
PHYSICAL REVIE% B VOLUME 26, NUMBER 6 15 SEPTEMBER 1982

Surface-binding-energy shifts for sodium, magnesium, and aluminum metals
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The core-level binding-energy shifts for surface atoms relative to bulk atoms ("surface
shifts") have been measured for the 2p levels of Na (220 meV) and Mg (140 meV) using

synchrotron-radiation-excited photoelectron spectroscopy. For Al, both a surface shift and a

broadening are considered. The sign and magnitude of these shifts are compared with calculat-

ed values based on surface energies. The mean free path of the photoelectrons is determined

by evaluation of the intensity ratio l»t„(2p}/Is f gc(2p).

Recent photoelectron spectroscopy measurements
have demonstrated that the core-level binding ener-
gies of surface atoms differ from those of bulk
atoms. ' ' These surface shifts have been used to dis-
tinguish between different reconstruction models of
metal and semiconductor surfaces and to study sur-
face segregation in alloys. 4 Only for the Sd transition
metals and the lanthanide series, however, enough
experimental data have been reported to systematical-
ly compare calculated and measured surface shifts.

In a thermodynamic model, the surface shift EE,
can be expressed as5 6

AE, =E,(Z +1)—E,(Z)
with E, (Z ) the surface energy of the element with

mass number Z. Using this model and surface ener-
gies, either estimated from bulk cohesive energies' or
from tight-binding calculations of the surfaces, ' the
surface shifts have been obtained for the Sd transi-
tion metals. A comparison between experimental
and calculated shifts has been encouraging; the trend
(a change of sign in the middle of the Sd series) has
been found in experiments, the magnitude compares
reasonably well and the predicted difference in sur-
face shifts of the different crystal faces of the same
metal has been found. The thermodynamic model
appears to be a promising theory and gives reason to
expect surface shifts on free-electron-like metals as
well. Therefore, it is challenging to search for them.

The present Communication reports measurements
on the 2p levels of Na, Mg, and Al. We studied
evaporated films and single crystals [Mg (0001),
Al(100), and Al(111)]. Two aspects of the surface
shifts are treated: First, we correlate sign and value
of the observed surface shift with calculated values
using relation (1) and surface energies obtained from
theoretical calculations or from other types of ex-
periments. ' " Second, we estimate the mean free
path of the photoelectrons from the bulk-to-surface

intensity ratio of the 2p peaks (Iq/Iq)
The experiments were performed at the Ham-

burger Synchrotronstrahlungslabor (HASYLAB) us-

ing synchrotron radiation of the storage ring DORIS.
Monochromatic radiation from the FLIPPER mono-
chromator was used in the energy range of 36—200
eV and the photoelectrons were analyzed in a com-
merical cylindrical mirror analyzer. The overall in-
strumental resolution was 0.09—0.19 eV in all data
presented. The films were evaporated onto stainless-
steel (Mg, Al) or oxygen-free high-conductivity
copper (Na) substrates under UHV conditions
and spectra recorded at 300 and 100 K. The
single crystals were polished in a standard way,
"sputter" cleaned, and annealed. All data on single
crystals were recorded at 300 K.

Figure 1 shows spectra of the Na 2p level at several
excitation energies. To fit the experimental spectra,
a procedure shown in the 100-eV spectrum of
Fig. 1 was used: We assumed two sets of peaks,
2py2 t~2(bulk) and 2py2 t~2(surface) with the spin-
orbit intensity ratio fixed to 2:1. According to the
theory of free-electron-like metals, we used
Doniach-Sunjic line shapes convoluted with a Gauss-
ian of temperature-dependent width to consider pho-
non broadening. ' The sum of the doublets was con-
voluted with a Gaussian to take the instrumental
resolution into account. Thus the intensity ratio
Is/Is and the surface shift E, (bulk)-E, (surface) were
used as main parameters. Experimental spectra could
not satisfactorily be fitted using an identical set of
parameters for bulk and surface doublets. We attrib-
ute this to the structure dependence of the surface
shift. ' The random orientation of crystallites at the
surface of the evaporated film leads to a multitude of
surface doublets with different surface shifts. Includ-
ing a second or even third surface doublet into the fit
introduces so many new free parameters (for want of
single-crystal data), that results become meaningless.
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energy data by the Johansson-Martensson theory. '
The surface shift of Al(111) is practically zero, while
the case of Al(100) appears to be more involved.
There is some indication, however, that the theoreti-
cal concept also holds for Al.

ACKNOWLEDGMENTS

This work was in part supported by Swedish Natu-
ral Science Research Council (NFR). We thank B.
Blume for encouragement during the measurements.

T.-C. Chiang and D. E. Eastman, Phys. Rev. 8 23, 6836
(1981), and references cited therein.

R. Kammerer et al. , Solid State Commun. 41, 435 (1982).
3F. Gerken et al. , Surf. Sci. (in press).
4L. Johansson et al. , Solid State Commun. 41, 427 (1982).
58. Johansson and N. Mkrtensson, Phys. Rev. 8 21, 4427

(1980).
6A. Rosengren and B. Johansson, Phys. Rev. 8 22, 3706

(1980).
7M. C. Desjonqueres and F. Cyrot-Lackman, Surf. Sci. 50,

257 (1975).
N. D. Lang and W. Kohn, Phys. Rev. 8 1, 4555 (1970).
J. H. Rose, H. B. Shore, D. Geldart, and M. Rasolt, Solid

State Commun. 19, 619 (1976).

~~J. Bodanski and H. E. J. Shins, J. Inorg. Nucl. Chem. 30,
2331 (1968).
H. Wawra, Z. Metallkd. 66, 395 and 492 (1975).

'2W. Tyson and N. Miller, Surf. Sci. 62, 267 (1977).
' P. H. Citrin, J. K. Wertheim, and Y. Baer, Phys. Rev. 8

16, 4256 (1979).
~4P. Heimann, J. F. van der Veen, and D. E. Eastman, Solid

State Commun. 38, 595 (1981).
' W. Eberhardt, G. Kalkoffen, and C. Kunz, Solid State

Commun. 32, 901 (1979).
E. Wimmer, M. Weinert, A. J. Freeman, and H.
Krakauer, Phys. Rev. 8 24, 2292 (1981).

' D. R. Penn, Phys. Rev. 8 13, 5248 (1976).


