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Critical currents of narrow, thin aluminum strips have been measured as a function of
temperature. For the smallest samples uniformity of the current density is obtained over a
large temperature range. Hence the intrinsic limit on the current-carrying capacity of the
superconductor was measured outside the Ginzburg-Landau regime. The experimental
values are compared with recent theoretical predictions by Kupriyanov and Lukichev. An
approximate method of solving their equations is given, the results of which agree with the
exact solution to within 1%. Experimental data are in excellent agreement with theoretical
predictions. The absolute values agree if one assumes a pl value of 4X 10~'¢ Q m? with
vr=1.3%X10% m/s. This value for pl is the same as that found from measurements of the
anomalous skin effect but differs from values extracted from size-effect-limited resistivity.

I. INTRODUCTION

The ultimate limit on the current-carrying capa-
city of a superconductor is determined by the pair-
breaking mechanism. When the superfluid velocity
reaches a value where a further increase leads to a
rapid reduction of the number of pairs, the super-
conducting state collapses and a voltage is mea-
sured. It is generally accepted that close to T, the
critical value is given by the Ginzburg-Landau re-
sult with parameters derived from the Gorkov
theory. Various experiments on tin samples have
shown that the temperature dependence and abso-
lute value are in good agreement with theoretical
predictions.”? At lower temperatures the validity of
the Ginzburg-Landau equations breaks down, and
more complex theories are required to describe the
superconductor in the presence of gradients and
fields. A particular useful result has been obtained
recently by Kupriyanov and Lukichev,® who solved
the Eilenberger equations numerically for the
current-carrying state.

Experimentally, little is known about the critical
current density at low temperatures. The difficulty
lies in the fact that it has to be determined in sam-
ples with cross-section dimensions that are small
compared to the characteristic lengths of the super-
conductor. First, if the sample is wider than the
electromagnetic penetration depth, the current piles
up at the edges and the current distribution is
nonuniform. For a thin-film sample the relevant
penetration depth is that for a magnetic field per-
pendicular to the film A, which for films much
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thinner than the bulk penetration depth A equals
A2/d, where d is the thickness of the film. For a
dirty superconductor at low temperatures A is about
Ar(0)V'&y/I with A;(0) the London penetration
depth, &, the Bardeen-Cooper-Schrieffer (BCS)
coherence length, and / the mean free path for elas-
tic scattering. As a typical example for aluminum
one finds for a film of thickness d =0.1 pm, /=0.1
pm, £6=1.6 um, and A;(0)=16 nm that A, =40
nm. Clearly one has to go to rather thin and nar-
row films to prevent nonuniformity of the current
at low temperatures. This difficulty does not exist
close to T, since the penetration depth increases
with increasing temperatures.

Secondly, the width must be compared with the
coherence length. If the width is larger than the
coherence length, vortex nucleation and vortex flow
can be induced at high current densities. Likharev*
Rredicts that ideally, vortex flow will occur at about
7 of the pair-breaking current. A minimum width
is found of 4.4£ below which no vortices can exist.
At low temperatures we expect & ~1/&ol, which
for the same numbers given above equals 0.4 um.
Hence with a careful choice of thickness and using
aluminum with its large BCS coherence length, an
experimentally accessible range for meaningful
measurements of the critical pair-breaking current

appears to be available.
This paper, which extends earlier work,’ reports

on an investigation of critical currents in aluminum
films in which a uniform current density was ob-
tained at temperatures well below 7,. The result
will be compared with calculations based on the
Eilenberger equations following the approach taken
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TABLE I. Normal state properties of the samples.

Ros Rys L w d

Sample Q) Q) (mm) (um) (um) R
1 628.7 137.5 1.00 0.61 0.089 4.57
2 492.2 93.3 1.00 0.68 0.098 5.28
3 3772 70.8 1.00 0.88 0.099 5.33
4 502.4 184.1 0.20 0.50 0.034 2.73
5 782.6 384.2 0.10 0.30 0.020 2.04
6 47.7 2.5 3.00 0.35/2.5 1.24 19.2

in Ref. 3. Some attention is paid to a simplified nu-
merical calculation.

II. EXPERIMENTS

The samples were made by cutting a long, narrow
filament out of a metal film. Deposition of the film
was performed by evaporation of aluminum from
an electron gun onto a room-temperature glass sub-
strate at a rate of about 30 A/s in a vacuum of 10~
Torr. Thickness was determined by a quartz crystal
oscillator. If necessary, a more accurate value was
determined from resistance measurements, which
turned out to agree with optical interference results.
For cutting, a diamond tool was used mounted in a
well-balanced and accurate scratching-apparatus® to
perform the final step in the fabrication process.
This apparatus enables one to limit the variations in
the width to less than 0.1 um. Optical and electron
microscopic inspection reveals a well-defined edge.
In Table I the data of six samples are shown. As
indicated, strips as narrow as 0.3 um could be made
by this simple technique. One strip (no. 6) was
made rather thick. The shape of the diamond tool
leads to a trapezoidal cross section which is of im-
portance in thick films.

The measurements were performed in a *He cryo-
stat. The sample, mounted in a lead-plated vacuum
can, was connected with the *He chamber via a
thermal resistance. The temperature was raised by
resistive heating of the copper block on which the
sample was mounted. Temperature control provid-
ed a stability of better than 1 mK. At lower tem-
peratures, the additional heat generated by a con-
stant measuring current led to a significant rise in
temperature of the sample. Therefore we recorded
the voltage response to a one-period current ramp
(60 ms) fast enough to prevent any significant rise
in temperature. Improved sensitivity was obtained
by using a signal averager. At the critical current a
steep rise in voltage was observed providing a
clear-cut indication of the critical value. With a

voltage resolution of 1 uV, no precursor of voltage
could be observed before the discontinuous rise in
voltage occurred.

In Fig. 1 the critical current data are plotted as a
function of temperature. Close to T, the classical
Ginzburg-Landau result is found:

. T 3/2
T,

[4

Je =Jc(0)

All data are normalized to the coefficient j (0).
Since thickness and width are not accurately known
the measured currents are converted into values for
the current density by using the expression

IR, ,
Lp

ph

where the cross section has been expressed in the
normal-state resistance and the resistivity at 4.2 K
is determined from the measured resistance ratio
R=R,9s/R,,. Obviously this method fails when
width and/or thickness are nonuniform. p, is the
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FIG. 1. Experimental results for the critical current
in reduced units as a function of temperature for dif-
ferent samples.
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TABLE II. Superconducting properties.
T ! &o V&l A Jje(0) (GA/m?)
Sample (K) (nm) (um) 1/& (um) (m) Expt. Theor.
1 1.196 53.5 1.50 0.035 0.28 0.081 153 159
2 1.203 64.1 1.49 0.043 0.31 0.061 130 175
3 1.203 64.8 1.49 0.043 0.31 0.059 156 172
4 1.267 25.9 1.41 0.018 0.19 0.41 111 120
5 1.356 15.5 1.32 0.012 0.14 1.1 107 103
6 1.154 272 1.55 0.175 0.65 0.0012 257 299

phonon-limited resistivity at room temperature of
2.67xX10~8 Q@ m.” For clarity, in Fig. 1 some of
the data are taken together. Samples 2 and 3, fabri-
cated on the same substrate, were almost identical.
As a result the critical current data could not be
distinguished from each other. Samples 4 and 5, al-
though having different parameters, show practical-
ly the same critical current data. At lower tempera-
tures most of the samples follow a universal curve
down to T'/T,=0.6. The only strong deviation oc-
curs in sample 6, which was exceptionally thick.

In Table II specific data about the samples are
summarized. The critical temperature increases, as
usual for aluminum thin films, with decreasing
thickness. The mean free path for elastic scattering
is determined from the resistance ratio R,95/R4 5,
the phonon-limited resistivity, and an appropriate
value for the p/ product of aluminum. For reasons
given below we have used p/ =4x10~!* Qm?. Us-
ing the BCS value for &,=fivgp/mA(0) with
vp=1.3%10® m/s and A(0)=1.76kzT,, one finds
that all samples are in the dirty limit / << &, which
is inevitable with thin films. In Table II we have
also given typical values for the coherence length
and penetration depth at T=0 K [with A;(0)=16
nm]. As one observes, only the thinnest samples
approach the required limits for uniform current
density and exclusion of vortex formation.

III. THEORY

The critical pair-breaking current at arbitrary
temperatures has been calculated by a number of
authors. For arbitrary mean free paths one must
rely on the Gorkov equations or their simplified
version, the Eilenberger equations. In the follow-
ing, we will recall briefly the calculation given by
Kupriyanov and Lukichev,® which is based on the
Eilenberger equations and, to our knowledge, pro-
vides the most general results presented so far.
Other results are obtained by Bardeen,® Maki,” and
Ovchinnikov.!°

The Eilenberger equations involve the functions f
and g, which are closely related to the anomalous
and normal Green’s functions of a superconductor.
For a current-carrying state in a one-dimensional
situation where the vector potential can be neglect-
ed, solutions can be looked for in the form

]"_:feiux, Keriux .

A is the gap parameter and x is the coordinate along
the current. u is the phase gradient, proportional to
the velocity of the superconducting condensate.
The values of f and A have to satisfy the following
set of equations:

(2%w +itivpu cosv)f
=28+ 2g()—ren, )

g=(1-rH"2, 2)

A

o =0.

(3)

2|

>0

A ln—T— +2mwkgT
T,

Here #iw =(2n+1)mkgT are the Matsubara fre-
quencies and vy is the modulus of the Fermi veloci-
ty. It is assumed that scattering by impurities can
be approximated by a relaxation-time model with 7
the elastic scattering time. v is the angle between
the direction of Vy and the direction of the super-
current. The angular brackets around f and g indi-
cate averaging over all velocity directions of the
vector Vp.

For a given value of u this system of equations
has a solution for A, (), and (g ) at each tempera-
ture 7. The supercurrent carried at these values is
given by

—4ieN(0)mkp Tvp Y, (g cosv) , 4

0>0

j:

where N(0) is the single spin density of states per
unit volume at the Fermi surface. A solution of
this set of equations involves calculation of f and g
and their averaged values. As shown by Kupri-
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yanov and Lukichev a major simplification is ob-
tained by introducing the function ® with the sub-
stitution
f= @ g= L
[(%)2_'_(‘[)2]1/2 ’ [(ﬁ‘o)2+¢2]1/2 :

(5)

Then f and g can be eliminated, and a new set of
equations is found that involves only {f) and (g).
For convenience we define X=(g) and
Y=A/%+(f) /27, which leads to

_VUr¥ . 12 24172
—22(1 XH14+2Z4), ©

Y= —%[1 —(vpur)larctanZ ]~ ,

where

—1
14 201

Z =
VFUT X

Supplemented with the gap equation and the ex-
pression for the current

T A 2Y
Aln—427kgT —— ———arctanZ | =0,
nTc+ kg go [ﬁa) vFuarca
(7
j= 8meN(0lpkyT
vy P
X > | [arctanZ —(Z+Z )77,
@>0 UplU
(8)
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FIG. 2. Supercurrent as a function of phase gradient
for dirty superconductors as given by the microscopic
theory at various temperatures. j.(0) is defined by Eq.
(10).
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FIG. 3. Theoretical dependence of the supercurrent
on the order parameter at various temperatures. A, is
the value of the order parameter for u =0. GL indi-
cates the critical value of Ginzburg-Landau theory.

Egs. (6)—(8) constitute the final result of Ref. 3,
which allows a straightforward numerical calcula-
tion of j and A as a function of u and 7. [Note the
misprint in the first line of Eq. (7) of Ref. 3 to be
compared with our Eq. (6)]. A numerical computa-
tion runs as follows: At fixed temperature T one
chooses values for u and A and computes for each o
value the quantities X, Y, and Z from Eq. (6). A
new value for A is then derived from Eq. (7),
whereupon the calculation is repeated. This itera-
tion continues until self-consistency in Eq. (7) is
achieved. In Fig. 2 the current density as a function
of the phase gradient u is shown for parameters of
sample 5. For the same parameters Fig. 3 shows
the current density as a function of the order

1.0
L\
AN == [-E12 ] (Rere)
- T .
0.8+ R
[ o 2| '\\ —— Kl-result (L<<§,)
)°/J° ] \ + Sample no.S

FIG. 4. Experimental results of sample 5 compared
to theoretical predictions. Thick solid and dashed lines
are predictions of Refs. 3 and 8, respectively.
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parameter. No dramatic changes of behavior com-
pared to the Ginzburg-Landau result are observed.
The critical current density is given by the max-
imum shown in both figures. Over the whole tem-
perature range the critical current has been deter-
mined and given in Fig. 4 as a thick solid line. For
different mean free paths, compared to the BCS
coherence length, small differences are predicted.
However, the experimental values for //&, are so
close to each other that different theoretical curves
are indistinguishable on this scale. For very short
mean free paths the computation time for the deter-
mination of the critical value can be reduced con-
siderably by using an analytic approximation of
Egs. (6)—(8) (Appendix).

An important scaling parameter is j.(0) which is
the critical current that is found experimentally by
extrapolating the result found close to T, to T=0.
Theory predicts that

167V 27
63£(3)

kpT. I 172

jc(0)= W

eN(Q)upkpT,

9)

for a superconductor in the dirty limit. It is advan-
tageous to rewrite Eq. (9) in such a way that readily
available experimental quantities can be inserted.
By using the free-electron result

o=p~'=[2e%pN(0)1/3,

one finds
()= 8T 2m | Ko Te) - (10
1= 1B | Avgplpl)

This expression can be used for a quantitative com-
parison with experiments. The only quantity that is
poorly known is the p/ product. In the last column
of Table II theoretical values for j.(0) are given for
pl=4x10"1 Qm?

IV. DISCUSSION OF THE RESULTS

From Fig. 4 one observes that the agreement be-
tween KL theory and the critical current of the
smallest samples (Nos. 4 and 5) is satisfactory. A
slight deviation of only a few percent remains at the
lowest temperatures. Comparisen _of the various
parameters given in Table II reveals that the dif-
ferent samples have approximately the same coher-
ence length. They differ strongly with respect to
their electromagnetic penetration depth. The best
agreement is obtained for samples with penetration
depths comparable to the width of the strips. In-
creasing A, by a factor of 3 (sample 5 relative to 4)

26

did not lead to a further increase of reduced critical
current. Therefore we believe that we have reached
the limit of a homogeneous current density down to
relatively low temperatures. Samples 1—3 appear
to develop some nonuniformity at the lower tem-
peratures, leading to a reduction in the critical
current as discussed in Refs. 1 and 2. All samples
studied were small compared to the Likharev cri-
terion for vortex formation.

It is interesting to compare the results also with
the phenomenological expression given by Bardeen.?
For a dirty superconductor he suggests

21372

i.(0)
o= , (11)

Je=%v3

T
T,

1—

where the proportionality constant is chosen to
reproduce the Ginzburg-Landau result close to 7.
This dependence is shown in Fig. 4 as a dashed line.
Although reasonably good as a first estimate, this
phenomenological result is clearly inferior to the
KL theory in fitting the data.

A deviation of a few percent between the mea-
surements and KL theory remains at the lowest
temperatures. No improvement was observed when
A, was increased. We believe that the main cause of
these deviations is a fluctuation in width of the
samples. On a length scale of a few micrometers or
less a variation in width of about 10% on a total
width of 0.3 um occurs easily. At higher tempera-
tures where the coherence length is longer than the
length of such a variation no effect will be observed
and an average width can be assumed. At lower
temperature, however, the critical current will be
determined by the minimum width. In other words,
at lower temperatures the effective cross section will
be smaller than close to T,, leading to a smaller
critical current.

As shown by Skocpol® and Andratskii et al.! the
absolute values of the critical current of tin samples
close to T, are in excellent agreement with theoreti-
cal predictions. A similar quantitative comparison
has not yet been made for aluminum. We find that
the absolute values agree very well with the predic-
tions of Eq. (10) assuming that vy=1.3%X10° m/s
and pl is about 4X 1071® Qm? It is interesting to
compare the latter value with those found from oth-
er sources. Fickett’ discusses a number of pl values
extracted from measurements on size-effect-limited
resistivity. Although differences of a factor of 4
have been found, for polycrystalline samples at low
temperatures a value of 9x 10! Qm? is recom-
mended. On the other hand, from anomalous skin-
effect studies on aluminum Fawcett!! finds more or
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less the same values as indicated by the present ex-
periments. Obviously, characterizing a metal with a
complicated Fermi surface with a single parameter
derived from a free-electron model is an oversimpli-
fication. Nevertheless, in many experiments the pl
product serves as a useful guide for quantitative
evaluation, for example, in nonequilibrium super-
conductivity. The agreement between this result
and that of the anomalous skin effect, combined
with the uncertainties in the results given by Fick-
ett,’ suggests that one preferably should use
pl~4x107'¢ O m? for aluminum.

In conclusion, we have found that a theory based
on the Eilenberger equations provides an accurate
prediction for the critical pair-breaking current at
low temperatures in dirty superconductors. In per-
forming such measurements careful attention must
be paid to the uniformity of the current density.
This limitation prevented us from measuring pair-
breaking currents in superconductors with arbitrary
mean free path. ‘
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APPENDIX

Analytic expressions for the critical current can
be found from Egs. (6)—(8) only for T~T, with ar-
bitrary value for [ /£, and for T~0 K in the clean
and dirty limit (cf. Ref. 3). Intermediate cases are
to be dealt with numerically. However, because of
the small ratios / /£, realized in the present experi-
ment, the equations can be simplified substantially.
It will be shown that the results are identical with
those obtained by Maki.” Subsequently, an approxi-
mation will be derived from these simplified equa-
tions that allows determination of the critical
current in closed form over the entire temperature
range.

From the analytic expressions valid near T=0 K
and near T=T, it follows that in the dirty limit at
the critical current the phase gradient u is propor-
tional to 7~!/2. This means that even at the critical
current

Z =vputX(X +2071)"!

approaches zero when 7 goes to zero. Expanding
arctanZ, which occurs in Egs. (6)—(8) up to third
order, we get

y AX+207) | (opur’X |
- 2fwr 60T ’
2 (Al)
1— X2~ 2YZ
UrU
2 2 -
A ) (vput)°X
~|— | X |l4+——m
fiw + 6wt

Substitution of these results in the expressions for
the gap (for which the approximation arctanZ ~Z
is sufficient) and the current, Egs. (7) and (8), yields

A
1— 0172 _
(1-X*) !

’

A lnl—z21rkBT >
T,

0>0

Jn T Nk Todur S, (1-X?) .
3 >0
These equations are exact in the dirty limit 7—O0.
By means of the transformation 1—X2=(1+u2)""
Maki’s equations (17)—(19) (Ref. 10) are recovered
(allowing for a factor of 2 in the definition of 7, as
already noticed in Ref. 3).

The numerical evaluation of the full set of cou-
pled nonlinear equations (6)—(8) requires as input
parameter a value for u; to find the critical current
one must repeat the computation for various values
of this parameter. Therefore, it is profitable to
choose these values as close as possible to the criti-
cal value u,. In the following we develop a method
to obtain an approximation for .. It turns out that
this approximation provides to within 1% an accu-
rate value for the critical current.

We consider the solution X of (A1) as a function
of A and

e=(vpu)#ir/6kpT, .

The connection between € and the parameter £ oc-
curring in Ref. 3 is e=(A/kpT,),. For u fixed,
€—0 when 7—0; however, when u assumes the
critical value u,, € approaches a temperature-
dependent constant when 7—0. From the analyti-
cal results in the two temperature limits we know
that this constant is small: 0.418 for T=0K and 0
for T=T,. Hence we expand X to first order in €
to find

X2~X3(14ae) (A2)
with
2
a_szTc A X3
T o | |70
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and
X3=[1+(A/f0)*]7".

Similarly expanding the equations for the gap and for the current to first order in €, we get

T A AkpT, 4
Aln—~27k —(Xg—1) —€ ,
nTc ks T m§0 fio ° ) w§0 (Fw)? ~°
4 Al Al
. T 2 2 Blc 5
_]’_\_'_EN(O)kBTUpuT{ > || X5 —26 — XOJ
3 aso | fio as0 fo | o

It should be noticed that besides the explicitly shown dependence on € in (A2) X also depends on € via A and
the gap equation. In the limits T—0 K and T— T, these approximations still give the correct analytical ex-
pressions pertinent to the dirty limit.

Let us now introduce scaled variables 8 =A /7mk T and t =T /T,, and the functions

] 1 1 i (2n+1)?
8= _ )= § 2t
PO=2 w1 e | PV 2 T ey
] (2n+1)?
P(8)=8*S —————— 0,(8)=8 ,
,,20<2n+1 5 Z n 17457

where the summation over o is reexpressed in summation over n. In terms of these quantities the equations
for the gap and the current read

(A3)

tInt = —2t@,(8)— —f—f—(pz(a), J=Cu |tgy(8)— %W(a)

where

4
C= —3’1eN(0)kBT vir .
From these equations we are able to determine the derivative of j with respect to u at constant temperature:

ds
du

dj
du

9j
ou

9
38

t 1,8 t

Setting (dj /du), equal to zero leads to a quadratic equation in € with the solution [€, =€(u,)]

2
;T—Ec:tf(ﬁ), (A4)
£(5)= D203 20295 — 64104+ (9203~ 20205 — 60104)° + 8010330204 = 202991
2030204 —29,94)
t
The prime indicates differentiation with respect to T=T,t=T,exp[ — 2@, +¢:/)],
chosen 50 5 10 reproduce he soreet scslt when (0 2
CT _O_f;r«z 'Soss‘:)stitutign of this result for € in (A3) 'J{:(T)z‘z—l‘;? ‘El Vif (@3 —@af)

then yields expressions for the temperature and crit-
ical current at the given value of &: with j.(0) as in Eq. (9).
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