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Exchange theory of resistivity saturation
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We suggest that the well-known phenomenon of resistivity saturation in d-band metals can be
due to the density-of-states anomaly of Altshuler and Aronov. We derive the functional form
of the saturation equation and an expression for the saturation resistivity.

It has been known'"? for many years that electrical
resistivities of strong-scattering metals often equal
and rarely exceed a value py.x given approximately
by
I

e2a=150 wQcem 1

Pmax =
where q is a typical interatomic spacing. Three exam-
ples of this,>™5 each associated with a different
scattering mechanism, are shown in Fig. 1.

Although its relevance to all of Fig. 1 is commonly
assumed, the term ‘‘resistivity saturation’’ refers
specifically to the behavior shown in Fig. 1(b): A
linear increase of p with temperature until ppn,y is
reached, and then ‘‘saturation’ at pn,x thereafter.
We are persuaded by the arguments of Allen! that
this behavior has not yet been satisfactorily ex-
plained. It has been quantified, however, by
Wiesmann et al.,> who observe that measured resis-
tivities pmess Of radiation-damaged A415’s are accurate-
ly given by a law of the form

1, )

Pmeas Pideal Pmax

where the ideal resistivity takes a form linear in T
Pideal( T)=P0+P1T (3)

consistent with most solutions of the Boltzmann
equation.® Resistivity saturation has been correctly
associated by these authors and others’ with the ap-
proach of the mean free path /to a minimum value
near a. It is thus vaguely consistent with Mott’s®
ideas about the existence of a minimum metallic con-

1
x(q, w) = — =
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where angle brackets denote ensempble average. We
emphasize that this is true even near the melting
point so long as kT << #/7, which is the case in
strong-scattering metals. The single-particle eigen-
states of the hot system are those of a disordered
cold one, ensemble averaged over configurations

ductivity o mip= 0.026e%/fa. However, there are
several difficulties with associating ppmax With omin
(Ref. 1): Ba attains a resistivity of 213 wQ cm before
melting, with no sign of saturation; in layer materials
such as TaS; pmax— 300 wQ cm; Mott’s original esti-
mate of o min yields pmax—3000 wQ cm. We venture
to add that neither resistivity saturation nor o, has
been observed in phosphorous-doped silicon,’ a sys-
tem in which the metal-insulator transition has been
studied in great detail. Furthermore, neither is con-
sistent with recent scaling theories of the transi-
tion, !0 11

In this paper, we suggest that a law of the form of
Eq. (2) can be a consequence of the depression of
the density of states at the Fermi surface due to dif-
fusion, recently identified by Altshuler and Aronov!?
as the cause of the giant zero-bias anomaly in tunnel-
ing spectroscopy. In our picture, resistivity saturation
occurs because increasing disorder, via the exchange
interaction, increases the Fermi velocity, and thus
causes carriers to scatter less efficiently.

Following Abrahams et al.!* we shall argue using
the metal’s known neutral density-density correlation
function, given at small g and w by

X(q,w)=~2v(0)l (sq)

wz—(sq)2+im/7] ’ “)

where v(0) is the single-spin density of states at the
Fermi surface, s is the sound velocity, given nominal-
ly by vs/+/3, and 7 is the semiclassical elastic collision
time. X is formally related to y;, the eigenstates of
the full single-particle Hamiltonian, by

S w e, e ) exvl—ig (r=r1ar—r) (5)

r
sampled by the thermal motion of the nuclei. Equa-
tion (4) is commonly obtained from Eq. (5) diagram-
matically using a ladder approximation. This is tan-
tamount in most cases to solving the Boltzmann
equation for quasiparticle motion, and thus we em-
phasize that x takes the form of Eq. (4) for any met-
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FIG. 1. (a) Resistivity vs temperature for stoichiometric
and nonstoichiometric magnetic alloys taken from Ref. 4.
Arrows indicate the Curie point. Residual T =0 resistivity
due to leftover spin-disorder scattering. (b) Resistivity vs
temperature for a-damaged films of Nb;Ge taken from Ref.
3. Results for samples with different annealing histories are
shown. Resistivity due to damage and phonons. (c) Resis-
tivity vs volume gain per atom for certain expanded liquid
metals taken from Ref. 5. Arrows indicate the melting
point. Temperature-independent resistivity due to confi-
gurational disorder in the fluid.

al which is a good Fermi liquid. We observe that if
the Fermi velocity is dialated in the manner

vp—’vp/x » (6)

and if all other parameters in the system, e.g., the
area of the Fermi surface and the scattering potential,

remain unchanged, then X becomes

(sq/x)?

X——2v(0)(x) 0= (sq/x)*—i(w/x7) |

M

Following Abrahams et al. we assume that the aver-
age exchange interaction between two electrons
depends only on their separation in energy fw. We
may then write this interaction ¥V (w) as

1
mhwlv(0)]2L3

xlm[ 1 IX(qiw)v(q)dq] , (8

V(w)=

(27)3

where L3 is the sample volume and v(q) is, again
nominally,

2
v(q)=—;4-2-1i% . ©

The exchange self-energy felt by an electron € above
the Fermi surface is then

(6= [ V() v(OLdHa) | (10)

and thus the exchange contribution to the reciprocal
density of states is proportional to

92 _ el |k 2z 1 1 an
de Fim|e 1+z] (M2 [1+z]2|
where
e+ielr
== 157 12
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This is plotted for various values of 7 in Fig. 2. We
observe that the 7 — oo limit agrees poorly with the
known value of ¥V (w) for the electron gas, in that it
goes to zero as o — 0 and increases in magnitude
with increasing w. This is because of the unrepresen-
tative behavior of Eq. (4) at large values of ¢, which
are weighted heavily in Eq. (8). However, as we are
interested in the changes in V () induced by the
presence of a nonzero 1/7, this discrepancy is unim-
portant. Figure 2 shows that electrons nearby in en-
ergy exchange more strongly in the presence of
scattering than in its absence. This is because
scattering causes the eigenstates ys; to have inhomo-
geneities on the scale of / which correlate for states
nearby in energy.

The physical significance of the density-of-states
suppression described by Eq. (1) is that disorder and
exchange together increase the Fermi velocity. In
general, the combined effects of Coulomb interac-
tions and disorder are difficult to couch in terms of
Fermi-surface parameters; indeed, in the limit
93/de<< 1, corrections to the electron-hole scatter-
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FIG. 2. 83/9e as given by Eq. (11) vs o for various
values of 7. The units of w and 1/7 are sA. e2\/kw is taken
to be 1. Note that the cusp at w =0 will be smoothed at
high temperature by approximately Aw =kT.

ing rate can be shown'? to overwhelm the Fermi
velocity increase and cause the resistivity to rise.
However, we are interested in the limit 93/9e> 1,
when the expansion in the strength of the Coulomb
interaction leading to this result diverges. As in a
disorder-free metal, it is appropriate in this case to
sum the Coulomb interaction to all orders via the
screened Hartree-Fock approximation. This can be
done simply if we make two assumptions: (1) that,
as in the disorder-free metal, the Coulomb vertex
correction is small, and (2) that the ‘‘impurity lines”’
connecting the particle and hole in the conductivity
diagram have a negligible effect. Neither of the as-
sumptions is justified when 93/de << 1.12 However,
they preclude non-Fermi-liquid behavior, which we
note has not been observed to be significant in the
strongly interacting case. We perform the Hartree-
Fock calculation by solving Egs. (7) and (11) self-
consistently. If we denote quantities in the absence
of the density-of-states suppression by subscript 0,
and let
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If we let
Pidea1=——1— , (16)
2V0(0)S(%€27'0
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the solution of Eq. (14) yields

3 Pideal

3
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This is plotted, together with Eq. (2), in Fig. 3. The
two can be seen to agree closely over the range of in-
terest.

We use Eq. (17) to estimate the size of ppa, in Nb.
From the augmented plane wave (APW) calculation
of Mattheiss! we obtain a bare single-spin density of
states at the Fermi surface of vo(0) =0.045 A-3eV~1,
and a Fermi-Thomas screening parameter of
Aer=[(8me?(0)1Y/2=4.04 A~'. From the electron-
ic susceptibility calculations of Cooke et al.!> we find
a disorder-free X(g,w,) which varies from its Fermi-
Thomas value of 2v¢(0) at the zone center to 0.36 of
this value at the zone edge. Thus, defining

4 . 1 . —
Pmeas = Tl’maxSIﬂh2 3 sinh™!
P max

P TN 400 w0
=— === cm |, 20
Pmax = o(0)e? # (20)
we have approximately
pngpmaxZ \‘0-36Pg1-£x , (21)

which agrees well with the 230 «Q cm estimated by
Wiesmann et al.>

We remark that the energy scale in Fig. 2 is deter-
mined by As, which equals the plasma frequency in
simple metals. Even with the parameters we assume
for Nb, the width of the cusp in the saturation re-
gime is several eV, which is sufficient to prevent sig-
nificant thermal smearing at temperatures comparable

~ L2 a3
we have
14183 1] , 14
x x 0€ |, To
where
T=e*/mksé\ . (15)
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FIG. 3. Resistivity saturation given by Eq. (19) compared
to that given by Eq. (2). ppay is taken to be 1.
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to the melting temperature. Were this not the case,
the more complicated high-temperature version of
the Altshuler-Aronov theory would need to be in-
voked. We remark also that the validity of our ex-
planation of resistivity saturation implies a relation-
ship between resistivity and the Fermi-surface density
of states involving only the empirically determined
parameter pn.x. We have

V(O) _ 1/2

=|1—-—L—
vo(0)

Pmax

(22)

This can be tested experimentally either by direct

tunneling measurements of the density of states of by
correlating impurity resistivities of superconductors
with their transition temperatures.
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