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Surface modes of two spheres
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The surface-mode frequencies of a system of two spheres are calculated. The results
are compared with those of the approximate method due to Clippe, Evrard, and Lucas,
and a bound on the range of validity of the latter method is obtained. The implications
on some recently proposed interpretations of the results of optical experiments on small
metal particles are discussed.

I. INTRODUCTION

The optical properties of a small metallic or
dielectric sphere can be explained in terms of its
characteristic surface modes. ' These modes are
surface plasmons for a metal sphere and surface
phonons for an ionic crystal sphere. However, op-
tical experiments are usually performed on samples
containing a large number of particles. Single-

sphere theory can only be applied as long as the
particles are well separated. When this is not the
case, the interactions between the spheres can be
introduced in some average way, as in the
Maxwell-Garnett theory or other effective-
medium theories. It is often found experimentally
that particles stick together to form clusters and
chains. ' When such clumping of particles exists,
effective-medium theories cannot be used and a
different approach is needed. A theoretical
method which deals with aggregation effects has

recently been presented by Clippe, Evrard, and Lu-
cas (CEL). They used a model Hamiltonian in

which only dipole-dipole interactions between the
spheres in the cluster were included, and all in-

teractions involving higher multipoles were neglect-
ed. This approach is certainly valid when the
spheres are well separated, but it is not clear
whether it provides any useful information in the
case of clusters of touching spheres, to which it
was applied.

In the present paper we obtain the exact
surface-mode frequencies of a two-sphere system
and compare them with those obtained from the
CEL approximation. This yields a quantitative
criterion for the range of validity of the CEL
method. The exact calculation is based on the use
of bispherical coordinates, in which the solutions
of the Laplace equation are known. This approach
has previously been employed to calculate the van

der Waals energy between two spherical voids in a
dielectric medium, and also to obtain the dipole
moment of a two-sphere system in an external elec-
tric field. In these works, however, perturbation
expansions, valid for small ratios of sphere size to
intersphere separation were used. We employ an
exact numerical algorithm which involves no per-
turbative method. Aravind et a/. ' have recently
studied the local electric field intensity in the vi-

cinity of a two-sphere system, which is acted on by
a constant field, using the same mathematical ap-
proach.

II. SURFACE MODES OF A SINGLE
SPHERE AND OF TVfO SPHERES

We first discuss some general properties of the
surface modes of the one- and two-sphere systems
and their interrelation. The properties of the solid
enter only through its frequency-dependent dielec-
tric constant e(co), so that the results are applicable
to both metals and dielectrics.

In the nonretarded limit, which is applicable for
small enough spheres, the potentials have to satisfy
the Laplace equation V V=O. The frequencies of
the surface modes are obtained by matching inter-
nal and external fields using appropriate boundary
conditions at the surface (or surfaces} separating
the solid from the surrounding medium. For a
single sphere of radius R and dielectric constant
e(co), embedded in a medium of dielectric constant
e, the internal and external potentials are'

where yI~ are spherical harmonics, / =1,2, . . . and
m =0, +1,. . ., +/. The boundary conditions at the
surface of the sphere are
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av,
~(~)

Br

av,
=&m

Br

from which the following equation for the
surface-mode frequencies is obtained:

e(co) l +1
~ ~ ~ ~

e I
(4)

Because of the spherical symmetry for any given I
the 21 +1 modes, m =0, +1,. . ., +l, are degen-

erate.
We now consider the two-sphere system. When

the spheres are far apart and do not interact the
surface-mode frequencies are still given by Eq. (4),
but now the degeneracy is doubled, so that the lth
mode is (41+2)-fold degenerate. When the dis-

tance between the spheres is reduced, this degen-

eracy is partially lifted. In general, there will exist
two different frequencies for each (I,m) pair. The
(I,m) modes will, however, be degenerate with the

(I, —m) modes. Thus, for any l there will exist
2(l + 1) different frequencies. Of these, 21 are dou-

I

bly degenerate, so that the total number of modes
is again 4l+2. The actual calculation of the
surface-mode frequencies can be performed by
using bispherical coordinates, as described in the
following section.

III. METHOD OF CALCULATION

Let the two spheres of radius 8 be centered at
z =+D. In bispherical coordinates (rj,a, g), de-
fined by

x =a sina cosP /(cosh' —cosa),

y =~ »na»np/(cosh' —cosa),

z =a sinhri/(coshr) —cosa),

where a =(D R)'i —the two spheres are given

by q=+go with

D=acothqp, R =a/sinhgp .

We build the potentials inside the spheres and in
the surrounding medium from the following solu-
tions of the Laplace equation:

oo n

V=(cosh' cosa—)' g g IM„exp[(n+ —, )g]+X„exp[ (n+ —, )g]—]P„(cosa)e'
n=Om= —n

Because of the axial symmetry of the system, wave functions having different m values are not coupled
and we can solve separately for each m. We will only solve for the m =0 and m =1 modes. Higher modes
can be obtained in an analogous manner.

For m =0 we can choose potentials which are either symmetric or antisymmetric with respect to reflec-
tions through the xy plane. For the symmetric case, for example, the potentials inside the upper sphere and
in the surrounding medium are given by

V+ (cosh' ——csoa)'i—g B„exp[ (n+ —, )g]P„(—cosa),
n=0

V =(cosh' —cosa)'i g A„cosh[(n+ —, )ri]P„(cosa),
n=0

respectively. Applying the boundary conditions,

av,
V+(gp)=V (gp), e(co)

Bg gp

av

. an Qp

(10)

and eliminating the coefficients B„ from the resulting equations, the following recursion relation is obtained
for the coefficients A„

1 1

n [e'(co)cosh(n ——,)gp+e sinh(n ——, )rip] A„

—
I 2n+1 [e(co)cosh(n+ —,)gp+e~sinh(n+ —,)gp] coshgp

+ [E~ —E(co)] i hsgnp hc(os+n2 )gpIA++(n + 1) [e(co)cosh(n + 2 )Y/p+E~ sin( h+n2 )rip] A++i =0
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The surface-mode frequencies can be obtained from this relation by regarding it as a system of linear homo-
geneous equations for the coefficients Ao, A i, . . .,A„. Truncating the system at some n~, the condition for
the existence of a nontrivial solution is that the determinant of the coefficients vanishes, which yields n~
eigenfrequencies. These frequencies will be expressed by equations of the form e(co)/e~ =a;, i =1,2, . . , n.

llew

Actual frequencies can then be calculated for any solid for which the dielectric function e(pl) is known. Our
interest is in the first few surface-mode frequencies, and these are found to converge, so as to be independent
of nor, provided that nor is large enough.

For the antisymmetric m =0 modes we obtain the following recursion relation

1

n [e~cosh(n —, )r—)p+e(co )sinh(n ——,)gp]A„

—
I (Zn +1)[e(ro)sinh(n+ , )ri—p+e cosh(n+ —, )rip]coshrip

+[@ —e(co)]sinhppsinh(n+ —,)rIpIA„+(n +1)[e(co)sinh(n+ 2 )rIp+e cosh(n+
& )pp]Anil

(12)

For the m = 1 modes we use expansions analogous to Eqs. (8) and (9) and obtain the following recursion
relations for the expansion coefficients of the symmetric and antisymmetric modes

1 1

(n —1)[E( co) cosh( n—
& )g +pe sinh(n —

& )r)p]A

+ I [e(ro) e]sin—hgpcosh(n + —, )rip

—(2n + 1)cosh')p[e(co)cosh(n+ —,)rip+@ sinh(n+ —, )rIp] jA„

+ (n +2)[e(co)cosh(n + —, )rjp+ e~ sinh(n + —,)rjp]A„+ l
——0,

1 1

(n —1)[e cosh(n ——, )r)p+e(co)sinh(n ——,)r)p]A„

+ t [e(co)—e~]sinhrjpsinh(n+ —, )gp

—(2n+1)coshrlp[e cosh(n+ —,)rjp+e(co)sinh(n+ —, )r)p] IA„

+(n +2)[e cosh(n+ —,)rip+@(co)sinh(n+ —,)gp]A„+l ——0 .

(13)

(14)

IU. RESULTS AND DISCUSSION

We have calculated the frequencies of the m =0
and 1 modes corresponding to I =1,2,3 and the re-

sults are depicted in Figs. 1 and 2. The curves
show the dependence of a=@(co)/e~ on the inter-
sphere separation. For large values of D/R the
modes tend to the single-sphere values of Eq. (4).
The method employed here is not applicable at
D/R = 1, i.e., for touching spheres. In fact, when

D/R approaches unity, it is found that larger and

larger values of n~ are needed to ensure the con-
vergence of the first few eigenvalues. %e have
therefore performed the calculations only down to
D/8 =1.1.

In the CEI. approximation only the I =1 modes
are derived and the values of a are given by

A —2

i+1 '

J=~

/=2

o $F
-4

I

I

2.0
D/R

2.5

FIG. 1. Surface-mode frequencies of the two-sphere
system for m =0. Full curves represent the exact calcu-
lation; dashed curves represent the CEL approximation.
The optically active branch is denoted by A. The circle
shows the experimental value measured by Sansonetti
and Furdyna (Ref. 11).
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FIG. 2. Surface-mode frequencies of the two-sphere
system for m =1. Full curves represent the exact calcu-
lation; dashed curves represent the CEL approximation.
The optically active branch is denoted by A.

where k are the six eigenvalues of the tensor

0 T
~12T 0

where T' is the dipolar tensor

RT' = (I—3rr)
8D

Here r =(0,0, 1) is a unit vector in the direction of
the line connecting the centers of the spheres.

We have calculated the frequencies using the
CEL method and the results are shown by the
dashed curves of Figs. 1 and 2. When the spheres
are well separated, the dipole-dipole interactions
are dominant and the CEL results agree with the
exact values. The CEL approximation loses its
validity at small separations. From the numerical
results we obtain the rough quantitative criterion
that the CEL method is applicable for D/R & 1.6,
where it yields results accurate to better than 1%.
It is, however, unreliable when the separation be-

tween the spheres decreases below this limit.
Sansonetti and Furdyna" have devised an exper-

imental method for measuring surface-mode fre-
quencies of arrays of spheres. They employed
small InSb spheres (250@m &R & 310@m) contain-
ing free carriers. In the presence of a magnetic
field B the dielectric constant of the semiconductor
is given by

e(co) =eL + Ines 1

coro 1+ip(B corn/e)—

Here eL is the lattice dielectric constant, p is the
mobility, m* the effective mass, and n the concen-
tration of the free carriers. A convenient feature
here is that e(co) can be varied by sweeping the
external magnetic field. Thus, by placing an array
of spheres at the center of a waveguide and

measuring the transmission of a microwave signal

past the array as a function of the magnetic field,
it is possible to determine the frequencies of the
optically active modes. Using this technique, San-
sonetti and Furdyna have performed measurements
on 30 different arrays of touching spheres. Their
experimental result for the surface-mode frequency
of a pair of touching spheres is shown by the point
denoted by SF in Fig. 1. This experimental value
a= —3.73 is much lower than the value a= —3
obtained from the CEL approximation. The curve
calculated by the exact method exhibits a trend to
lower values of a, in qualitative agreement with
the experimental result. %'e do not expect to find
complete quantitative agreement with experiment

in this region. This is because for D/R =1 the
measured frequencies could be infiuenced by small

deviations from spherical shape, which inevitably

exist in such experiments. Sansonetti and Furdy-
na" found large discrepancies between their experi-
mental results and those of the CEL approxima-
tion also for other types of touching-sphere clus-

ters. They suggested correctly that the CEL
method is not valid for touching spheres. Al-

though our comparison between the exact calcula-
tion and the CEL approximation was performed
for the two-sphere system only, it seems reasonable

to deduce that for more complicated clusters the
CEL method will again be valid only when the
separations between the spheres are not too small.
For touching or very closely spaced spheres it will

not be applicable.
Finally, we note that the CEL theory has recent-

ly been invoked in interpretations of the results of
optical experiments on ultrafine metal particles. '
In these works the transmittance of thin films con-

sisting of ultrafine gold and nickel' particles
(usually less than 10 nm in diameter) has been

measured. Inspection of electron micrographs has
shown that the individual particles tended to stick
together to form chains and clusters. The optical
spectra were therefore explained in terms of effec-
tive depolarization factors of the clusters. In fact,
for any eigenvalue a we can define a corresponding
effective depolarization factor I. by I.= 1/(1 —a).
A detailed discussion of this procedure can be
found in Ref. 6. Here we only point out that in
this application the CEL approximation was em-

ployed for cluster of touching spheres, i.e., outside
its range of validity. It is therefore questionable
whether this approach is physically meaningful,
and whether it involves more than mere curve fit-
ting.
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