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Superexchange and superconductivity: A possible correlation
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%e analyze the possibility of pair formation between conduction electrons in a metal via
exchange interactions with electrons of the atomic cores, in analogy with the phenomenon
of "superexchange" between unpaired {d) electrons on two paramagnetic cations via elec-
trons of a closed-shell anion in insulating solids. The matrix elements for the scattering of
a pair state of conduction electrons with opposite momenta and z components of spin, into
another pair state, are derived on the basis of a model, and evaluated by using simple orbi-
tal functions for the conduction and core electrons. An approximate solution for the ener-

gy gap at the Fermi level is obtained. The model is shown to incorporate the occurrence of
itinerant-electron antiferromagnetic states in metals, recently discussed in the literature,
under well-defined conditions. Applications are made to metals of the groups IA (Li to
Cs), IIA (Be to Ba), III' (Al to Tl), IVA (Sn and Pb), I8 (Cu, Ag, and Au), and IIB (Zn,
Cd, and Hg). The results reproduce the observed trends regarding the occurrence, or ab-
sence, of superconductivity. The critical temperatures are of the correct order of magni-
tude. It is concluded that this mechanism, at least for the metals considered, can play a
significant role in understanding Cooper-pair formation.

I. INTRODUCTION

The development of the theory of superconduc-
tivity culminated in 1957 with the publication of
the Bardeen-Cooper-Schrieffer (BCS) theory, ' based
on the following "reduced" Hamiltonian H„d for
the conduction electrons:

red= g EkC k~Ck~
k, o

+ + "qk t — t —ki kt
q, k

Here, c k and c k are creation and annihilation

operators for electrons with wave vector k and with
z component cr of spin (up, t; and down, 1). The
one-electron (quasiparticle) part of (1) refers to the
low-lying single-particle energies in the normal state
of the metal according to the Landau theory of Fer-
mi liquids. The matrix element V-k of a two-

electron operator V in the second term of (1) de-

scribes the interaction between the pair states

(qt, —qt) and (kt, —ki); thus, in each pair state
the two electrons have opposite momenta and z
components of spin. Such two-electron terms are
not taken into account in Landau's treatment of
Fermi liquids.

As has been emphasized by Cooper in particular,
the basic BCS equations are independent of the ori-
gin of V- k . Consequently, any electron-electron
interaction exhibiting the property that V- k is
predominantly negative for q, k near the Fermi vec-
tor kF, can lead to superconductivity. On this basis
alone the whole plethora of observed properties of
superconductors can in principle be understood.
BCS, in the further development of their theory,
consider exclusively the case where V- k describes
an indirect coupling between conduction electrons
via electron-phonon interactions.

In this paper we shall analyze the additional pos-
sibility that V- k arises from exchange interactions
between conduction electrons (near the Fermi level)
via exchange effects with electrons of the atomic
cores. The mechanism is to be viewed in analogy
with the phenomenon of "superexchange, " first
considered by Kramers in 1934. Here, unpaired
electrons on two neighboring (3d) cations in an in-
sulating solid are coupled via exchange interactions
with electrons of a closed-shell anion. Such interac-
tions lead to distinct spin patterns, antiferromagnet-
ic, or ferrimagnetic if the cations have different
spin moments, at low temperatures (order —100 K
or lower) in nonconducting solids, observable, e.g.,
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through neutron-diffraction experiments. Evidence
for the occurrence of this phenomenon is more than
abundant. For a general review, we refer to Ander-
son.

It must be asked at this point whether a similar
phenomenon in metals, involving conduction elec-
trons and closed-shell atomic cores, and leading to
itinerant-electron antiferromagnetism, is at all feasi-
ble: d-electron wave functions in insulators are
rather localized at the core lattice points, much
more so than wave functions for nearly-free elec-
trons. As a first step towards an answer we have, in
earlier calculations on cation-anion-cation superex-
change, removed the cation nuclear charges. The
singlet-spin pairing between the "cation" electrons
was found to persist fully. This means that "Coop-
er pairs" can be formed without the aid of nuclear
charges, and the question of whether this effect is
still measurable for realistic conduction-electron
wave functions must be answered on the basis of
quantitative calculations.

In the standard terminology of the physics of
many-electron systems, interactions between
conduction-electron pair states can always be ex-

pressed in terms of an appropriately chosen dielec-
tric tensor for the system considered. Since the
range of exchange interactions via an atomic core
does not extend beyond one lattice parameter, this
interaction is described by that part of the dielectric
tensor with wave vectors larger than the smallest
reciprocal-lattice vector, i.e., by local-field effects. '

The importance of such local-field effects for the
possible occurrence of attractive-pair interactions
(with respect to the Fermi level) has been em-

phasized. In particular, these effects have been
considered in connection with an exciton mechan-
ism of superconductivity. ' '" However, a theory of
the dielectric tensor concerning conduction-electron
exchange via core electrons is at present not avail-
able. In the following sections we will pursue the
possibility of the assumed analogy between superex-
change in insulators and a phonon-independent
mechanism of superconductivity in terms of contri-
butions supplementary to those obtained on the
basis of the Fermi-liquid approximation for the
many-electron system in metals.

II. THE MODEL

As a model system we consider a (nontransition)
metal built up out of X atoms with a bcc, fcc, or
hcp primitive cell, characterized ideally by one con-
duction band well separated from a fully occupied

valence band. Each atom contributes a number of
conduction electrons and, in the model, its core is
described by two spin-paired electrons in a ls-like
shell. In the Fermi-liquid approximation the one-
electron Hamiltonian H[1](r) for each conduction
electron has the form

H[1](r)=T(r)+ V„(r)+V, (r)

+e p r'g r —r' d r'. (2)

H[1](r)g-„(r ) =ek l[ k (r ), (3)

yields orthogonal Bloch states Pk, and correspond-

ing one-electron energies e-„. For the formal deriva

tion of the off-diagonal matrix elements V k in the

reduced Hamiltonian (1), we suppose that Eq. (3) is
solved exactly.

To investigate the possible occurrence of an
indirect-exchange interaction between conduction
electrons via electrons of the atomic cores (i.e., via
fermions thus far not included in the description of
the system), we start from two arbitrarily selected
conduction electrons, labeled 1 and 2. We must
now take the core-electron system explicitly into ac-
count, with electron labels 3,4, . . . , 2%+ 2 (each
core carries two electrons in the model). The two-
conduction-electron Hamiltonian 8[2]( r ), with per-
mutation group P'z is, in the Fermi-liquid approxi-
mation, given by

H[2](rl r2) H[1](rl)+H[1](r2) (4)

i.e., by the sum of the two one-electron Hamiltoni-
ans (2). The physically allowed eigenstates belong-

Here, T is the kinetic energy operator, e is the elec-

tronic charge, V„ is the interaction between the elec-

tron and the nuclear charges, and V, is an averaged
interaction with all the other conduction electrons.
The last term in (2) describes the interaction energy
due to the Coulomb potential eg(

~

r —r '
~

) of a con-

duction electron and a given charge distribution

p(r ') associated with all the core electrons. [Ex-
change interactions between conduction and core
electrons in terms of one-electron operators, i.e.,
statistical-exchange correlations in the self-

consistent field, can also be included in (2).] In this

equation we have described the conduction-electron

system itself adopting the usual approximations.
Explicitly, all Coulomb interactions such as

ep(r ')g(
~

r —r '
~

) are taken with respect to poten-

tials which are screened by the sea of conduction
electrons. The eigenvalue equation for the
conduction-electron system in terms of the one-
electron Hamiltonian H[1](r), i.e.,
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ing to (4) are the antisymmetrized products of solu-
tions of the eigenvalue equation (3).

We now consider the system of 2N core electrons
imbedded in the sea of conduction electrons. The
Hamiltonian for this system reads

H[21v}(3,4, . . . , 2N+2)
2N +2
g [T(j)+ V„(j)+ V, ( j)]

2N+2 2N+2
+ —,

'e' $ $ g(fr; —r, f),
i=3 j=3

j+i

describing a system of 2N interacting electrons in
the potential V„of the nuclear charges and in the
averaged potential V, associated with the conduc-
tion electrons. Just as for the system (4) of two con-
duction electrons, we suppose that the eigenvalue
equation associated with the Hamiltonian (5) is
solved exactly. Together with the solutions of (4),
this will enable us to derive formal expressions for

the matrix elements V„k in (1). We do not consid-
er excited states of the core system (see also below).
Denoting the ground eigenstate and ground-state
eigenvalue of the core system by Po and Eo, respec-
tively, we have

H[21v}(['0 EOPO (6)

The function 1I}o is antisymmetric with respect to
permutations of the 2N electron labels (symmetry
group 5 2N). Correlation terms are thus already in-
cluded in 1I}o and Eo.

We form the (tensor} product of the eigenspaces
of (4) and (5), i.e., the eigenspace of the sum

H)p) + K[2N), with permutation symmetry
Next, we compare the sum

H[p] + H[2N] with the total Hamiltonian H«, of the
system of two conduction and 2N core electrons,
and we define a difference operator P" by

F'=H„,—(H[z}+H[~1v})

which, upon examination, yields

2 2N+2 2
&(1,2, . . . , 2N+2)=e g(

f
r, —r2 f

)+e $ g g( f rz —rj f ) —$ e Ip(r')g(
f rz —r'

f
)d r'.

p=1 j=3 p=1

(8)

Strictly speaking, we should subtract in (8) also

(twice) that part of the interaction between electrons

1 and 2 which is included in the averaged potential

V, . Equally, the interaction of the core electrons

with that part of V, stemming from electrons 1 and

2, should be subtracted. These terms, as well as the
last term of (8), are one-electron potentials. In the

application of the model to be discussed later on,
these terms do not contribute to the indirect interac-
tion. We shall, therefore, continue with the first
two terms of (8) as the relevant difference operator.

It is essential to note that the introduction of the
difference operator K implies an increase of permu-

tation symmetry from P'2XP'21v, the permutation

group of H[2] + H[2N], to %2N+2, the permutation

group of H„,. We can, of course, extend the for-
malism in taking more than two conduction elec-
trons into account, leading to still higher permuta-
tion symmetry of the total system. The correspond-

ing contributions are higher-order terms in a cluster
expansion and will be neglected here.

%e now consider the matrix representation of the
total Hamilton operator in the antisymmetrized
(spin and orbital) product space of solutions of H[2}
and H[21v}. These functions are of the form (to sim-

I

plify the notation, we denote the space and spin
variables by the electron labels)

&2tt+24 k (1,2, . . . , 2N+2}, (9)
J

where &2N+2 is the antisymmetrizer with respect
to 2N +2 electron labels and where 4 k is the prod-
uct function

(e-, fH... f
~,„„e-„)—ES, -„

1/2 /12S--S kq q

@g(1,2, . . . , 2N+2)

=1/i q, (1)$ k, (2)$0(3,4, . . . , 2N +2) . (10)

We will first derive the formal expression for the
matrix elements of & in the basis (9), using the
eigenvalue equations (3} and (6), and then evaluate
this expression by approximation. This procedure is
similar to the one adopted in standard perturbation
theory, where formal expressions are derived assum-

ing that a zeroth-order problem has been solved ex-

actly.
Diagonalization of the matrix for H„, leads to

the secular equation
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where E is an eigenvalue of the secular problem and
S k is an element of the overlap matrix, i.e.

q k

s, -„=(e,I~,„„a-„).
With the use of the eigenvalue equations (3) and (6),
together with the definition (7) of the difference
operator P, the secular equation can be written as

proach from the start. Our limitation to the core
ground state stems from the fact that an increase of
permutation symmetry from ~2~ to 2~+2 must
have negligible effects (mixing of excited states) for
II, compared to the increase from P'2 to W»+q for
I.

III. APPROXIMATE EVALUATION OF V

&~-, I
~

I
~»+~~-, &+(2e-, +ED-E)S-, -,

g1/2 F1+2
qq kk

=0.

(12)

In the actual evaluation of the off-diagonal ele-

ments, to be discussed in the next section, the core
eigenfunction 4o is approximated by a single Slater
determinantal wavefunction. The many-electron
overlap-matrix elements S- k (qQk) then turn out

to be identically zero. We will henceforth not con-
sider the second term.

The off-diagonal elements of the secular deter-
minant describe the scattering of a pair state into
other pair states due to the difference operator
Consequently, the matrix elements V- k, occurring

q k~
in the reduced Hamiltonian of Eq. (1), are given by
(qQk)

&~-, I
~

I ~»+.~-, &

q k 1/2 +12~-„q~k k

(13)

The diagonal elements of H„, lead to a shift of the
self-energy of a pair due to the refined description
of the electron-electron interaction. Part of this in-

teraction is included in Ht2~ and HI2~~ as one-body
potentials.

It is essential, to note that conduction and core
eigenfunctions are, in principle, not mutually
orthogonal, as they are solutions of different eigen-
value equations [Eqs. (3) and (6), respectively]. ' As
outlined above, the present approach entails analyz-
ing two systems, which we will call I and II,
separately: I is described by the Hamilton operator

H(2}, Eq. (4), the sum of two one-particle Hamil-
tonians for the conduction electrons (permutation
group %2). System II is described by the Hamil-
tonian H(qN), Eq. (5), for the 2N core electrons (per-
mutation symmetry P'2N). This separation is
adapted to the problem: Treating the whole system
directly (permutation group W»+2) would also give
rise, in the configuration-interaction (i.e., scattering)
matrix, to terms which refer to the core electrons
only. Since we evaluate interactions between the
two conduction electrons via the cores, such terms
are irrelevant and are avoided in the present ap-

We can evaluate V- k, Eq. (13), by approxima-
tion, replacing the exact total-core eigenfunction Po
by, e.g., its Hartree-Fock solution P, i.e., the best
single Slater determinantal function. The eigen-
functions of the Hartree-Fock operator are then
orthogonal Bloch functions Xk(r). Thus P is writ-

ten as

P(3,4, . . . , 2N+2)

=~2NP'k ((3»k, i(4) ' ' '

XXk,(2N+1)Xk, (2N+2)], (14)

describing a filled band.
In view of the short-range character of exchange

interactions it is appropriate to transform the core
Bloch functions [Jz(r)] to Wannier orbitals

[W„(r)] localized at the sites with lattice vectors
(R„). The Hartree-Fock function P is invariant
under such a unitary transformation, so that we
may write

~2N I. Wl1 (3)Wll (4)

X WN, (2N +1)WN, (2N +2)] . (15)

This function gives rise to the following core-
electron charge distribution:

p(r)=e g 2
I
W„(r)

I

n=l
Furthermore, since M2~ t &2&+2, the product
function 4&

k in (10) can be simply written as

@q(1,2, . . . , 2N+1, 2N+2)

=gk, (l)pk, (2) W), (3)W), (4) ' ' '

X W»(2N +1)W»(2N +2) .
For the evaluation of the matrix elements (13) we

integrate first over spin variables. The antisym-
metrizer &2~+2 then leads to a projector B2&+2 in

orbital space. Since K does not contain pair in-

teractions between core electrons, and since Wan-
nier orbitals are orthogonal, only a very limited
number of permutations contributes to V- k .
Specifically, one finds that the projector B2&+2
reduces to
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N N

2N+2 + ~ P1,2n+1+P2, 2n+2)+ g P1,2 n+IP2, 2m+2+ g (P1,2n p1,2m+1+72 2n+2 2m+2)
n=1 m=1 m=1

mQn

N

(P1,2n+1P2, 2m+2, 2r +2+P2, 2n+2P1, 2 m+1, 2r +I ) =I+ g n '
m, r n=1

rQm

(16)

Here, p denotes the (cyclic) permutation of the indexed electron labels, and I is the identity operator. P„ is the
collection of permutations associated with the atomic site n (with lattice vector R„) according to the wave
function (15). With the abbreviation

for the one-electron overlap integral, one readily arrives at the following expression for the many-electron
overlap-matrix elements S- z ..

I qi I'»-, , ~+N'I'qi I'I kiI'~-, k, o (17)

with 6 an arbitrary vector of the reciprocal lattice, showing that the many-electron functions, for q —k un-

equal to any vector of the reciprocal lattice, are orthogonal, verifying the validity of the statement made ear-
lier in the discussion of Eq. (12). For the matrix element (4

I
P"B2N+2

I
4 k ) we then obtain

I
@-&= &@-,

I
~l

I
@-&+ 2 & @-, I

~P.
I
@-&

n=1

=e'(q, —qIIk, —k)+N(a „ I
~P,

I
e-„), (18)

where

& q —qllk —k &
—= &0-(1)f -(2)

I g(
I
ri —r2

I
) I 41, (14' l, (2) & .

Expression (18) clearly identifies the interaction mechanisms incorporated in the model. The first matrix ele-

ment involves conduction electrons only and represents their direct (screened) Coulomb repulsion. The second
term is proportional to the number N of closed shells in the chosen volume of the metal; Pl interchanges core-
and conduction-electron labels. Thus this contribution is totally due to the presence of core electrons; it
represents the indirect-exchange interaction between conduction electrons via the core electrons.

Most of the interactions and permutations involved in P P1 cancel out, or else they yield negligible contri-
butions to (18). In order to collect the leading terms we neglect the differential overlap between Wannier func-
tions centered on different sites, i.e., we set Wl(r )IVm(r ) =0 if m+1. Furthermore, we neglect matrix ele-

ments involving the Coulomb interaction between charge distributions referring to different sites, e.g., we set

( q, —q I I
l,m ) =0 if m +1, since in normal metals the screened Coulomb interaction has a range of less than

half the nearest-neighbor distance. With the use of these approximations the matrix element V--„can be

written as

V--z ——e [(q, —qIIk, —k)+2NRe((q, lIIl, —k)s -,s, z
—(qlII11)s -, Islz I

+ —,(q, —qII11) Is, k I

+(qlIIk1)s -lsl k
—(qlIIk, —k)s

—&q —qlll —k&sll, )3(I1—Nls-1 I'I Il —Nlsk, I'I) '. (19)

In Eq. (19) Re represents the real part of the expres-
sion in the first set of parentheses. The first term in
square brackets, i.e., the direct interaction between
conduction electrons, is always positive. It depends
on the sign and magnitude of the expression inside

the parentheses, i.e., the indirect-exchange effect,
whether or not V- z can become negative for q and

k near the Fermi surface. We remark that V-k is
not symmetric in q and k. This "deficiency" is
only a formal one; it can easily be remedied without
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IV. APPLICATION OF THE MODEL

Apart from the approximations inherent to the
Fermi-liquid model, expression (19) for the matrix
element V-k is not exact in our model system,
since we have replaced the exact solution tI}0 for the
core electrons by the Hartree-Fock function
Even then, drastic simplifications are necessary to
arrive at numerical results. The first approximation
concerns the. Wannier function W„centered at the
site of atom 1, with Rt ——0. Following the model
outlined previously, the function Wt has a nodeless
behavior. For computational convenience we
choose a Gaussian function (not normalized)

W (r)=e (20)

The parameter a is a measure for the extension of
the charge distribution of the core electrons; it de-
pends on the "size" of the core and on the actual
number of core electrons. The second approxima-
tion concerns the eigenfunction gk(r ) for the con-

duction electrons; this function is of the form
u k (r )e'"'" which we approximate by uoe'"'', i.e.,
neglecting the dependence of u t, (r) on the wave

vector k, and we choose a theta function' (not nor-
malized),

changing the final results, by introducing in (11) the
equality

1

Htot~2N+2 2 [ tot&~2N+21+

We further note that the indirect contribution de-

pends sensitively on the overlap; it obviously disap-
pears if all one-electron orbitals should happen to be
orthogonal. However, as was mentioned earlier,
conduction- and core-electron orbitals are principal-
ly not orthogonal in the model, since they are solu-
tions of different eigenvalue equations [Eq. (3) and,
in this case, the Hartree-Fock approximation to Eq.
(6), respectively].

t(t-„(r)=(P/2n. ) ~ (0/N)
—(1/2)p( r —R )2

k ~

X J eg 'r

J
—G /2P t'( G + k ) rJ e J

J
(21)

g(r)=e "' /( r
~

. (22)

The screening constant ~ is chosen such that the
—KFfunction e "" and the screening function according

to the Thomas-Fermi model have the same magni-
tude for a value equal to the Thomas-Fermi screen-

ing length. This equality leads to

a=(4/tr)(e m*/fi )kF, (23)

where m* is the effective mass of a conduction elec-
tron with wave-vector length k~.

Using Eqs. (20)—(22), we obtain the following ex-
pressions for the overlap integrals and interelectron-
ic matrix elements:

where 0 is the volume of the metal containing N
atoms, and Rz and G~ are vectors of the direct and
of the reciprocal lattice, respectively.

This form for gk(r) allows for the freedom of
piling up electron charges on the atomic cores. For
P~0 we approach a free-wave representation,
whereas for P~ oo the orbitals become sharply lo-

calized at the lattice vectors (RJ). The parameter P
must be chosen in some relation with the extension
of the orbitals for those valence electrons of the
atoms treated as conduction electrons in the model
(see later).

With the Gaussian functions (20) and (21), well-
known formulas can be employed for the evaluation
of (19). In keeping within the realm of the approxi-
mations adopted we assume that the screened
Coulomb potentials also have a Gaussian depen-
dence on the distance r, i.e.,

(k
~
k)=nge (24)

(Wt
i
Wt)—:(1

i
1)=

' 3/2

(25)

3/2

g exp
GJ (GJ+ k)
2P 2a (26)
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(k)kzIIk3kg)=16m' '0 Q exp
i,j,m, n

6 +6,'+6'+6„'
2

xF(I«»
I 6t —61—6~+6„+k,—k, —k, +k,

I
)

+ ~ +i'k &+ k2 —k3—k4 (27)

(k, lIIk, l)=4 „,yexp
I,J

02+ G2

2P

(6;—6J+k) —kz)

4a
J

xF(4~, I6, —6,+k, —k, I), (2&)

7T3
(k~1

I I
lkz) =16 g exp~z/z 2p 4(yi,J

xF(4(&+4~»
I 6t+6J+ ki+ kz

I ), (29)

(kl I I 1 1 ) =2 3 g exp
J

Gq (61+k)
F(3(~+3~),

I 6J+k I ), (30)

3

(k&kzIIk31)=2 3/z g exp
(G +G,'+ G') (6;+6,—6 +k, +k,—k, )'

2P 2a

xF(4a., I 6; 6~+—k, —k3I ), (31)

where the function F(x,G) is given by

e
—G /x 2 (G2/z)1/2 2

2

F(x,G)= z, /z f e' dt .
(xG )' &7r

(32)

All matrix elements occurring in expression (19) for
V-

k can be obtained from these relations.

V. SOLUTION OF THE GAP EQUATION

The gap function 6- at zero temperature can be
derived from the gap equation

JJ

q 2
(

2 +gz )1/z
k k k

(33)

where ek is a one-electron energy with respect to
the Fermi level. We remark that in this equation

+ c

2 —g
( ~2+gz )1/2

(34)

where e=e~ and e'=ek,' e, is a cutoff energy as-
sumed by Morel and Anderson' to be of the order
of ep whereas U„ is given by

(2tn ) Q(e'+ez)'/ V- k sinvdv . (35)ee
8 2~3 0 q k

I

V--„should include the contributions from all
relevant scattering processes. In the present ap-
proach we limit ourselves to taking into account the
indirect exchange via closed shells only. For an iso-

tropic gap function and an isotropic band structure
according to

Ak
&k= .-2m*

Eq. (33) can be cast into the form
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vo, —W(1 —e'/5) . (36)

Adopting the usual assumption that, near the Fermi

energy, the gap function is independent of e, i.e.,
b,,= b,o, one obtains

Uo '~0
de

(ei2+ g2)1/2
(37)

The integration extends over the energy range where

v~ is well approxiinated by Eq. (36), and thus for
e, = ~5~. Regarding the denominator in the in-

tegrand, larger values of e' are assumed to give con-
tributions to b,o of minor importance. If W & 0, Eq.
(37) only leads to the trivial solution ho —0, i.e., a
superconducting ground state does not exist in this
case. For W&0, however, one is led to the addi-

tional nontrivial solution

I
OC

-CF

W

FIG. 1. Typical plot of vs [Eq. {35)with e=Oj vs e'

as obtained from the numerical calculations with voo

(—= w) ~0.

The integration extends over the angle v enclosed by

q and k at constant e and e'. The factor in front of
the integral is due to (half) the density of states per
unit energy and for one spin orientation.

A computer program has been written to calcu-
late V- z for given values of q, k, a, P, kF, and ~
(we used thermal effective masses for m~ as listed
in Kittel' } and for a given lattice type. Subse-

quently, u,~ was obtained by numerical integration
according to Eq. (35).

In order to estimate the gap function h„we illus-
trate in Fig. 1 a plot of vo, vs e', as typically ob-
tained for those metals considered with voo &0. The
value of v~ at e'=0 is denoted by W and corre-
sponds to —N(0)V in the BCS formalism. The
tangent on v~ at e'=0 intersects the e' axis at 5.
Depending on the material, W and 5 may have posi-
tive or negative values;

~
5

~

was roughly found at
energies between 0.1m~ and e~.

The gap equation (34} cannot be solved in closed
form for 5,. Approximate solutions for the gap at
the Fermi level ho are obtained on the basis of the
following series expansion of v~ around e'=0,
truncated to linear terms in e':

b,o-2e, exp(1/W) . (38)

With the substitution e, = ~5~ (see above), the
order-of-magnitude estimate for the gap at the Fer-
mi level becomes

ho=2
i
5

i
exp(1/W), W&0 (39)

i.e., of the same form as the BCS expression. The
critical temperature T, can then be obtained from
the well-known relation 50——1.76k~ T, .

VI. MODEL CALCULATIONS

We present the following:
(1) We will first analyze the general behavior of

the parameter 8'with respect to the orbital parame-
ters a and P in the electron functions used. If the
mechanism proposed in this paper for an indirect

coupling between two conduction electrons is at a11

feasible, positive and negative values for the quanti-

ty 8' should arise. Furthermore, critical tempera-
tures for superconductivity, predicted from the
(negative) values of W, should be of the order of
magnitude observed for superconducting metals.

Concerning the sign of W, we concentrate on

W(a, P) =0. As numerical input data for a specific
calculation we choose first the bcc lattice and the
atomic density of cesium together with two different
values for the screening constant a. The first value,

a i ——0.62 a.u. 2 (=2.18 A }, is obtained from Eq.
(23) for cesium, whereas a second value a2 ——0.40
a.u. (=1.43 A ) is chosen in order to investigate
the dependence of the results on a. In Fig. 2 plots a
and b, corresponding with W(a, P)=0, are given

for a one- and two-conduction-electron system,
respectively. Inside the curves the parameter 8" is
negative; the dashed curves represent the influence

of changing x from 0.62 to 0.40 a.u.
Figure 2 shows that, at least for a definite area

(a,P), negative values for W are obtained. Subse-

quent calculations, but now keeping the atomic den-

sity constant in the fcc and hcp lattice structures
(with c/a=1.7 an average value for Mg and Zn},
lead to very similar W(a, P)=0 plots (Figs. 3 and

4). A variation in the value of a slightly changes
the negative regions. On the other hand, the in-

crease of the length k~ of the Fermi vector in going
from one- to two-conduction-electron systems re-
sults in a considerable decrease of these areas. In
order to illustrate these plots with some numerical
data we list in Tables I and II the results of the cal-
culations in the bcc, fcc, and hcp structures with
~=0.62 a.u. 2 and with m~=m, for the one- and



ERNER ~ SCHM(DT RUU , AND ZAUR~ S JANSEN

bcc structure

0.2

0. l

I

0.5

Na

I

O. l

I

0.2
I

O.g

FI~
~'»ductio~ eie

i P) =0 foz

Og

stant a=0.62 a.

a 2.u. )

a.u. , the d

k =0.429
er curves a, k = . a two

1 i id th e curves are ne a
'

negative; outside het e

ey do not posssess the bcc t
two-conduction-

cc structure.

P

(a.u. )

fcc structure

0. l—

1

0.5O. l 0.2 0.5

FIG. 3. Same
' . , u

I

arne as Fig. 2, bu

0.6

h
a cc lattice. Th

(a. )

e metals H

~ ~

g, a, In, and Sn arn are also includeded, although they



26 SUPEREXCHANGE AND SUPERCONDUCTIVITY: A POSSIBLE. . . 366S

hcp structure

0.2—

0. I—

I

O. I

1

0.2
I

0.5
1

0.4
I

0.5

«Be

(a.u. )

FIG. 4. Same as Fig. 2, but now for a hcp lattice (c/a=1.7). The metals Hg, Ga, In, and Sn are also included, al-

though they do not possess the hcp structure.

two-conduction-electron systems, respectively. The
order of magnitude of the resulting critical tem-
peratures will be discussed later.

(2) In the next step of our model calculations, i.e.,
application of the model to various metal groups in

the Periodic Table, one is faced, for each metal,
with the task of consistently determining the
parameters a and P, associated with the core
(Gaussian) and theta functions, respectively. We
shall consider the IA metals (alkalis), the IIA met-

als (earth-alkalis), the (monovalent) IB metals Cu,

Ag, and Au, and the (divalent) IIB metals Zn, Cd,
and Hg. To also incorporate into the present ap-
proach the IIIA metals (Al,Ga,In,Tl) and the IVA

metals (Sn,Pb), we assume these metals to behave

effectively as monovalent and divalent, respectively;
i.e., only the outer p electrons are treated as conduc-
tion electrons. In all cases, the cores form closed-

shell systems. As a consequence only s-type con-
duction bands can occur in the model.

Furthermore, in analogy with standard analyses

of the superexchange mechanism, only electrons in

the outer part of the ion core are supposed to con-
tribute to the indirect interaction. As a specific
choice the electrons in the outermost sp (IA,IIA)
and d (IB,IIB) shells are taken into account for the
evaluation of the core parameter a in the model. In
the IIIA and IVA metals the outer ns electrons are
contracted with the d core. For the qualitatiue as-

pects of the results the precise definition of the core

system is not of primary importance.
Consider now a pair of conduction electrons and

one core. Using Herman-Skillman calculations'
for the expectation values of r, in neutral atoms,
we relate the parameters u and P as follows (i and j
denote different metals):

a;/a;= g (r') g (r'),
core j core i

and, for each metal,

cond

(40')

noting that a and P are inversely proportional to
(r 2). The quantities g„„(r ) and g„„(dr )
represent the contributions of the core electrons and
of the outer valence electron(s) to the total (r )
value of the atom, respectively. The factors 2 and z
in (40') reflect the occupation number of the core
functions and the number of conduction electrons
per atom, respectively. This procedure of relating
the parameters a and P for all metals leaves us with

only one parameter to be determined.
As a last step in the determination of a and I3 we

correlate these parameters with earlier work on
indirect-exchange interactions. In an analysis of
180 superexchange in a number of ionic solids, on
the basis of a three-center four-electron model and
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TABLE I. (a) Values for the parameter F, times 10', for a one-conduction-electron system
in the body-centered cubic (bcc) structure, as a function of the Gaussian core parameter a and
the parameter P in the theta function for the conduction electron. The atomic density is taken

equal to that of metallic Cesium (at 5 K and atmospheric pressure). ab is the lattice parame-
ter, kF is the length of the Fermi wave vector, and a is the screening constant; bcc structure,

p~~ ——0.00134 a.u. ' (Cs), ab„——11.427 a.u. (Cs), k+ ——0.341 a.u. ', ~=0.62 a.u. (Cs). (b)
Same as (a), but now for a one-conduction-electron system in the face-centered cubic (fcc)
structure and af„——14.397 a.u. (c) Same as (a) but now for a one-conduction-electron system
in the hexagonal close-packed (hcp) structure (c/a = 1.7) and aq, ~

——10.046 a.u. and

cpzp 17.078 a.u.

P o.o5
u

—2)
0.10

(a)

0.15 0.20 0.25 0.30

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

—80
—231

12
98

130
145
153
157
160
162
163
164

—26
—377
—106

16
68
94

110
121
129
135
140
144

186
—419
—361
—209
—118
—60
—19

13
40
62
82
96

(b)

405
—90

—301
—277
—227
—183
—137
—90
—44
—2
35
70

546
220

80
110
110
62
26

—18
33
61
92

125

639
426
433
627
721
630
480
365
299
271
266
273

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

—54
—207

17
99

131
146
153
158
160
162
163
164

—1

—339
—97

20
70
96

111
122
126
135
140
144

204
—401
—372
—226
—136
—79
—37

4
25
48
69
87

(c)

433
—125
—418
—424
—370
—312
—251
—190
—132
—79
—32

11

589
176

—94
—148
—160
—189
—201
—182
—141
—90
—37

14

692
389
261
359
459
403
277
168
117
107
121
148

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

—60
—213

16
99

132
146
153
158
160
162
163
164

—88
—448
—121

13
68
95

111
122
130
136
141
145

36
—669
—418
—214
—114
—56
—15

17
43
65
84

100

272
—331
—385
—285
—217
—172
—130
—86
—44

4
34
67

450
62

8
92

112
71
32
21
33
58
88

120

570
321
376
594
705
631
489
372
303
271
264
270
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TABLE II. (a) Values for the parameter F, times 10, for a two-conduction-electron sys-

tem in the body-centered cubic (bcc) structure, as a function of the Gaussian core parameter
a and the parameter P in the theta function for the conduction electrons. The atomic densi-

ty is taken equal to that of metallic cesium. ab„ is the lattice parameter, kF is the length of
the Fermi wave vector, and sc is the screening constant. bcc structure; p~~ ——0.00134 a.u.
(Cs), ab ——11.427 a.u. (Cs), kF ——0.429 a.u. ', ~=0.62 a.u. (Cs). (b) Same as (a), but now
for a two-conduction-electron system in the face-centered cubic (fcc) structure and
aq„——14.397 a.u. (c) Same as (a) but now for a two-conduction-electron system in the hexag-
onal close-packed (hcp) structure (c/a =1.7) and ab,„——10.046 a.u. and c~,„——17.078 a.u.

Dos
u

—2)
0.10 0.15 0.20 0.25 0.30

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

192
158
158
170
180
187
191
194
196
198
199
199

193
160
159
171
181
187
192
194
196
198
199
200

191
158
158
170
180
187
191
194
196
198
199
200

207
129
105
115
129
140
150
158
164
169
174
178

208
133
108
117
130
142
151
158
165
170
174
178

177
97
91

110
128
141
151
159
165
171
175
179

(a)

339
142

12
—11

1

21
43
65
86

105
122
138

(b)
340
128
—8

—31
—18

4
26
48
70
90

108
125

(c)
254
36

—35
—25
—1

23
46
68
88

106
124
139

545
275

38
—49
—64
—54
—31
—3
29
62
94

125

564
242

—38
—147
—167
—154
—126
—90
—51
—11

29
66

433
124

—37
—72
—67
—51
—28

0
31
62
93

123

710
444
214
129
107
95
90
96

112
137
165
195

752
411
104

—35
—79
—92
—89
—70
—39

1

44
88

601
298
139
105
104
100
95
99

113
136
163
192

826
593
431
418
441
431
394
358
337
330
335
348

886
570
319
241
240
232
205
180
171
178
198
226

729
469
368
395
436
435
402
365
342
332
335
347
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using ls-type Slater functions X m' ' exp( —Ar),
De Jongh and Block' found excellent agreement
with experiments for A(F )=1.11 a.u. (=2.10
A '}, the orbital parameter of the doubly occupied
function representing the core of the fluorine ion.
Although in these calculations perturbation theory
was employed we adopt this numerical result in the
present paper in order to estimate al/ parameters a
and P simultaneously.

Imposing the simple condition'8

~(1s Gaussian) = ( ~(1s Sister) (41)

we find as the corresponding core parameter for F
on the basis of a ls Gauss function

T

a= (1.11) =0.70 a.u.
3 1T

Then, comparing the diamagnetic suceptibilities 7
of F and of the cesium core, all parameters a and

P are determined through the additional relation

(42)a(F )/a(Cs) =X„„(Cs)/X(F ) .
This relation arises because susceptibilities are pro-
portional to expectation values of r, and thus in-

versely proportional to the core parameters. From
earlier work' we take the value X(F ) = —12

&&10 emu/gatom. The value for cesium is calcu-
lated as the ratio of the contribution of the core
(34.4 a.u. ) to the total expectation value of r (88.4
a.u.~), times the value of the (total) susceptibility
of cesium (—77.5 X 10 emu/g atom) listed in
Ref. 20. From relation (42) we then obtain
tz(Cs) =0.30 a.u.

(3) With the values of the Gaussian orbital
parameters determined above we can now carry out
the calculations for the various metals considered.
In order to present the computational results in a
general picture, independent of the actual lattice
parameters, all lattice structures have been expand-
ed (isotropically) such that the atomic densities are
equal to that of cesium. This type of scaling on the
cesium density leads, for each metal, to a (one-
dimensional) scale factor s=[p/p(Cs)]'~ . In scal-
ing terms (keeping the products ar, pr, Kr, and
ik. r invariant) the parameters a, p, and K are
changed proportionally with s, whereas the
scaled Fermi lengths of common-valent metals
coincide with kF(Cs) and (2)' kz(Cs), in the one-
and two-conduction-electron systems, respectively.
Using these scaled parameters, i.e., a =as
P=Ps, K=Ks, kF =kg(CS), or 2' kF(Cs), one
readily verifies that the corresponding value of the
scaled parameter 8' is related to the original value

W as W=s W. Neglecting the relatively small influ-
ence of K on the general W=0 plots (Figs. 2—4,
dashed curves), we thus conclude that the scaled
calculations already reflect the sign of the nonscaled
calculations of W.

In Table III we list the various quantities men-
tioned in the text which have been utilized in the
determination of the parameters a and y [with
a (E }=0.70 a.u. ]. Furthermore, the atomic
densities, scale factors s and the scaled values a and
a are reported. In Figs. 2—4, the points with coor-
dinates (tz, P) of each metal are plotted in the corre-
sponding lattice structure.

(4) In considering Figs. 2, 3, and 4 (bcc, fcc, and
hcp lattices, respectively) we make the following ob-
servations:

(a) The fcc lattice has the most extensive
negative- W domain, both for one- and two-
conduction-electron systems. The plots for the bcc
and hcp lattices are very similar.

(b) Two-conduction-electron systems have the
smaller a,P domain of negative W. This fact is
directly related to the larger kz. The overlap in-
tegral between the conduction-electron wave func-
tion with k=kz and the core function decreases
with increasing kF [see Eq. (26)].

(c) Decreasing the screening (lowering K), i.e., go-
ing from the solid to the dashed curves in the fig-
ures, reduces the negative-W(a, P) region. At the
same time, the W values are found to become more
extreme, i.e., negative values are more negative, pos-
itive values more positive, than for ~=0.62 a.u.

(d} Increasing P at constant a, i.e., increasing the
localized component of the conduction-electron
wave function, favors negative values of. W, which
is to be expected.

(e) Increasing a at constant P, i.e., reducing the
core, disfavors negative values of 8' for similar
reasons.

(f) The fact that different plots are obtained for
different lattices, at the same atomic density and in
a one core app-roximation [see text preceding Eq
(19)],arises from the fact that in the expression (19)
for V-

k summations occur over vectors of the re-
ciprocal lattices, these being different for the three
structures.

We will now make a number of comments re-
garding the metals considered in their respective
crystal structures. It is to be noted that the lattice
parameters (and thus the atomic densities) mostly
refer to room-temperature values. In addition, Hg
(rhombohedral), Ga (complex), In (tetragonal), and
Sn (diamond structure) fall outside the scope of
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TABLE III. Values for the various quantities occurring in the text. y is the ratio P/a
[Eq. (40 )], n/a(Cs) is the ratio according to Eq. (40), p is the atomic density, s is the scale
factor equal to [p/p(Cs)]'~', a. is the screening constant [Eq. (23), including effective masses].
The last two columns list the scaled screening constants and core parameters [with
a(Cs) =0.3], respectively. Atomic units are used throughout.

Lattice g (r ) g (r ) y a/a(Cs) pX10 s
core cond

o,

a(cs) =0.3

Li
Na
K
Rb
Cs

Be
Mg
Ca
Sr
Ba
CU

Ag
Au

Zn
Cd
Hg

Al
Ga
In
Tl

Sn
Pb

bcc
bcc
bcc
bcc
bcc

hcp
hcp
fcc
fcc
bcc

fcc
fcc
fcc

hcp
hcp
Rhomb.

fcc
Comp1ex
Tetr ag.
hcp

Diam.
fcc

0.85
5,9

16.8
23.6
34.4

0.45
4.4

13.5
19.8
29.6
12.6
21.2
26.4

9.4
17.5
22.6

14.1
19.8
30.6
36.5
25.9
31.8

16.7
19.2
28.6
32.2
39.6

16.6
23.3
37.0
43.5
54.7

11.3
13.3
13.4
17.1
20.8
21.6
14.5
14.2
16.6
17.6

23.7
25.9

0.03 40.5
0.15 5.83
0.29 2.05
0.37 1.46
0.43 1.00

0.03 76.4
0.19 7.82
0.36 2.55
0.46 1.74
0.54 1.16

0.56 2.73
0.80 1.62
0.99 1.30

0.55 3.66
0.84 1.97
1.05 1.52

0.49 2.44
0.70 1.74
0.92 1.12
1.04 0.94

1.09 1.33
1.23 1.08

696
393
208
170
134

1791
638
341
264
234

1259
866
872

975
685
631

890
755
566
518

536

1.73 1.64 0.55
1.43 0.78 0.38
1.16 0.63 0.47
1.08 0.59 0.51

1.00 0.62 0.62

2.37 0.44 0.08
1.68 1.20 0.42
1.37 1.42 0.76
1.25 1.37 0.87
1.20 0.93 0.63

2.11 1.26 0.28
1.86 0.81 0.23
1.87 0.93 0.27

1.94 0.90 0.24
1.72 0.69 0.23
1.68 1.72 0.61

1.88 1.21 0.34
1.78 0.45 0.14
1.62 0.96 0.37
1.57 0.78 0.32

1.59 1.09 0.43
1.54 1.66 0.70

4.05
0.85
0.46
0.37
0.30

4.07
0.83
0.41
0.33
0.24

0.18
0.14
0.11

0.29
0.20
0.16

0.22
0.17
0.13
0.12

0.16
0.14

structures considered. %e have included these met-
als in the figures for all three configurations.

A. Metals with the bcc structure:
The alkali metals and Ba

The scaled screening parameters a are 0.55 for Li;
0.38 for Na; 0.47 for K; 0.51 for Rb; 0.62 for Cs;
0.63 for Ba. Metallic lithium, sodium, and potassi-
um are definitely outside the W(a, p)=0 curves
and thus are not superconducting according to the
model, and according to experiment. Metallic rubi-
dium lies outside the curve for x& ——0.62 a.u.
thus definitely in the positive-W region for its own
k value of 0.51. Metallic cesium falls almost pre-
cisely on the W=O curve. It is found experimental-
ly

' to become superconducting under high pres-
sures. Although the phenomena involved are ap-
parently quite complex (phase transitions}, a simple
explanation in terms of the present model would be

that increased pressure increases p, and thus moves
the point for Cs vertically into the negative-8' re-
gion. It has indeed been shown in the literature that
at high pressures the 6s valence electron of Cs goes
over into the more inner atomic 5d state, which
produces in the model the increase of P desired.
The same phenomenon has been suggested to occur
with Ba under high pressures, which is consistent
with the results obtained on the basis of the model
(see Fig. 2). The high-pressure phase for barium
(BaII) has been identified as hcp; Figure 4 indi-
cates that on this basis alone Ba could not become a
superconductor.

B. Metals with the fcc structure:
Ca,Sr,Cu, Ag, Au, A1,Pb

The scaled screening parameters k are 0.76 for
Ca; 0.87 for Sr; 0.28 for Cu I; 0.23 for Ag; 0.27 for
Au; 0.34 for Al; and 0.70 for Pb. Calcium lies de-
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finitely outside the 8'&0 region, whereas strontium
lies practically on the 8'=0 lines for ~& ——0.62
a.u. and z~ ——0.40 a.u. , and even slightly inside
for its own a value of 0.87. Aluminum, treated as a
one-conduction-electron system, is found to lie just
on the edge of the negative-8" domain. In fact, ex-
tensive pseudopotential calculations by Carbotte
and Dynes show good agreement with the experi-
mental critical temperature (1.2 K) on the basis of
the BCS phonon-mediated couphng mechanism.
The same applim to Pb, for which metal Carbotte
and Dynes again found good agreement with ex-

perimental values. It is to be noted that, both for
AI and Pb, a change in a has a negligible effect on
W(Fig. 3).

C. Metals with the hcp structure:
Be,Mg, Zn, Cd,T1

The scaled screening parameters Ir are 0.08 for
Be; 0.42 for Mg; 0.24 for Zn; 0.23 for Cd; and 0.32
for Tl. Of these metals Be is found to lie far out-
side the 5'=0 curves, although experimentally it
is (very weakly) superconducting. Also, the point
for Mg lies outside the W&0 domain, whereas Zn

(barely), Cd, and Tl are inside. These metals are
thus superconducting according to the model, in
agreement with experiment.

The points for Hg (rhombohedral), Ga (complex),
In (tetragonal), and Sn (diamond structure) lie well
inside the 8'&0 domain in all three structures
(Figs. 2 —4). We thus expect these metals to be su-

perconducting also in their own structure.
The sensitivity of the results with respect to the u

value for Cs can, in the figures, be easily investigat-
ed at constant y by changing the distances from the
origin for the metals considered by the percentage
increase or decrease of that of Cs (all ratios y
remaining constant). It should also be emphasized
that the distance from a point to the W =0 curve(s)
is not a measure of the magnitude of

~

W ~; Figures
2 —4 just give information on the sign of W (see
also Tables I and II). The only statement we can
make is that points close to the 8'=0 curves have
8'=0.

In spite of the fact that it is difficult to attempt
drawing quantitative conclusions from Tables I and
II, due to the extreme sensitivity of T, with respect
to W, the following observations are significant
[note that, in calculating W occurring in the equa-
tion for the critical temperature, the tabulated 8'
values must, for each metal, be divided by the scal-

ing parameter s and multiplied by m~/m; see Eq.
(35)]:

(i) Metallic cesium: a =0.30 a.u. , P=0.13
a.u. , m*/m=1. 43, s= 1. From linear extrapola-
tion of the data given in Table I(a) we obtain
W= W=1.5 X 10, i.e., (m*/m) W=2X 10, thus
positive. For

~

5
~

=1 eV and a transition tempera-
ture T, =5 K we obtain 8'= —0.09, which implies
P=0. 16 a.u. . Thus a 25% increase of P due to a
high-pressure transition 6s —+5d is sufficient to
render cesium superconducting.

(ii) From the tables we infer that
1&

~

b, W/b, P~ &10 at W=O covers both one- and
two-conduction-electron systems. Then, with

T, = (const)e '~ we have

id'r, /T, .
[
= i(1/W')b, W/hP

f [APE,

the constant amounting to 13200 K for ~5~ = 1

eV. For example, if W= —0. 1, then T, =0.5 K
and 50&

~

hT, /AP
~

&500, in the units considered,
implying that, with AP=0.01 a.u. , 0.5 & hT, & 5

K, i11ustrating the very steep dependence of T, on

(iii) Except for the fcc lattice, the calculated
values for

~

W
~

of two-conduction-electron systems
inside the 8'&0 region are, in comparison, low, as
can be seen, e.g., from Table II(c) (hcp). A
minimum, 8'= —0.1, is found for a=0.20 and
P=0.18.

For cadmium, with a=0.20, P=0.17, 7=0.23,
s= 1.72, m~/m =0.73, and T, (expt) =0.6 K, a value
of W= —0.23 (

~

5
~

=1 eV) should be obtained. In
this context, it should be noted that the screening
parameter Ir for Cd is very low. We know that neg-
ative values of 8' become more negative, inside the
8'&0 domain upon decreasing the screening. For
Ir=0.4, the minimum value of W is likely to
amount to —0.12; a calculation with a screening
parameter of 0.23 would lead to a still more nega-
tive value of 8'.

(iv) Metallic mercury: a =0.16, P=0.17,
m*/m=1. 88, s=1.68, and k=0.61. By linear ex-
trapolation from Table II(b) we find
8'= —33&(10 . A critical temperature of 1 K ls
obtained for W= —94X10 (

~

5
~

=1 eV),
whereas T, = 4K for 8'= —110'10 . The
values a =0.20 and P=0.20 already yield
W= —147X 10 [T,=29 K; T, (expt) =4.2 K].

VII. CONCLUDING REMARKS

In conclusion we note the following:
(1) In spite of the phenomenal success of the BCS
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theory in explaining a broad spectrum of properties
of superconductors, doubts have arisen over the
years, particularly since about 1975, as to whether
the phonon-mediated coupling mechanism between
conduction electrons can be the only or, in a num-
ber of cases, even the principal source of supercon-
ductivity. Observed properties of a number of met-
als and alloys (anomalous conduction-electron spin
resonance, nuclear magnetic resonance, magnetiza-
tion, and other phenomena} have led to the sugges-
tion that itinerant-electron antiferromagnetism
might in those metals be the source of Cooper-pair
formation. The same mechanism has also been
suggested on a theoretical basis.

%e emphasize once more that the indirect-
exchange coupling proposed in the present paper,
leading to itinerant-electron antiferromagnetism, is
postulated as one mechanism through which super-
conductivity can arise. As mentioned earlier exten-
sive calculations by Carbotte and Dynes on Pb
and Al, using pseudopotential methods, have shown
that in these metals the indirect (nonexchange) in-

teraction between conduction electrons via lattice
vibrations is most likely the dominant mechanism
for superconductivity. Looking back at the results
of Fig. 2, where it is seen that Pb and Al arejust on
the edge of the area where W& 0, we conclude that
the phonon-mediated coupling may indeed play the
dominant role in these metals.

(2) A necessary condition for the occurrence of
superconductivity is that the interaction between
conduction electrons be attractive with respect to a
(supposedly any) one-electron description; this in
turn requires, in the superexchange formalism con-
sidered in the present paper, that the wave functions
for these electrons be of a sufficiently atomic type
near the cores. A measure for this degree of locali-
zation is, in the model, given by the parameter
y= p/a, where p is the theta-function parameter for
the conduction electrons and where a is the Gauss-
ian parameter characterizing the core electrons.
For P~O the conduction-electron wave functions
become plane waves, and y~0. As a result the net
interaction between the conduction electrons is
repulsive, i.e., pair formation cannot occur (see also
Figs. 2 —4). As y increases the conduction-electron

wave functions become more and more atomic near
the cores; this is the case going from top to bottom
in the Periodic Table for all the metals considered
(see Table III). Experiments show that only the
heaviest metals in the columns IA and IIA (with
the exception of Be}become superconducting under
high pressure (Cs and Ba). Previous attempts '

to explain such regularities have not been strikingly
successful.

(3) Similar "atomic" characteristics of supercon-
ductivity have, on an empirical basis, been proposed
by Gambino and Seiden. They consider a quanti-

ty E&, the difference in energy between the ground
state of an atom and its first excited state, as the
dominant parameter. They then connect E& (linear-

ly) with "the repulsion a conduction-electron experi-
ences when it enters the core region. " A large value
of E~ implies that the electron is kept away from
the core. It then can interact only weakly with the
core; from such a relationship these authors deduce
an empirical electron-core pseudopotential. There
is clearly a relation between our model parameter y
and E&. If y is small, then E& must be large, and
the converse is also true. Thus although the
mechanisms leading to pairing are very different in

the two cases (y: superexchange; Et. electron-

phonon interactions), qualitative conclusions re-

garding correlations with other physical quantities
considered by Gambino and Seiden (cohesive ener-

gy, melting temperature, Debye temperature, ther-
mal expansion) are the same.

(4) A more complete theory involving the present
indirect-exchange mechanism as well as lattice vi-

brations will be attempted in a planned future publi-
cation. It is to be noted that in such an analysis the
indirect interaction via phonons is not just a com-
ponent to be added to the indirect-exchange
mechanism since the total wave function must al-

ways be antisymmetrized including the core elec-

trons.
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