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A semiclassical model for nonadiabatic radiationless transitions is described. Lattice
dynamics are introduced as stochastic fluctuations in the separation and coupling of elec-

tronic levels. Formulation on the Bloch sphere brings an appealing perspective through the

analogy to a magnetic moment moving in fluctuating magnetic field. Numerical solutions

are reported which retain nonadiabatic features exactly. For near-adiabatic behavior, out-

side crossing regions, a first-order correction to adiabatic dynamics is derived and com-

pared with the exact solution.

I. INTRODUCTION

The capture and recombination of carriers at
deep impurity levels can be of considerable impor-
tance to the operation of semiconductor devices. In
particular, for semiconductor light-emitting diodes
and lasers nonradiative mechanisms compete with
radiative processes. For the majority of deep im-

purities, carrier recombination proceeds via such ra-
diationless transitions. While the properties of shal-
low impurity levels are relatively well understood,
nonradiative capture at deep levels remains largely
an unsolved problem. Cascade capture, ' which
can account for large nonradiative cross sections at
donor and acceptor sites, cannot be invoked within
the present context. Deep traps call for the disposal
of an energy on the order of half the forbidden gap
without the availability of the ladder of Coulomb
states which mediates successive single-phonon
emissions in the cascade process.

Two known mechanisms are presently proposed
as plausible explanations for nonradiative capture at
deeply bound states. The Auger effect, ' which
disposes of binding energies through the collisional
excitation of a neighboring carrier, and multipho-
non emission, where binding energies are dissipated
via lattice relaxation. Definitive evidence for non-
radiative recombination by means of the Auger ef-
fect has been found in luminescence lifetime stud-
ies although with relatively small cross sections.
Recently a case for large Auger cross sections has
been argued by Jaros. ' The signature of the rnulti-

phonon mechanism is a thermally activated cross

section. Using the technique of capacitance spec-

troscopy, " '6 Henry and Lang have presented
strong experimental evidence for nonradiative cap-
ture via multiphonon emission. ' ' These authors
determine thirteen temperature-dependent capture
cross sections for deep impurities in GaAs and

GaP, and interpret these results within the frame-

work of a simple theory for multiphonon emission.

More recently, Narayanamurti et al. ' have report-
ed the direct observation of phonons generated dur-

ing nonradiative capture in GaAs p-n junctions.
This phonon-assisted mechanism is the subject of
interest in our present study.

Nonradiative multiphonon transitions are com-
monly discussed within the context of the familiar
configuration coordinate description.
Coupling of the trapped electron to a nucleus em-

bedded in the lattice causes a horizontal displace-
ment of the effective lattice potential associated
with the bound state. In a single-coordinate picture
a crossing of zeroth-order potential energy curves
arises for large enough excursions from the equili-
brium configuration. Radiationless transitions then
involve both quantum-mechanical tunneling be-
tween lowest, energy-conserving, vibrational states
(week lattice coupling, low temperature) and activa-
tion to this crossing region (strong lattice coupling,
high temperature}.

Multiphonon radiationless transitions have much
in common with phonon-assisted radiative transi-
tions, as both processes involve the same phonon
states. Historically, both theories have often re-
ceived comtemporary development. However, a
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fundamental distinction must be recognized. While
deviations from the Born-Oppenheimer description
bring only second-order corrections to optical cross
sections this nonadiabatic coupling is the very
source of interaction in the nonradiative case. The
attitude has generally been that transition probabili-
ties may be attributed to small deviations from adi-
abatic conditions. Huang and Rhys discussed
both radiative and nonradiative transitions for in-
teraction with phonons of a single frequency, and,
subsequently, their work was extended to the treat-
ment of a general phonon spectrum. ' ' In
each of these formulations an adiabatic basis is

adopted and transition matrix elements are calculat-
ed in the Condon approximation (Kubo and Toyo-
zawa include a brief discussion of non-Condon
features). More recently, it has been pointed out
that the strong mixing of electronic wave functions
near a level crossing invalidates the Condon approx-
imation for nonradiative transitions. In a
non-Condon formulation ' Sinyavskii and Kovar-
skii have found increases of from 2 to 3 orders of
magnitude for capture cross sections in semicon-
ductors. They report good agreement with experi-
mental results for numerous high-temperature cross
sections in Ge and Si. Nitzan and Jortner have
extended their method to treat nonradiative in-

tramolecular decay in large molecules and find
non-Condon corrections of a similar order.

These non-Condon calculations approach the im-

portant question of wave function mixing at a level

crossing, ' however, the underlying Born-
Oppenheimer perspective remains. Lax and Shu-

gard ' have called for a complete reexamination of
the theory without a basis in the adiabatic approxi-
mation. In this paper we present preliminary re-
sults for the model proposed by these authors. The
philosophy has been to begin simply by isolating
nonadiabatic features while avoiding the complexi-
ties of a detailed quantum-mechanical description.
Lattice dynamics are then introduced in a classical
and phenomenological manner as stochastic fluc-
tuations in the splitting and coupling between two
electronic levels. With the aid of numerical pro-
cedures a full dynamical perspective on level cross-
ings and transition events is accessible. We find
that it is convenient to formulate these dynamics on
the Bloch sphere where our intuition is aided by the
magnetic analogy. The state of the system imitates
a magnetic moment moving under the influence of
an external magnetic field which fluctuates with the
vibrating lattice.

Numerical results corresponding to a single reali-
zation of lattice fluctuations are discussed here.

The ultimate objective is to compare Monte Carlo
estimates for transition rates with the predictions of
approximate analytic results. En route to this goal,
a major obstacle arises in the need to integrate rapid
oscillations associated with adiabatic dynamics over
near-adiabatic regions separating crossing events. A
first-order correction to adiabatic dynamics has
been derived to assist in overcoming this difficulty.
When compared with exact numerical results this
solution is a considerable improvement over an adi-
abatic description.

Our presentation is organized as follows. In Secs.
II and III the two-level semiclassical model intro-
duced by Lax and Shugard is described and related
to dynamics on the Bloch sphere. A first-order
correction to the adiabatic approximation for near-
adiabatic behavior is discussed in Sec. IV. Our nu-

merical results are presented in Sec. V. In Sec. VI
we summarize this work.

II. FORMALISM AND BACKGROUND

H(q)
~
P„)-=E„(q)

~ P„) q
(2.1)

For some suitable reference configuration qo we
may identify ~1) —= ~P~)- and )2) —= (Pz)- with

The mechanism for nonradiative multiphonon
transitions generally involves both quantum-
mechanical tunneling between low-energy vibration-
al states' and activation to a crossing of zeroth-order
potentials. A semiclassical formulation has been
adopted for our present study where tunneling
features are omitted. Low-temperature and weak-

coupling conditions then fall outside the scope of
these discussions. However, our interests lie with
the nonadiabatic character of transitions. It is
within the crossing region that nonadiabatic
dynamics are most important and the essential con-
tent of these dynamics is retained by a semiclassical
desciption. In view of its relative simplicity the
semiclassical approach is well recommended for an

initial investigation.
The work of Landau and Zener is well known

as a classic treatment for nonadiabatic energy level

crossings. A simple generalization of the Landau-
Zener model has been proposed by Lax and Shu-

gard ' for studies of carrier c'apture at a deep trap.
To set this model within context we first introduce
an electronic Hamiltonian H(q ) together with adia-
batic eigenstates ~P„) . Both depend parametrical-
ly on the lattice configuration q. If E„(q) are the
corresponding adiabatic energies, we have



26 NONADIABATIC FORMULATION FOR RADIATIONLESS. . . 3549

~+&=e 'i""(di ~1&+dz i2&),

where

(2.2)

free and bound electronic states, respectively. Then,
settling for a two-level description, a general state
~%& is expanded in this diabatic representation. It
is convenient to define the associated amplitudes d i

and d& with

with corresponding energies

Ei(q)+Ei(q)
Eizq =

+
2

[J(q)'+4
I
V(q) I']'".fi

Coefficients A (q) and B(q) are given by

(2 9)

4(r) = J dr'[E', (q(i'))+E', (q(r'))] (2.3)

has been extracted as a common phase factor. Here
E i z( q }are zeroth-order energies,

E„(q)=(n ~H(q)
~

n &, n =1,2. (2.4)

Introducing

Ei(q) —Ei(q)Aq=
fif(q)+Ei(q) —E~(q)

2%V( q )

AT(q)+E, (q) —E,(q)

Then expanding ~%'& as

—1/2

(2.10)

(2.11)

J(q)= —[Ei(q)—g(q)],
(2.5) I

q'& =& ' '"«i
I di & q

+&i
I A&-, » (2.12)

V(q)= —(2iH(q) ~1&,

the Schrodinger equation then reads

Gf J ™D
(2.6)

a)
dg az

a&= —iM&
ap

(2.13)

with

the Schrodinger equation in the adiabatic represen-
tation reads

J(q) yy( q

J( q )
q

and corresponds to the form adopted in Ref. 31 (but

the designations for states ~1& and ~2& are inter-

changed). Within a semiclassical scheme this equa-

tion is supplemented by a classical prescription for
lattice dynamics. A specific characterization will

be introduced in Sec. V and for the present an im-

plicit time dependence in q is to be understood.
Radiationless transitions arise with events

J(q)=0 corresponding to the crossing of zeroth-
order energies. The special significance of these
level crossings is clearly indicated within the adia-
batic representation. Adiabatic states ~Pi &- and

~Pz& may be determined via a simple matrix diag-

onalization. If an arbitrary phase P(q } is included

we find

ip(q )

A(q)[ I
»+B(q) I 2&1

E, (q) —E,(q)
2A

0

Ei(q) —Ez(q)
2A'

+ [e~J( q, q }] (2.14)

where

e,,(q, q)= —i-(p; zq„p;, (2.15)
~9k q

Using Eqs. (2.7)—(2.11) it is readily shown that the
matrix (e;J ) is Hermitian with ei i

———eiq.
In Eq. (2.13) an explicit coupling of adiabatic

states enters through the perturbation e~q, where,

using Eq. (2.1) we may write

(2.7)

—iP(q)
i
Pz&-= A(q)[12& B (q) I

1&]

q

~12(q q }
E,(q) —E,(q)

(2.16)

(2.8) The strength of this nonadiabatic coupling is then
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E,(q)

q(t)

FIG. 1. One-dimensional configuration coordinate di-

agram illustrating the crossing of zeroth-order energies.

measured, to a first approximation, by the ratio

I =2m
E](q }—E2(q)

qk'Hq

Ã](q) —E2(q) 1'

(2.17)

The significance of the crossing region derives from
the dependence on Ej —E2. A crossing of zeroth-
order energies has J=E~ —E2——0. Adiabatic ener-

gies are repelled at the crossing (see Fig. 1) so that
the divergence in I' is removed. Nevertheless, at
their closest approach I is significantly enhanced.

Of course, exact solutions to Eqs. (2.6) and (2.13)
provide equivalent results. We should recognize
however, that within these separate contexts ap-
proximate schemes based on first-order perturbation
theory presuppose quite different dynamics. The
standard approach sees a small departure from
adiabatic dynamics as the basis for transitions and
development begins with Eq. (2.13) (the Condon ap-
proximation takes e]z constant}. In contrast, Henry
and Lang" match a region of adiabatic dynamics to
a sudden approximation close to the crossing.
Transitions arise in the region of sudden dynamics
where diabatic states provide a natural basis and
perturbation theory is then employed within the
context of Eq. (2.6) (V is taken constant and equal
to its value at the crossing). Lax and Shugard '

have also calculated transition rates in a perturba-
tive approach. Again the theory is founded in Eq.
(2.6). Near-adiabatic and near-sudden approxima-
tions present diametrically opposed perspectives on
the dynamics of electron capture, and this compar-
ison only serves to underline the need for a full,
nonperturbative, understanding of crossing events.

III. BLOCH FORMULATION
AND THE MAGNETIC ANALOGY

The numerical simulations reported in Sec. V
correspond to the solution of Eq. (2.6) for a stochas-
tic realization of lattice dynamics. However, rather
than working with complex amplitudes we have
chosen to make a transformation to the Bloch
sphere. Beyond its computational convenience, the
Bloch formulation offers a simple intuitive perspec-
tive on nonadiabatic dynamics. In this section we
outline the relationship between Schrodinger and
Bloch sphere. For simplicity, we drop the explicit

q notation, and in its place an implicit time depen-
dence is to be understood.

The formal equivalence between a two-state sys-
tem and spin dynamics is well known, and widely
exploited in discussions of radiative processes.
We review only essential features here. At the
outset let us adopt diabatic states as a basis. %'e in-
troduce Pauli operators o+ o'z +loy and 0'z"',

where

(d)
+

(d)

(d)
oy

(d)
2

i
1)&2

f

/2)&if

with

1
1K=—1
2

i 0
—i 0
0 2

(3.1)

(3.2)

Then a general state ~]II) is identified with the vec-
tor

&0'„ ') d]d2 +d;d,
yg —— &]Ty '),=. ](d]d2 —d]d2)

]d]) ~d ~2 ~d ~2Zd

(3.3)

Here &o) denotes the average &4
~

o
~

'II). Conser-
vation of probability (&4

~
4) =1} requires

od. o.d ——1 and an arbitrary state is mapped to a
point on the surface of the unit (Bloch) sphere. The
diabatic representation establishes a fixed coordi-
nate system (x,y,z)~ = (x~,y~, z~ ) (the diabatic
frame) to which points on the Bloch sphere are re-
ferred. Diabatic states themselves are set at the
poles (0,0,+1)~.

Dynamical evolution is now visualized in terms
of trajectories on the Bloch sphere. The Bloch
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dog
dt

=Kg) og ——l D)(og,

where

(3 4)

equations, which describe this evolution, follow
from the transformation of the Schrodinger equa-
tion. In particular, if we remain with the diabatic
representation, the transformation specified by Eq.
(3.3) leads from Eq. (2.6) to c,

I i

I )

I

I I

I

(a)

sin8 cosg

ln ——A, sin8 sing

cos8
(3.5)

with

J=A, cos8, 0&8&m,

2V=A, sin8e'~, 0(t/i(2n .
(3.6)

The matrix Nn is defined through its relation to
1D. Formally, oq imitates the motion of a mag-

netic moment under the influence of a magnetic
field 1D. Our new characterization for J and V
[Eq. (3.6)] is motivated to provide a polar notation
for this "field." Its magnitude A, =[J +4

~

V
~

]'~
and orientation (8,$) both fluctuate with the vibrat-
ing lattice.

Orthonormal bases are related by a rotation of
coordinates on the Bloch sphere. Specifically, if
adiabatic states are represented by cr~' and cr~' in
diabatic coordinates, then, from Eqs. (2.7) and (2.8),
we readily find

r

cos8 0 —sin8

Ry(8)= 0 1 0
sin8 0 cos8

coal( sing 0

R,(P)= —sing cosf 0
0 0 1

(3.9)

FIG. 2. Representation of electronic states on the
Bloch sphere: (a) diabatic and adiabatic coordinates, (b)
precession of O.q about l D in adiabatic dynamics.

sin8 cost})

(T~ = sin8 sing

cos8

sin(m+8) cosP

og = sin(m~8) sing

cos(~+8)

(3.7)

are standard rotation matrices. Adiabatic coordi-
nates (x,y,z), =—(x„y„z,) are rotated from the dia-
batic frame to set the z, axis parallel to 1D. The
full geometry is illustrated in Fig. 2(a).

Dynamical features follow the intuition derived
within this magnetic analogy. Beginning with Eq.
(3.4), the matrix ND is diagonalized by a similarity
transformation,

Adiabatic states lie at antipodes along the axis of
the field 1D. Equations (3.1) and (3.3) might now
be translated into analogous definitions with the
adiabatic states, as a basis. We introduce, in corre-
sponding notation, the operators 0'+' ——0„"
+ioz', cr,"' and the vector representation 0..
Choosing a phase ({)(q)=—g/2 in Eqs. (2.7) and
(2.8) it is easily shown that

ii, 0 0
KQ 'Nn QK ' = 0 i A0=—A, ,

0 0 0

where

Q '=Ry(8)R, (g),
and

(u) )

KQ 'o q=Ko, = (o'")
(a)

~

(3.10)

(3.11)

cr, =Ry (8)R,(g)op,

where

(3.8) (3.12)
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Qoa

dt
=&boa= lw &Oa ~

where

(3.13)

This sets us in the adiabatic frame. The matrix E
merely identifies rotating variables. Then, if 8 and

P remain fixed in time, rotating solutions in adia-
batic coordinates correspond to the precession of
0.~ about 1&. However, our interests lie with a
fluctuating lattice, where 8 and g are not constant.
The movement of adiabatic coordinates must then
be considered. From Eqs. (3.4) and (3.8) we find

Here A, includes nonadiabatic corrections to the pre-
cession frequency, where, as we recall, the adiabatic
frequency A, =[J +4~ V

~

]'~. Apart from this
adjustment I corresponds precisely to Eq. (2.17).
Energy-level crossings appear as agents which slow
the precession of oq and reduce the potential for
adiabatic following. If I «1 is adopted as a cri-
terion for adiabatic dynamics, it is readily shown
that fulfillment of this condition within the cross-
ing region J=lt requires

8

Psin8
—0

A, —1( cos8

(3.14)

and o ~ follows the field 1D while precessing about
its instantaneous direction [(Fig. 2(b)]. Here Q(t) is
defined by Eq. (3.11) with 8 and P replaced by their
time-dependent values 8(t} and g(t} Our intuiti. on
indicates that the criterion for such behavior must
require the angular frequency for precession A, to
remain much larger than the maximum frequency
governing movement in 1D. Since nonadiabatic
coupling enters Eq. (3.13) as a misalignment of the
field lz, a measure of this coupling strength is
given by the ratio

I= la la —( lw z, )
(3.16)

where z, is a unit vector along the z, axis. We find

I =—(8 +tP sin 8)'~, (3.17)

with

X=[(J—g)'+4
~

V ~'+8']'". (3.18)

and the matrix Nz is defined through its relation to
1 q. As we must expect, Eq. (3.13) corresponds to

the transformation from Eq. (2.13) to the Bloch
sphere. Terms in 8 and g are identified with the
nonadiabatic contribution (e;J.). Their introduction
here moves the field 1& from its alignment with the
z axis and the equation in Eo.a is no longer diago-
nal.

An adiabatic approximation to the solution of
Eq. (3.13) might be made if 8 and 1( are sufficiently
small. We approximate 0.~ by

t
o&' (t)=Q(t)R, —f, dt A,(t') Q '(0)o~(0),

(3.15)

Note that the crossing has been moved from J=O to
J=g. This comes with the inclusion of nonadia-
batic corrections to the adiabatic frequency A, , and
reflects the tuning of lattice modes to the electronic
levels (for / =cot, V =

~

V
~

e' '). Corrections to adi-
abatic dynamics are pursued in more detail in the
following section.

IV. CORRECTIONS TO ADIABATIC
DYNAMICS

XQ '(0)og(0) .

X cos8(t')]

(4.1)

Beyond this, within our magnetic analogy the
transformation to adiabatic coordinates is motivat-
ed to achieve alignment with 1 D. As we have seen
in Eq. (3.14), for time-dependent fields a nonadia-
batic perturbation arises to defeat this purpose.
Nevertheless, the forrnal structure of the dynamical

The transformation from diabatic to adiabatic
coordinates provides a natural route to the solution
of Eq. (3.4) if 8=/=0. More generally it may still
represent an approach towards this solution. In
particular, the adiabatic response given by Eq.
(3.15) is surely a good approximation for 8/X «1,
g/A, «1. Here we present a formal scheme for
generating a sequence of nonadiabatic corrections to
this zeroth-order approximation. Specific attention
is given to first-order results where an explicit
prescription is available. In the following section
these are compared with exact numerical calcula-
tions.

First we note that a simple improvement over Eq.
(3.15) can be made, if, rather than dropping all
terms in 8 and g from Eq. (3.14), we retain the z,
component of the field 1~ as A, —Pcos8. In place
of Eq. (3.15) we write

o~g (t) =Q(t)R, —J, dt'[A, (t') P(t')—
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o„i,,8,$ +pimp~ Hpi Pp

1„,N„,Q, A 1 p, Np, Qp, Ap
(4.2)

Then, following the form of Eqs. (3.5), (3.8), and
(3.14) we define

tr» =Rz(8»)R, (g„)o„], n =0, 1,2, . . . ,

(4.3)

with

, (8„]+/„]sin8„])'e„=tan-'
k» 1

—QcosH» 1

0 & 8„&n, n =1,2, . . . , (4.4)

it/„ 1(» —]s]nH» —] 8» —]

(8„]+/„]sin8„])'

equations is preserved, and it is clear then that the
procedure relating diabatic and adiabatic frames
may be iterated. In this fashion we might chase the
field 1D through a series of coordinate rotations.
Specifically, at zeroth-order we identify (in one-to-
one correspondence)

r

dO~
+n+n l n + +n~

dt

where

(4.7)

]}'j»sinH»

—0„ n =0, 1,2, . . . , (4.8)

iA,„O 0

I].Q„-'N„,Q„Z-'= 0 —u„O =A„,
0 0 0

A,„—g„cosH„

and N„ is defined through its relation to l „. We
should note the appearance of terms 8„,and g»
in Eqs. (4.4) —(4.6). These equations do not define a
closed iteration scheme. Generally A,„, 8„, and g»
find explicit definition in terms of A,p Hp and ]}'jp,

together wth A,p (beyond first order) and up to the
nth-order derivatives of Hp and 1(p.

We now generalize the route to Eq. (4.1) and de-
fine an nth-order approximation to the solution of
Eq. (3.4). Corresponding to the definition of Qp
and Ap in Eqs. (3.10) and (3.11) we write

and

0&/„&2]r, n =1,2, . . . , (4.5)

where

n =1,2, . . . , (4.9)

A,» =[(A,„]—$„]cosH„])+8„]+ Q» =Rr(8»)R»(g»), n =1,2, . . . (4.10)

+sin'8„, ]'", n =1,2, . . . . (4.6)

Ap Hp and gp are defined through Eq. (3.6). For
dynamical equations at the nth order we have

Here EN„IC ' differs from A„only through terms
in H„and f„. Then, dropping the terms ]I(I„sin8„
and —8„ from Eq. (4.8) we solve diagonal equations
for Ko „and write

r

n t]r" (t)= g Q (t)R, —f, C't[A, „(t')—ip„(t')cosH„] Qk (0) g od(0), n. =0, 1,2, . . . ,
jc =0 k=0

(4.11)

where o~ =o.d . Matrix products are to be or-
~(0)' ~(&db)

dered to the right and left of the product sign as in-
dicated. Of course rotations preserve the magnitude
of o~ and we readily show that o'd"'. od"' =l. If
the term g»cosH» is also drop~ed from Eq. (4.8) we
defined prd"', with tr~'= od' ', as the—correspond-
ing generalization of Eq. (3.15).

Various formal questions arise concerning this
procedure. For example, what are the convergence
properties for the sequence od" ? Clearly we would
expect near-adiabatic and near-sudden dynamics to
be distinguished in this respect. Further, what is

I

the relationship between this procedure and the usu-
al perturbation theory? We will not pursue these
questions in the present paper, however, and restrict
our further discussion to first-order results. Here
numerical calculations show that for near-adiabatic
dynamics we gain considerable improvement over
Eq. (3.5).

For zeroth-order variables let us return to the no-
tation of Sec. III. Corresponding variables at first
order will be identified by an overbar. Then from
Eqs. (4.11), (4.4), and (4.5) an explicit prescription
for o.~" is given by

T

a„' (t)=Q(t)Q(t)R, —J, Ct'[X(t') —1((t')cos8(t')] Q '(0)Q '(0)od(0), (4.12)
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where Ry(8)Rg(m)=. R, (n )Ry( —8)

with

Q-'Q-' =R, (8)R,(f)R,(8)R.(g),

A, —1( cos8cos8=

(4.13) in the latter case, Eq. (4.12) gives

od" (t)=Q~(t)Rg( —Xr)Q„'(0)o'g(0), (4 19)

where

(82+$2sin28) il2
sin8=

A,

(4.14) Q„'(t)=Ry(8+sgn(ai)8)R, (pit),

X=[(J- )'+4~ VI']'" ~

(4.20)

g sin8
coslit = ~ ~

2(8 +P sini8)'~

—8
(4.15)

sing=
(8 +P sin 8)'

and Eq. (4.6) defines A, to correspond to Eq. (3.18).
Here some comments are in order. Terms in 8 and

f are neglected in Eq. (4.12). For P we find

(8$ 8$)sin—8+8 Pcos8

8+/sin 8
1

Note, then, that od' is not an exact solution for
linear 8 and 1( as the Landau-Zener solution ' is
exact for linear J. Even for 8=/=0, Eq. (4.16) re-

tains a term involving first derivatives. Generally
similar terms will be included at all orders; increas-
ing order bringing higher powers in these de-

rivatives. The expression for 8 is more cumber-

some; here A, also enters. Rather than give its gen-
eral form we consider special cases with either A,

and 8, or 1(, held constant (note that while A, and 8
may be fixed independently, such conditions are
somewhat contrived). We find for A, and 8 con-
stant,

Here, R, (cot) introduces the usual rotating frame,
and, while

8=tan J , 0&8&m, (4.21)

from Eq. (4.14) we find

8+sgn(ai) 8=tan J—co

0&8+sgn(co)8&m . (4.22)

V. LATTICE DYNAMICS
AND NUMERICAL RESULTS

Our numerical studies are based on Eq. (3.4) with
an explicit time dependence introduced to la to
model lattice dynamics. Lax and Shugard ' pro-
pose that J(t) and V(t) = V, (t)+i Vi(t) be charac-
terized by three independent, stationary, stochastic
processes. Each process is Gaussian and, most im-
portantly, not of the white-noise type. First mo-
ments are given by

(&(r)),=pip, M(t)=J(t) pip, — (5.1)

(J-0)'+4
I

V I'
and for P constant,

A,O —A,O .
8= . 8.

A, +8

(4.17)

(4.18)

Equation (4.18) again retains a term in first deriva-

tives if 8=0. On the other hand, in Eq. (4.17) 8
vanishes with g; moreover, for constant A, and 8,
Eq. (4.16) gives /=0. The special conditions
A, =8=/=0 are then treated exactly in Eq. (4.12).
This is no surprise, since with /=co and /=0,
we have V =

~

V
~

e'"'. A single-frequency rotating
interaction is traditionally treated by adopting a ro-
tating frame, where in Eq. (2.6) V~

~

V
~

and
J~J—co. This transformation is readily recovered
from Eq. (4.12). Since 8=0, Eq. (4.15) has /=0
and P=m for P & 0 and P & 0, respectively. Using

and

( V(t)), = ( Vi(r) ),+i ( V2(r)), =0, (5.2)

where the angular brackets with a subscript "s"
denote an average over stochastic variables, distinct
from the quantum average (unadorned angular
brackets) introduced in Sec. III. Equation (5.2) as-
serts that diabatic states are referred to an equilibri-
um lattice configuration —qp in the notation of Sec.
II. In Eq. (5.1),

~0 [@1(qp) +2(qP)]&&

is the "optical" frequency.
Nonwhite fluctuations are required to account for

the frequency cutoff in the density of phonon states.
This feature is of course central to the character of
multiphonon transitions, where, if co~ denotes a
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maximum phonon frequency, we have

NM ((Np . (&.3)

oo

( Vk(t) Vk(0) ),= J Pv„(co)e'"'dc@,

Ic =1,2 . (5.5)

For the remaining second moments, recall that
5J(t), V&(t), and V2(t) are independent.

This modeling for the lattice includes the essen-

tial features underlying nonradiative capture in a
simple prescription. It provides a valid context
within which to study the nonadiabatic character of
transitions. One feature which has been omitted,
however, deserves a mention. In the above descrip-
tion the lattice evolves independently of the elec-
tronic state. More correctly a coupling should be
introduced via the energy (%'~H(q)

~

4}. This is
clear if we consider the lattice fluctuations for ei-

In the simulations reported here we have taken
power spectra Pq(co ) and P q, (c0 ) to be flat between

+co~, with

(5J(t)5J(0)),= f pq(t0)e' 'dto, (5.4)

ther a pure bound or pure free state. The relaxation
of the lattice equilibrium following electron capture
(Fig. 1) requires a different top in these two situa-
tions.

In the Bloch formulation, transition probabilities
are followed in the evolution of the population
difference (cr,' '(t)) [alternatively (0,"(t)}]. Our
ultimate objective in this study is to determine cap-
tures rates through the numerical calculation of
((tr, (t) }),. Work in this direction is still in pro-
gress. Here we report on initial results illustrating
dynamics for a single realization of J(t) and V(t).

The stochastic processes 5J(t) and V, 2(t) have
been generated numerically, and Eq. (3.4) was then
integrated with J(t) and V(t) explicitly prescribed.
In Fig. 3 we have plotted a typical result for a sys-
tem initially prepared in its upper state. For refer-
ence 5J(t) and V& 2(t) are also displayed. Note that
parameters are chosen for computational conveni-
ence and to illustrate nonadiabatic effects. It is not
suggested that they correspond to observed trapping
conditions. We may identify three main features in
this solution. First, and most obvious, are the rapid
oscillations corresponding to the precession of the
vector c7d about 1 D (Fig. 2). These represent only
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Io = Io/Ilol

Q
t t2

nonadiabatic event arises in conjunction with a
crossing in J(t). This transition represents neither
the near-adiabatic nor the near-sudden limit, both
of which bring only small changes to the population
difference. We may offer a qualitative understand-
ing through the simplified dynamics illustrated in
Fig. 4. Let us simulate J(t) by sudden approxima-
tions at t~ and t2 as shown. In the interval t~ & t2,
J(t)=0, and 1D lies in the (xq,yq) plane [Eq. (3.6)].
If X, is the precession frequency averaged
throughout the crossing, we require

FIG. 4. Elementary picture of dynamics on the Bloch
sphere for the crossing event illustrated by Fig. 3. Unit
vector lz changes direction instantaneously at t ~ and t2.

ht =t2 —t)—28 2'

virtual transitions and therefore have no direct bear-
ing on the nonadiabatic capture rate. However,
their dynamical significance has already been recog-
nized; the ratio between the period of these
nutations —-2n. /A, —and the typical period of lat-
tice vibrations —-2~/co~ —determines the nonadi-
abatic coupling strength [Eq. (3.17)]. Also, compu-
tationally their importance is paramount, since this
shortest timescale decides the time step for the in-
tegration routine. A great saving in computation
time would be made if the need to follow these os-
cillations could be avoided. This is particularly im-
portant as we contemplate stochastic averaging,
where many separate solutions must be generated.

A second time scale evidenced in Fig. 3(a) corre-
lates with the fluctuations in 5J(t) and V(t). Here,
as 1D wanders the Bloch sphere its projection on
the z axis contributes a low-frequency component to
( cr, (r) ). Modulations in the period and amplitude
of the precessional oscillations accompany the
motion of 1~. For the most part the behavior is
near-adiabatic. However, at r=400, a manifestly

Generally, A, »cour (coo——10cosr) and here A,, &coM
reflects the slowed precessional response with J=O.
Then the Bloch trajectory in Fig. 4 corresponds to
adiabatic solution for three intervals —t & t ~,
t& & t & t2, and t2t—where, in each, J and V are tak-
en constant. Note that the phase with which o~
enters a crossing is important for its outcome. De-
pending on this phase, (o, '(t)) may either de-
crease, as in Fig. 3(a), or increase. A thorough dis-
cussion, devoted solely to these crossing events, is
planned for separate publication.

We have already mentioned the numerical diffi-
culties which arise with the oscillatory adiabatic
response. This problem has motivated our con-
sideration of Eqs. (3.15) and (4.12) for integrating
through the regions of near-adiabatic dynamics be-
tween crossing events. In Fig. 5 we have plotted
zeroth-order solutions following from these equa-
tions for comparison with the solution in Fig. 3.
%e would not expect to replicate this result beyond
the crossing, and here the departure of both approx-
imations from the exact solution is obvious. How-
ever, agreement before this event is generally good.

0
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—0.4
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FIG. 5. Solution of Eq. (3.4) for the stochastic realization plotted in Fig. 3 using (a) the zeroth-order (adiabatic) ap-
proximation of Eq. (3.15), and (b) the first-order approximation of Eq. (4.14).
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FIG. 6. (a) and (b): Approximate solutions of Eq. (3.4) from Figs. 5(a) and 5(b) superposed with the exact result from
Fig. 3(a).

To aid in this comparison the. approximate and ex-
act results are superposed in Fig. 6. Errors of up to
-65%%uo can be found in the adiabatic solution,
which is at times a full half-cycle out of phase with
the correct result. Equation (4.12) brings significant
improvement, with the errors typically reduced by
an order of inagnitude.

Efrima and Bixon have considered the problem
of electron exchange reactions in a stochastic sol-
vent. Since.they treat their problem in a two-level

approximation, with the interaction represented as a
random 2X2 matrix, their problem is formally
identical to ours. They treat the problem only in
what they call a nonadiabatic approximation. Their
treatment, however, treats the off-diagonal interac-
tion as weak. The weak-couphng procedure can be
carried out explicitly, and was one of the analytic
procedures reported in our earlier work. ' Indeed
their procedure can be shown to lead to identical re-
sults as those previously obtained. '

VI. SUMMARY

We have formulated a two-level semiclassical
model for studying the nonadiabatic character of
radiationless transitions in solids and give numeri-
cal results illustrating the dynamical content of this
model. An effort has been made to given an intui-
tive view of nonadiabatic dynamics and to this end
we have proposed the magnetic analogy discussed in
Sec. III. Here lattice dynamics are identified with a

fiuctuating magnetic field and the electronic state is
represented by a precessing magnetic moment. A
nonadiabatic response to changes in the direction of
the magnetic field now provides the mechanism for
transitions. Energy-level crossings slow precession-
al oscillations and limit the capacity for adiabatic
following.

For near-adiabatic behavior we have obtained an
analytic solution including nonadiabatic effects to
first order. . Our design is to use this solution to
speed up -the numerical procedures involved in a
Monte Carlo calculation of capture rates. A com-
parison with exact numerical results has therefore
been made, and this typically shows improvement
by an order of magnitude over the adiabatic approx-
imation.

An understanding of radiationless transition in
experimental systems can come only with the accu-
rate determination of the variables which character-
ize crossing events. The nonadiabatic mechanism
may potentially be employed over a range from
near-adiabatic limit to the near-sudden limit. In
our further study of the model described here we

hope to characterize capture processes throughout
this range.
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