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We demonstrate that the ion-lattice interaction plays a significant role in the magnetization
and ESR properties of LaSb:Dy single crystals. We provide a free-energy calculation to demon-
strate that the applied magnetic field distorts locally the crystal around the Dy ion leading to a
deviation of the Dy magnetic moment with respect to that expected from ‘‘pure’’ crystal-field
effects. The fitting of the experimental magnetization data, measured along the [001] direction,
to the theory based on our free-energy calculation, enables us to extract the coupling constant
between the I'; strain modes and the Dy ion to be | V(F3)| =24 K. Analysis of the angular
dependence of the ESR line shape strongly supports the hypothesis that only I'; strains play a
role in the ESR experiment. The combined ESR and magnetization data yield the width of the
I'; strain distribution to be o3 =1.25 X 1073, Using the value V(T'3) =24 K, our free-energy cal-
culation clearly shows softening of the elastic constants of force at low temperatures. This can
provide a mechanism for the large strain effects in our ESR. It indicates ‘‘single-ion”’ Jahn-

Teller effects in LaSb:Dy at low temperatures.

I. INTRODUCTION

The existence of Jahn-Teller effect in rare-earth in-
termetallic compounds and alloys was pointed out
only in the last decade.!'2 In these rare-earth com-
pounds mainly collective Jahn-Teller effects have
been observed which are manifested by a phase tran-
sition involving symmetry-lowering distortion and
magnetic transition. There are very few reports on
Jahn-Teller for rare-earth dilute alloys except the
work of Dixon on Pd:ER (Ref. 3) (and even here the
situation is not so clear’). Among the rare-earth
compounds undergoing a ‘‘cooperative Jahn-Teller”’
transition one should mention the metallic cubic
compound DySb which exhibits simultaneous antifer-
romagnetic ordering and structural transition (from
cubic to a tetragonal phase) at 7,=9.5 K (Refs.
4—8). This transition was interpreted by the ex-
istence of three types of interactions having equal
magnitude, namely, the Jahn-Teller distortive in-
teraction, the bilinear exchange interaction, and the
biquadrupole interaction.*®

This paper reports magnetization study and ESR
measurements on Dy,La;_,Sb single crystals in the
dilute limit. In this limit the biquadratic and bilinear
exchange interactions are negligible and the dominant
interaction is the Jahn-Teller interaction between the
Dy ions and the lattice modes. We shall demonstrate
that both ESR and magnetization measurements pro-
vide strong evidence for the existence of ‘‘single-
ion”’ Jahn-Teller effects at low temperatures.

II. EXPERIMENTAL RESULTS

The magnetization of LaSb:Dy single crystals for at
least five samples with nominal Dy concentrations
between 0.5 and 6 at.% were measured at low tem-
peratures using a vibrating-type magnetometer. The
insert of Fig. 1 yields a typical angular dependence of
the magnetization for our 0.9% sample at T=4.1 K
and H =17 kG. The angle 6 in this insert is the an-
gle between the magnetic field and the [001] direc-
tion in the (011) plane of rotation. The dependence
of the magnetization on the external field along the
[001] direction is shown in Fig. 1. On the same fig-
ure we have shown an attempt to fit the angular
dependence and the field dependence of the magneti-
zation to a crystalline-field—only Hamiltonian [see
Eq. (2) below] and the crystalline-field parameters
x=-0.84, W=0.4 K (in the notations of Lea,
Leask, and Wolf?) taken from the paper of Bucher
et al.* As clearly seen, the magnetization cannot be
explained by such crystalline-field—Hamiltonian and
such parameters. We have tried to find other param-
eters including those of Kouvel!? to fit the experi-
mental data (and especially the ratio x[1001/u[111])
but the agreement is bad. In this fitting procedure
we have calculated the Dy concentration by fitting
the slope of the low-field magnetization to the
theory. The calculated concentrations do not differ
from the nominal Dy concentration by more than
5%.

The ESR measurements were conducted mainly at
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FIG. 1. Magnetization as a function of field for magnetic field along the [001] direction of LaSb:Dy (0.9 at. %) single crystal
at T=4.1 K. The solid line is a fit to a crystalline-field—only Hamiltonian. The dashed line is a theoretical fit using the pro-
cedure described in text with the parameters x =—0.84, W =0.4 K, C(I';) =420.000 K/ion, |V (I';)| =24 K, H =17 kG,
—0.02 < €(T'344); €(T'35) <0.02. Insert: The angular dependence of the magnetic moment of LaSb:Dy (1 at.%) single crystal
rotated in the (011) plane. The dashed line represents the experimental data. The solid line is a theoreucal curve using the
crystalline-field Hamiltonian [Eq. (2)] only with the parameters x =—0.84, W =0.4 K.

X-band frequency with only few measurements at Q
band. The temperature was varied from 2 to 22 K.
The ESR spectra exhibit a strong anisotropy as a
function of the orientation of the magnetic field.
Figure 2 exhibits the angular dependence of the ESR
line shape of one of our LaSb:Dy samples at T =4.1
K (the same sample on which magnetization was
measured). The sample was rotated in the (011)
plane and 6 measures the angle between the magnetic
field and the [001] direction in the plane of rotation.
As clearly seen, the ESR line exhibits a minimum
linewidth with a Dysonian line shape for an angle

9 =55° approximately, i.e., for magnetic field in the
[111] direction. For this particular angle the field for
resonance corresponds to a g value of g =6.60 £0.1,
appropriate to a I'g crystal-field ground state. For
other directions the linewidth significantly increases
as one goes from the [111] direction towards the
[001] direction or the [110] direction. In the [001]
and [110] directions the linewidth is so large that any
line-shape analysis is meaningless. Away from the

[111] direction the ESR line shape is not regular and
exhibits in many cases what appears to be a ‘‘struc-
ture” on the line (see Fig. 2).

Practically, the same general behavior was observed
for at least 15 different samples with different Dy
concentrations (in the range 5000 ppm to 6 at. %)
grown under slightly different conditions and heat
treatment. However, we did observe slight differ-
ences in the angular dependence of the ESR line
shape which indicate that this angular dependence is
also sample dependent to some extent. There is no
clear correlation between the observed angular
dependence and the Dy concentration or heat treat-
ment.

The results at higher temperatures (i.e., T=7, 15,
22 K) exhibit a similar angular dependence of the
ESR line shape without any significant broadening or
narrowing of the ESR lines, but there is a drop in the
line intensity as the temperature is increased. The
ESR results of the Q band (T =4.1 K) show very
similar angular dependence with faster increase of the
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FIG. 2. Upper part: ESR spectra (solid lines) of LaSb:Dy
(2000 ppm) at 4.1 K, X band, and for several orientations of
the magnetic field. 6 measures the angle between the
magnetic field and the [001] direction in the (110) plane.
The circles represent theoretical fits using the procedure
described in the text and the parameters g =6.60 £0.1,
D=70G and |g303] =1.6 £0.3; |g505| =0. Lower part:
ESR spectra (solid line) for LaSb:Dy (2000 ppm) at T =4.1,
0=37°. The triangle represents theoretical fits using the
procedure described in the text. In (a) the parameters are
|g30’3| =1.6, |g50'5| =0', (b) |g30'3| =0, |g50'5| =1.32', and
(c) |lgzo3l =1.6 and |gsosl =1.32. As clearly seen the
presence of I's strain modes leads to a large deviation from
the experimental spectra.

linewidth as one rotates the magnetic field from the
[111] direction towards the [001] and [011] direc-
tions, much faster with respect to the results at X
band.

The crystalline-field parameters of Bucher et al.*
predict I'¢ ground state with I's (Ref. 4) first excited
state at 14.5 K. The crystalline-field level splitting
given by Kouvel et al.!” for DySb is slightly different.
For I'¢ ground state, one expects isotropic ESR line,
i.e., a completely different behavior from our results
in Fig. 2. It should be mentioned that preliminary
ESR data on LaSb:Dy were reported previously and
were interpreted by a random stress model using
second-moment calculations.!"!? Clearly the ‘‘struc-
ture” on the ESR lines (Fig. 2) does not allow such
an approximation to interpret our data.

III. ANALYSIS

We believe that both the magnetization and ESR
results can be explained by a coupling term between
the Dy ion and lattice modes. We consider a cluster
composed of Dy ion and its six nearest-neighbor Sb
ions (Fig. 3). There are 21 degrees of freedom asso-
ciated with the seven ions in the cluster!'> of which
six must be subtracted out as being pure translation
or rotation. The remaining 15 can be grouped into
six even strain modes (or deformations) and nine
odd strain modes. Neglecting the odd strain modes
which might be important in the presence of a large
magnetic field,'* the six even deformations are divid-
ed into three groups of strain modes, namely, a ',
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FIG. 3. Normal modes (even) for a cluster composed of
the Dy ion and its six Sb nearest neighbors in NaCl struc-
ture. The insert yields the coordinate system.
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two I'3,, and three I's;. These strain modes are
shown in Fig. 3. The total Hamiltonian 3 of ‘‘single
ion’’ can be expressed, therefore, as the sum of the
ionic Hamiltonian, 3¢;, the lattice Hamiltonian, 3¢;,
and the lattice-ion coupling term 3C;—;. We write for
the total Hamiltonian

X=%;+3. +3-L , . (1)

where

oo 0, Os
X, = H-J+W|x——+(1- — . 2
1=818 o POy - @
The first term is the Zeeman interaction and the
second term is the crystalline-field Hamiltonian de-
fined by Lea, Leask, and Wolf.? The lattice Hamil-
tonian is given by

X, =%C(F1)62(F1) +%‘C(F3)[€2(F3g9) +€4(T3g) ] +';'C(F5)[52(F5u) +€(Tsg) +(Tsp)] &)

where the deformations (strain modes) € and the elastic constants of force, C, are defined by

(T ) =exteytey, C(I)=5(C+2Cn),
€(T3p9) =26z — € — €y, C(I3)=2(C1i—C),
€(T3g) =€ — €, C(Ts)=Cy,

€(Tsg) = €y,

€(Tsge) =€y,

€(Tsg) =€,

@

where €; and Cj are defined by Mullen et al.>: The constant of force as measured for DySb.are given by Mullen

et al’

Finally the ion-lattice coupling Hamiltonian, JC;_; is given by

31— = V(T3)[O(T344) €(T346) +O(T3g.) €(T3ge) 1 + V(I's)[O(Tsg) €(Tsg,) +O(Tspe) €(Tsg) + O (Tsg)e(Tsg)]

with
O(T3g) =3J2—-J(J+1) ,
O(T3g) =V3(J}-J3) ,
O(Tsg) =5 (e + 1) 6
O(Tsp) =5 (L Jy +4,J5)
O(Tsg) =5 (L +0iJ)

V(T;) are the magnetoelastic coupling constants.

We shall analyze the magnetization along the [100]
direction. In this analysis we shall neglect the I's type
of distortions. It should be noted that the tetragonal
distortion in DySb indicates the dominance of I';,
type of modes. Furthermore, we shall adapt the
crystalline-field parameters of Bucher* x =—0.84,

W =0.4 K and the elastic and magnetoelastic cou-
pling constants ¥ (I';) =24 K and C(T';) =420.000
K/ion from Mullen ez al.’> This enables one to calcu-
late the eigenvalues of Eq. (1) by complete diagonali-
zation of the 16 X 16 matrix appropriate to J = L;— of

Dy?*. The eigenvalues observed in this way depend
on e(T'3,) and e(T'3,) and the given magnetic field
and temperature. This enables us to calculate the

(%)

free energy defined by
F=kpTIn Y exp(—E/kgT) , (7
i

where {E;} are eigenvalues of (1). The free energy
calculated in this way is a function of €(I'3z) and
€(T'34.). The free energy (surface) as a function of
€(T'349) and €(T'3,,) is given as an example in Fig. 4
for different directions of the magnetic field. In all
cases, H=17 kG, T =4.2 K were used, i.e., the
same condition under which the angular dependence
of the magnetization was measured. The most strik-
ing feature of Fig. 4 is the existence of minima in the
free-energy surface which strongly depend on the
magnetic field orientation. Particularly for H along
the [001] direction a single minima is clearly seen
[Fig 4(a)]; for H along the [111] direction three
minima are observed since the three cubic principal
axes are equivalent; for H along the [011] direction
two minima are seen. The minima in the free energy
F correspond to the most probable distortion which
the Dy ions would experience. At high temperatures
and in the absence of a magnetic field, the Fsurface
maintains a symmetric form around e(T';z4)
= €(I'35.) =0, which is consistent with the cubic sym-
metry (but see discussion below).

We argue that the free-energy calculation can ex-
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FIG. 4. Right side: The free energy, F, as a function of
the strains €(T'3z9) and €(T34,). The free-energy surface
(reversed) was calculated using the parameters x =—0.84,
W=04K, V(T;) =24 K, C(T';) =420.000 K/ion, and
H =17 kG. In (a) the magnetic field is along the [001]
direction, in (b) the magnetic field is along the [111]
direction, and in (c) the magnetic field is along the [011]
direction. Left side: The projection of the free-energy
surface, Fon the e(T3,4) and €(T;,,) plane. As clearly
seen, the free energy exhibits in (a) a shallow minimlim for
H along the [001] direction, in (b) three minima for H along
the [111] direction, and in (c) two minima for H along the
[011] direction.

plain both the magnetization and the ESR data. The
distortion produced by the magnetic field modifies
the energy levels and consequently the magnetic mo-
ment. One can use the ‘““most stable’’ distortion,
with €(T'3,¢) and e(T'3,) represented by the minima
in our free-energy surface (Fig. 4) in order to calcu-
late the Dy>* magnetic moment as follows:

}L(G) EM[E(Fsga), E(r3ge)]
S u(E) exp(=E/kgT)

B Sexp(—E/ksT) ’ ®

Here w(E;) is the magnetic moment associated with
the energy level E;, and E; are eigenvalues of (1).
However, as can be clearly seen, the minima in the
free energy are very shallow even in the presence of
H =17 kG, which means that at 7=4.2 K all that
part of the free-energy surface in the vicinity of the
minima has a finite probability to be populated. In
short, the Dy ions are exposed to a large range of
strains and a proper calculation of the magnetic mo-
ment, (u), requires averaging over the free-energy
surface F(e) as follows:

_ SulQexpl=F(e)/ks T
Sexpl—F(e)/kpT]

where w(e€) is given by Eq. (8). The summation in
(9) was carried over the following range of strains:
—0.02 < €(T'349) =<0.02; —0.02 < e(T3,,) =+0.02.

Figure 1 exhibits the fit of (9) to our magnetiza-
tion along the [001] direction. We have used the
parameters x =—0.84, W=0.4 K, C(I'3) =420.000
K/ion, and | V(I'3)| =24 K. The value | V(T;)| =24
K is very close to that observed by Mullen et al. for
DySb.’

We turn now to discuss our ESR results. General-
ly speaking, the ESR results can be analyzed by diag-
onalization of the Hamiltonian composed of 3C;
+3¢;_, in Egs. (2) and (5). Such a diagonalization
yields the energy levels E (T, i%) associated with
the I'¢ ground state as affected by the admixture with
the I'g excited state which is very sensitive to the
presence of strains and external magnetic field.
However, the ESR measurements were performed at
relatively low temperatures such that only the first
excited state, I‘g(;”, is populated. In such a case only
six levels associated with the I'¢ ground state and the
F§” first excited state are important. It is con-
venient, therefore, to work in the frame of the spin
Hamiltonian suggested by us previously.!! This will
require a diagonalization of 2 X 2 matrix rather than
16 x 16 matrix. Furthermore, since most of the data
on random stresses in metals!!!2 have been analyzed
using a similar spin Hamiltonian, it has the advantage
that one can compare the same parameters using a
different set of experiments.

The spin Hamiltonian 3C; is obtained by taking all
possible multiplications of €(T';), H;, and S; (j
=x,y,z) which are invariant under cubic operations.
Following Ref. 11, we write

, )

3cs=gp,gﬁ -§+g|p.Bﬁ ‘§€(Flg) +g3u5[(3HzSz—H §) E(F3gg) +\/§(HXSX—HySy)e(I‘3g,)]
+gsusl 3 (H,S, + H,S,) €(T'sg) +;—(H1Sx +H,S,) €(Tsg,) +%(HxSy +H,S) e(Tsg)] (10)

where S is the operator of angular momentum describing the doublet, gis the g value associated with the I'q
ground state, g (i =1,3,5) are constants which were calculated using a second-order perturbation theory in
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3¢ .-+, [Egs. (5) and (2), respectively] between the
unperturbed energy levels of 3. Such a calculation
yields a relation between g; and the magnetoelastic
coupling constant V(TI';) as follows

g3=—2g;V(I3)
(Te313J2=J(J +1)|Ts3) (Ts3 ] LITe L)

E(r{) — E(Tg) ’
1)

gs=—4g,V(Ts)
(Tox |, + 14| T, —5 ) (Tg—5 | L, Te—5
E(T{V) — E(T%) ’

where |Ti) and |T§"i) are unperturbed wave func-
J

tions associated with the I's and the I‘§1)

of the unperturbed Hamiltonian 3C.

The energy levels £(I'g + -;—) in the presence of
strains and magnetic field can be calculated by diago-
nalization of the 2 X 2 matrix formed by the spin
Hamiltonian. We find

energy levels

E(Tg, £7) = t3 (2 +82+y)172 (12)

which leads to energy splitting between the i% levels
of the I'q ground state to be

AE=(2+B*+y)V2=H,-S(R) , (13)

where H, is the field for resonance and the angular
dependence is given by S(i) with @’ as a unit vector
in the direction of H: «, B, and y are given as

a=gupH, +g:upH.[—€(T34) +\/3—€(r3gz)] +gsupl Hye(Tsg) + Hye(Tsg,)]
,8=gy.glfy +g3y,5Hy[—e(I“339) —\/§E(F3g¢)] +g5y.g[er(I'53,) +Hz€(r53x)] ’ (14)
y=gupH; +28:H€(T349) +gsupl Hye(T'sgy) + Hye(Tsg)] .

For particular set of distortions €(I'3z4), €(T3g),
€(Tsg), €(Tsg), €(I'sg), the field for resonance H,
is given by H,=hv/S(1), where hv is the microwave
energy and S(i) is given by Eq. (13). We shall as-
sume Gaussian distributions of strains given by

2(r.
Fle(r)] =—1 ()

exp|—
Quo)2 P 20}

(15)

Here o; (i =3,5) are the width of the distribution
associated with the T'; strains and T's, respectively.
Note that the distribution of €(T';g¢) and €(T;3g)
should be identical as the cubic symmetry of lattice is
preserved. Similarly, the distribution for the three
strains €(T'sg), €(Tsg), and €(T'sg,) is the same.
Consequently, the width of the distributions depends
on two parameters only, namely, o3 and os. Such
distributions of strains similar to (15) creates distri-
bution among the values of H,. This last distribution
will be denoted by P(H,) and is not necessarily a
Gaussian but depends on o3 and os. The ESR line
shape will be given as a convolution of the distribu-
tion in H,, P(H,), and the unperturbed ESR line
shape. For the unperturbed ESR line shape we have
chosen a Dysonian line shape (derivative) given by!®

_a(l—-x*)—2x
F(H)—' (1 +x2)2 ’

where x is defined by x =(H — H,)/D; Dis the
width at half maximum of the Dysonian line shape
and « is a parameter determining the amount of
dispersion and absorption in the total line shape
F(H). The unperturbed line shape (16) agrees well
with the ESR line shape observed for the magnetic
field in the [111] direction where the effect of strains

(16)

can be neglected.
We expect the experimental line shape to be a con-
volution as follows:

L= [ allox) oy 1(1—1222;2):1,

Dx

17 Ddx .(17)

Certainly all the information of the strains is incor-
porated in P(H,). Since P(H,) cannot be expressed
explicitly, we have adapted a Monte Carlo method
using a computer to calculate the integral in (17).
The computer program to calculate (17) is given else-
where.!® The mathematical method can be described
shortly as follows. We consider five groups of arbi-
trary numbers; each group is actually a Gaussian dis-
tribution of numbers. The five groups of numbers
correspond to five distributions of strains (i.e., I'szq,
T'3ge, Tsges I'sgys I'sgz) and consequently the width of
the distributions are o; for the first two groups and
os for the last three groups of numbers. Each group
contains 3500 numbers and the quality of the distri-
bution was checked using well-known statistical
methods. Each set of five numbers [corresponding
to five values of €(I'3) and €(T's)] yield a value for
AE [Eq. (14)] and consequently a value for H,. In
this way we have observed a group of vaiues for H,
which yield the distribution P(H,). For each value
H, we have calculated x; (x;=H — H}/D). The
values of x; are substituted into a formula for the
““theoretical line shape’’ given by

. 3500 a(l _x'_2) _2xi
L= 3 =5 (18)

The line shape observed using (18) was checked to
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ensure statistical stability.

Figure 2 yields the experimental ESR line shape
(solid lines) and the best fit of theory (circles) to the
experiment. The fit was done by minimalization of
the sum of the square of the deviations between the
experimental points and the calculated points describ-
ing the line shape. In the fitting procedure, the fol-
lowing parameters have been taken into considera-
tion: (a) the value of D =70 G, i.e., the width of
the ESR line for H parallel to the [111] direction, (b)
the width of the Gaussian distributions o3 and o,
(c) the values of g3 and gs, (d) the direction of the
magnetic field with respect to the crystal axis, and (e)
the resonance frequency.

The best fit of our theory to the ESR experimental
line shape of LaSb:Dy (2000 ppm) yields

|g303! =1.6+03, |g50'5i <04 . (19)

This fit indicates clearly that only the I'; deforma-
tions play a role in determining the ESR line shape.
To demonstrate this point we have plotted in the bot-
tom of Fig. 2 a fit using the following three sets of
parameters:

(@) |gso3] =1.6, but | osgs| =0,

(b) |g303] =0, but |gsos| =1.32,

(©) lgsosl =1.6, and |gsos| =1.32.

As clearly seen the effect of I's deformations would
change the line shape substantially. Thus we con-
clude that the effect of I's deformations on the ESR
spectra can be neglected.

IV. DISCUSSION

A. Correlation between magnetization and ESR:
Determination of o; for LaSb:Dy

Our ESR data yield information about g;o; to be
|g303l =1.6 £0.03. Note that this value is by a factor
of 3 larger than that reported previously.!! According
to Eq. (11) g; is related to V(I';) with coefficients
depending on the cubic crystal-field level scheme and
wave functions. One can easily show that
g3 =52V(T;) for DySb and LaSb:Dy. This yields
| V(T'3) 03] =0.03 K. The magnetization as measured
in the [001] direction yields a value for V(I';) to be
| V(I'3)| =24 K. Thus, a combination of the ESR
data and the magnetization data gives o3=1.25
x 1073, Note that the combination of these two ex-
perimental techniques yields information about o3
which could not be observed otherwise. The value of
o3 for LaSb:Dy is of the same order of magnitude as
the value of o3 observed by Oseroff and Calvo for
Ag:Dy (Ref. 12) or Pela ez al.'” for Ag:Dy.

A question arises as to why the ESR data indicate
that only I'; strain modes are important, while the
magnetization away from the [001] direction provides
evidence that I's strains also play a role. The answer

to this question is actually given by Eq. (11). Using
this equation together with the appropriate energy
splitting and wave function we have calculated

83 V(T3)

8 3L

8&s V(Ts)
Thus if ¥(T'3) and V(T's) exhibit the same order

of magnitude and so are o3 and o5, we expect the
dominance of the I'; strains in LaSb:Dy.

(20)

B. ‘‘Single ion”’ Jahn-Teller effects in LaSb:Dy
and the origin of the random strains

In Fig. 5 we have plotted the free energy as a func-
tion of e(I'3z4) only (neglecting any contribution
from T34 and I's strain modes). The free energy was
calculated using the parameters x =—0.84, W =04
K, C(T;) =420.000 K/ion, | V(T';)| =24 K, H along
the [100] direction, and equals H =1000 G. The
results are very interesting. At high temperatures the
free energy exhibits a well-defined single minima at
€(T'329) =0. For temperatures lower than T=7 K, a
very flat minimum is observed. As the elastic con-
stant of force is derived from the free energy by
C =9’F/d¢€?, it is clear that a softening of the elastic

2_
T=15K
~ I
.‘(])d .
2 .
3
0 .
> T=40K
E ‘h- . 1
|
5
—~ 0
5 1t T=70K
o
i
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o
@ 4.
b T=22K
‘l_
0

-08-6-4-202 46 81
Deformation (€3gex 103)

FIG. §S. __Ifree energy, F, as a function of the e(Fggg)
strain for H along the [001] direction. The parameters used
are x =—0.84, W=0.4 K, | V(T';)| =24 K, C(T';) =420.000
K/ion, H =1 KkG.
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constants of force occur at low temperatures.

We believe that this softening is partially responsi-
ble for the strains at low temperatures. The popula-
tion of the free-energy surface is proportional to
expl—F(€)/kgT] and consequently all the flat part of
the free-energy surface in the vicinity of the minima
has a finite probability to be populated. In short, the
Dy ions are exposed to a large range of strains con-
sistent with our ESR data.

The observation of strain effects at higher tempera-
tures can be explained partially by Fig. 5. Although
at high temperature the free energy exhibits a clear
minimum at e=0 (see T=22 K in Fig. 5), at these
temperatures the Dy ions are not confined to the bot-
tom of F(e) because a large kg T yields an increase of
expl F(e)/kgT] for e 0. This means that even at
high T the Dy ions are exposed to strains.

C. Comparison with Magnetostriction of LaSb:Dy

Recent magnetostriction study of LaSb:Dy (Ref.
18) was analyzed using a similar procedure to that
described in the present paper: The free energy was
calculated using the known parameters x, W, C(T';)
for a given field H along the [100] direction and for a
given temperature. V(I';) was treated as an un-
known parameter. As occurs in Figs. 4 and 5 the
free energy as a function of e exhibits a minima.

The position of these minima yields the most stable
distortions, (e). The magnetostriction AL/L was as-
sumed to be proportional to (e€). These measure-
ments yield V(T';) =20 K for Dy:LaSb, slightly
smaller than our value for V(I';). The difference is
due, in our opinion, to the fact that magnetostriction
gives the lattice distortion far away from the ion, it

is, actually, the ‘‘long-range”’ tail of the distortion
produced by the rare-earth ion in the lattice. Mag-
netization, however, reflects the lattice distortion in
the immediate vicinity of the rare-earth ions. In the
frame of our cluster model the magnetization yields a
better value for V(I'3).

V. CONCLUSIONS

(i) The free-energy calculation based on parameters
extracted from our magnetization data provides
strong evidence for ‘‘single-ion”> Jahn-Teller effects
at low temperatures for LaSb:Dy. The ESR data are
consistent with this picture.

(ii) Combined ESR and magnetization yield infor-
mation about V(T';) and the strain distribution o
which could not be observed otherwise.

(iii) We have demonstrated that I'; type of strains
dominate in the case of ESR of LaSb:Dy.

Note added in proof. In our theoretical analysis, we
have neglected the kinetic energy in the strain Hamil-
tonian. This kinetic energy of strain depends on the
generalized momentum parameters (the canonical
conjugates of the strain parameters). Now we are
able to demonstrate that the kinetic energy terms
canceled out in the expression for the magnetic mo-
ment in the classical limit. Thus our approach was
correct. A complete theoretical treatment is planned
to be given elsewhere.
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