the ground
state

i 4

penetrating the junctions themselves (which is of or-
der L/R, where R is the radius of the loop). Thus,
the flux periodicity of this modulation is of order
h/4e instead of h/2e. We plan to discuss the
SQUID characteristics of ultrasmall Josephson
junctions elsewhere.

The magnitude of the junction current is also
quite sensitive to the temperature, even if the device
is operating in the ground state, since

'2

I ( T)=I(0) tanh
b(T) 8(T)

(6.17)

Thus, the supercurrent will be independent of tem-
perature over a much narrower range than larger
junctions. For example, in standard devices the
current will vary with temperature by only 10% in

the range 0& T/Tc( —,. According to Eq. (6.17)
the range is narrowed to 0&T/Tc & —,, provided

the excited junction states are not thermally activat-
ed. If they are, then this range will be further nar-
rowed.

Accompanying the supercurrent is a noise current
that arises from order-disorder fluctuations, which
is given by

2
(6.18)

(Sy2)1/2
2e

(6.19}

provided that the excited junction states are not
thermally activated. For this situation, the noise
voltage scales linearly with area and therefore de-
creases as the devise dimensions are scaled down.
Typical noise voltages in this regime for junctions

and for the junction parameters quoted just below

Eq. (6.13) is about 0.5 pA at zero temperature. In
this regime, the signal-to-noise ratio is of order
(S/Sc ) « 1. However, observation of pair
currents in this regime may still be possible due to
the fact that the spectrum of current fluctuations is
peaked at the electrostatic frequency Q=2e /AC,
which is typically on the order of 10' Hz. If a nar-

row bandwidth detector is used, only a small frac-
tion of the current fluctuations will contribute to
the rms noise current, and the signal-to-noise ratio
will exceed unity. Note that since the current varies
as J C, detection of such currents is most favored

by using junctions with values of J as large as possi-
ble, which are consistent with the requirement that

In the strong-charge-fiuctuation regime, the rms
noise voltage is given by
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with critical current densities of 1.1 X 10 A/m and
areas of 10 ' m are 2 mV, which is less than the

gap voltage of a Pb-PbO-Pb junction.
In addition to the tunneling characteristics of the

supercurrent, we have also examined a model of the
external circuit that we believe is suitable for ul-
trasmall Josephson junctions. We note that our
model reduces to Anderson's model of the external
circuit for large junctions but does not suffer from
its difficulties when applied to ultrasmall devices.
We believe that this model, if used in conjunction
with the theory presented in this paper, should be
suitable for examining fluctuation induced switch-

ing in ultrasmall Josephson junctions.
Next, we comment on some of the technological

implications of this research with regard to digital
applications of ultrasmall Josephson junctions. In
particular, we briefly discuss: (1) size tolerances for
device fabrication, (2) thermal ranges concerning
junction operation, (3) aspects of switching schemes,
and (4) voltage fluctuations. We stress that these
observations are preliminary in nature and based
solely on this study. Other aspects concerning the
operational characteristic of ultrasmall Josephson
junctions must first be examined before all of the is-
sues are clear.

We begin by noting that once S & 3Sc, the super-
current exhibits a very sensitive dependence on the
device dimensions. Accordingly, size tolerance in
the fabrication of ultrasmall Josephson junctions is
extremely important if one is to ensure uniform
switching characteristics of these devices on a chip.
This statement is underscored by noting that a 20%
variation in junction area about S =2S& will give
rise to a factor-of-2 variation in the maximum
zero-voltage dc supercurrent. In the strong-charge-
fluctuation regime, this trend becomes extreme.
For example, a 25% variation in device area about
S =0.5Sc gives rise to almost a factor-of-5 varia-
tion in the maximum zero-voltage pair current.
Thus, if Sc——0.64X 10 pm (at zero temperature)
and S varies from 0.24X10 to 0.4)&10 pm,
the size of the current will change from 0.026JC to
0.12J~ and the signal-to-noise ratio will vary from
0.05 to 0.3, i.e., a factor-of-6 variation. On the oth-
er hand, within this same range, the noise voltage
will vary from 1.1 mV (for the smaller device} to
1.7 rnV.

Reliable operation of ultrasmall Josephson junc-
tions will involve reduced thermal tolerances, as the
device will have to be operated within a narrower
temperature range if undesirable switching is to be
avoided. For example, between T/T& ——0.0 and
0.75, the maximum dc pair current for a larger de-

vice (i.e., S& 10 pm ) will vary by about 27%. For
an ultrasmall device, with S-3SC, the magnitude
of the pair current will vary by a factor of 3, pro-
vided the excited states are not thermally activated.
If they are thermally activated, then the magnitude
of the supercurrent will virtually vanish. To ensure
that the supercurrent will remain nearly constant
over a given temperature range, the results of this
study indicate that the device's operational tempera-
ture should satisfy

(1) 0& T & , Tc—
(2) kT«2e /C .

In contrast, larger junctions require 0(T( —,Tc,
and there is no analog of (2). We note that fluctua-
tion induced switching may impose additional con-
straints as well as narrower tolerances than those
mentioned above.

Another feature of ultrasmall Josephson junc-
tions is that only a small amount of flux can
penetrate the device (i.e., kl. is small due to l. -0.1

pm or so}, and very large magnetic fields would, in
general, be required to switch a single device. Thus,
logic based on single junctions would be much more
feasible if current switching is employed. Note,
however, that this is not necessarily the case if
SQUID's are used as the basic switching element.

One can, of course, attempt to reduce the scaling
difficulties noted above by using junctions with

larger critical current densities. Since the critical
junction size scales of j ', it follows that by in-

creasing j by 1 order of magnitude, S~ will decrease
by a factor of more than 3. Thus a device with a
critical current density of 8.8)& 10 A/m, an oxide
thickness of 25 A, and a dielectric constant of 2.2
has S~——0.36&(10 pm and the critical linear di-
mension is I.~-0.6 pm instead of 0.1 pm as stated
above. There are, however, limitations to this.
Larger current densities will probably impose
stricter quality control on both materials as well as
junction fabrication. In addition, current densities
exceeding 101o A/m2 are probably unlikely. A more
promising approach is to use devices whose oxides
have larger dielectric constants. For example, ZnO
has a static dielectric constant of 4.6, PbO one of
8.4, and for Nb oxide it is even higher. However,
during switching processes, the dynamic properties
of the oxide's dielectric function will be important,
and these functions typically peak in the vicinity of
10' —10' Hz, which also coincides with the gap
voltage. Since the larger the static dielectric con-
stant, the greater will be this variation, it is unclear
that using materials whose oxide dielectric con-
stants are large is a viable solution. Note too that
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the larger the dielectric constant, the slower the
switching time.

Voltage fluctuations are also a very important
feature in considering the digital applications of
Josephson junctions. In general, one requires

(5V )' « Vs ——2eh, (6.20)

i.e., the rms noise voltage must be much less than
the gap voltage if one is to avoid undesirable

switching events. One result of this study is that
the noise voltage peaks at S-S~. Furthermore, it
increases with increasing current, achieving max-

imum values of (5V ) ' =2.9 mV for
Sc——0.45X10 pm, (5V )'~ =2.2 mV for
Sc——0.64X10 pm, (5V )'~ =1.4 mV for
SC=0.9X10 (Mm, and (5V )'~ =1.0 mV for

Sz ——1.27)(10 pm. It is also worth recalling

that the rms noise voltage scales with junction are
as S (if the device is in the ground state) and
S (if the excited states are thermally activated}

so that the noise voltage remains relatively large
even for S-5—10Sc. On the other hand, the noise
voltage decreased almost lineraly with junction area

]
for S &Sc. For example, for S= —,Sc,
(5V )'~ —1.4 mV for the case Sc——0.45X10
pm . Thus small size does have some operational
advantages.

We have not considered the effects of fluctua-
tions switching the junction out of the zero-voltage
state. For larger junctions, this effect is manifested
through a slanting I( V) characteristics and results
in a reduced maximum critical current. ' '
Theories treating fluctuation-induced switching are
based on the notion of a well-defined phase. As
previously noted, we are considering a junction in
which the phase cannot be regarded as a well-

defined classical variable as the two superconduct-

ing electrodes are only partially correlated. We plan
to examine fluctuation-induced switching effects for
ultrasmall junctions elsewhere.
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