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Dielectric anomalies near the Anderson metal-insulator transition
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The linear-response expressions for the dielectric constant and conductivity as functions of
wave number and frequency are evaluated near the localization metal-insulator transition for
noninteracting quasiparticles. New behavior is found in the microscopic range. The static
dielectric constant from the insulating side is found to diverge with twice the exponent charac-
terizing the vanishing of the conductivity from the metallic side. The dynamic structure factor
follows easily from our expressions and we suggest that it can be measured, in principle, using

high-frequency electromagnetic radiation.

The ability of a metal to screen the Coulomb in-
teraction totally at large distances is an important
characteristic of the conducting state of matter. This
is related to the wave-vector (q)-dependent static
dielectric constant e ( q, tp =0) (Ref. 1) diverging as

q when q 0. In the insulating phase, however,
lim~ pe(q, 0) = ep is finite. Near a continuous
metal-insulator transition, one would thus expect a
diverging eo from the insulating side. This is shown
here to be the case for the localization, disorder-
induced transition, according to the scaling theory
for it. Interesting and unusual frequency dependence
of both e(q, tp) and conductivity o.(q, tp) may there-
fore also be expected, resulting in rather exotic opti-
cal properties. In fact, such anomalies are known to
exist near the percolation threshold in a metal-
insulator macroscopic composite.

In this Brief Report we establish the critical
behavior of e(q, tp) and o.(q, tp) near the localiza-
tion transition for a degenerate fermion system in a
self-consistent potential for frequencies much smaller
than the inverse elastic relaxation time. Important
differences exist between this case and that of the
macroscopic composite. These may allow an experi-
mental discrimination between a genuine localization
transition and the one dominated by large scale inho-
mogeneities, which result in percolation-type
behavior. We also present results for o.(q, tp) and
e(qtp) i,n the "microscopic" range, relevant for
higher frequencies (or temperatures) and smaller
wavelengths, where different power laws are ob-
tained. From the theoretical point of view, the
understanding of the correlation function4 related to
the dielectric response5 may help in elucidating the
physical meaning of the order parameter associated
with localization. Understanding the screening is also
crucial in order to incorporate properly the electron-
electron Coulomb interaction effects, of relevance in

real physical systems. In fact, similar phenomena
may well occur near the Mott-Hubbard metal-
insulator transition caused by the interactions' even
without disorder. Interesting speculations related to
this have been made by Toulouse. 8 Recent experi-
ments on doped Si (Ref. 9) are in a good agreement
with the scaling laws obtained here. We shall consid-
er in this paper only the three-dimensional case
where a mobility edge is believed to exist.

A simple scaling-type argument' giving heuristical-
ly the scaling law relating the diverging eo from the
insulating side to the vanishing o.(0, 0) from the me-
tallic side follows by considering Fig. 1. Here, the
static dielectric constant e(q, 0) is schematically de-
picted as a function of q for the metallic and insulat-
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FIG. 1. The static dielectric constant e(q, 0), as a function
of q (schematic). For q » 1/t, both the metal and the in-
sulator are expected to have a dielectric constant —A/q2 's

where A is a constant. For q « 1/t' the metal should show
screening [e(q, 0) —q 2] while for the insulator,
limq ~'E (q, 0) is a finite constant eo.
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ing phases in both the "microscopic" q )) I/g and
the macroscopic q « I/$ ranges. " In the former
range the two phases are indistinguishable, displaying
in general a q2 ~ behavior of e, where q is the usual
critical exponent associated with the anomalous
dimension of e. In the latter range the metallic phase
is expected to display screening e( q, 0) =1/A'q',
where A is the screening length, while the insulating
phase is expected to have an e(q, 0) tending to a fi-

nite limit eo, as q 0. Since as q I/g from below
the dielectric functions for both phases should be
similar, and because e(q, 0) does not change much
for q & 1/g in the insulator, it follows that the order
of magnitude of ~0 should be

e —(2/A2 —(2 '
(one has A' —P by matching the two above forms at

q —I/(), i.e., it diverges with (2 —7]) times the ex-
ponent characterizing the vanishing'" of a.(Q, Q)
(given by — e/i2tg) when the transition is approached
from the metallic phase. This relation, with q =0, is

consistent with the experimental results of Ref. 9.
The same exponent ratio becomes on the order of
0.3 —0.5 for the macroscopic composite case. 3 One
may feel that this difference in the ratio is large

enough to make the two cases experimentally distin-
guishable. The approximate calculations reported
here for noninteracting quasiparticles support the pic-
ture of Fig. 1 and Eq. (1) and turn out to produce a
value of q =0 so that the above exponent ratio is ex-
actly 2. The total frequency-dependent e(q, «]) and
o (q, «]) are given. Our expressions enable one to
easily obtain the dynamic structure factor S(q, «]) for
the disordered system —a quantity which is, in princi-
ple, measurable. Recently, McMillan' constructed a
scaling theory ' ' with Coulomb interaction effects.
Near the fixed points with interactions, he finds (1)
with 0 & g & 2 (his q is 3 minus ours). Our results
are near the no interaction fixed point and can be ob-
tained from Ref. 13(b) by putting q =0 (or
McMillan's 2] to be 3). However, we obtain full
screening throughout the metallic phase and at the
transition. We believe that out treatment clarifies the
relations between diffusion and screening in the vari-
ous regimes.

We start from the linear-response formula' for the
complex dielectric function

e( q, «]) = e( q, «]) + (4mi/«]) o ( q, «]),

which is exact for noninteracting fermions

e(q, co) =1 —lim, J dE,N(E;) dEfN(EI)l (fle"'' li)I' (2)

so(q, «]) = $p, I(fl"' I])l'g(E, -E, -]r«])
i,f

~ dt e'"'F(q, t), (3)

where, for a Gaussian distribution (in a semiclassical
approximation), which should hold after many elastic
collisions,

F(q, t) =exp[ —
—,
' q'(r(t)') ],

and p; are the weights of the initial states li ). As-
suming that for the narrow range of E; considered,
the matrix elements squared depend only on energy
differences, we find

(4)

1(f1e' " ' " li)l' =S]](q,«])/N(0), «] = Ef E], (5)—

where Vis the volume of the system, N(E) the den-

sity of states per unit energy whose variation with E
for small E will be neglected [later we denote
n(E) =N(E)/VJ, f(E—) is the Fermi function, E is
measured from the Fermi energy and li) and l f) are
exact single-particle states. Following suggestions in
Refs. 6(c) and 13 one can derive a relation between
the matrix elements in Eq. (2) and a dynamic struc-
ture factor'4 So(q, «]), for quantum diffusion, defined
in the following way. At t =0 the particle is started
with a wave packet around the origin which is much
narrower than g in space and is also of minimal width
in energy. Then

I

and tt is taken as 1. Using (2) and (5) we immedi-
ately find

2 2

]r(q, «]) = n(0)SO(q, «])
g2

e'n (0)D«]2 o.(0,0) «]2
orq«]it (Dq2) 2+ «]2 (Dq2) 2+ «]2

where to get the last expression we used the Einstein
relation between D and o- and the linear increase
(r') =2Dt for macroscopic times. From this it
follows' ' ' by (4) that

S]](q,«]) =Dq2/2r[(Dq2)2+«]2] .

Here D is the macroscopic diffusion constant which
within the scaling theory, ' vanishes like ( ' when lo-

calization is approached from the conducting side.
For q « I/f the macroscopic expressions are suffi-
cient [see Figs. 2(a) and 2(b)]. This is valid for the
conducting phase, where the macroscopic D is finite.
It is now straightforward to obtain the real part corre-
sponding to Eq. (6) of the dielectric constant,

( ) 1+ 47m(0) e2DDq
(Dq')'+ «)2

These expressions, ' valid at low frequencies, yield
the optical properties of the conductor for q « I/g.
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insulator depicted in Figs. 2(c) and 2(d). The locali-
zation thus endows S()(q, «)) with a 5(«)) part which
is dominant for q « I/(e. It does not contribute to
the priricipal part of Eq. (8) and only the small
smooth background of area 0 (q g ) contributes.
Thus, for the insulating phase, for q « I/g,
e(q, 0) —(p2/A2 in agreement with the heuristic ex-
pectation of Eq. (1). The background part [Fig. 2(d)]
of Sp( q, «)) was also estimated explicitly. Using Eq.
(6) we obtain an expression for the conductivity in
the insulating phase for q &( I/g. We interpolate
between the low- («) « D/(2) and high-
[«) » D/$2, similar to Eq. (10) below] frequency re-
gimes:

I

$/D

:xp[o(-q g )]
MACRO

{c)

AREA- q ~g~

~~JZZ/Z~ cZZ~zzmm~ —~

«)'e2n (0) (D g) '/'

A)«) +A2(D/( )

where here and in the following expressions A;
(i = I, 2, . . . , ) stand for numerical coefficients of or-
der unity. At low frequencies' the leading term is

FIG. 2. Schematics of F(q, t) and So(q, cv) in the metallic

and insulating phases for q « 1/g: (a) F(q, r) for the met-
al, changes around t —(2/D from exp[ —O(d2/3t2/3)] to
exp( —q Dt); (b) So(q, co) for the metal, a Lorentzian of
width Dq2; (c) F(q, t) for the insulator, saturates at
exp[—O(q2(x2)] for t & (2/D; (d) S()(q, «t) for the insulator,
consists of a dominant 5(co) part and a broad background of
weight 0(q ( ). Here D is the macroscopic diffusion con-
stant for the metal at the same (.

We would now like to extend them to the microscop-
ic (q » I/g) range and to the insulating phase.

Let us start with cu =0 to simplify the calculation,
and take Dq' « kT ((Ef (assuming a degenerate
Fermi system). Essentially similar results hold also
at the T 0 limit. The Fermi function is now
smooth on the relevant range of (Ef E,) and one-
may replace [f(Ef) f(E;)]/[Ef E,—] by f'(E;) to-
get

4me2 goo

t(q, 0) =1+, n(0)P S()(q, «))d«) . (8)4 -oo

So( q, «)) satisfies the sum rule j So( q, «)) d«)

=F(q, 0) =1. Thus (qa0) =, 1+1/A2q2, where A
= [4 e trn(20) ] ' ' is the Thomas-Fermi screening
length. (Notice that in this picture we ignore the
electron-electron interactions. Inclusion of these
interactions"' ' induces a change in the density of
states and the screening length may thus be dif-
ferent. ) This is valid in the whole metallic range, in-

cluding the macroscopic and microscopic domains
(i.e., q =0). The situation in the insulating phase is
different, however. The wave packet at T =0 con-
sists only of states that are localized near the origin
and thus can never escape from a volume of the or-
der of (e3, so that as t ~, r2(t) O((2). From
this and the microscopic range, discussed later, follow
the schematic forms of F(q, t) and Sp(q, «)) for the

~(q, ~) —~ (0, 0) [~/(D/02)]2,

where o (0, 0) is the metallic conductivity at the
same ((—e2//f/:) This d.ivergence of the coefficient
of «)2 in o.(«)) as the transition is approached was
first obtained by Wegner. ' The dielectric constant
in the insulating regime is likewise given by

a(q, «)) =1+47re'n(0) (Dg) 2/3

A3«)2/3+A4 D g2 2/3

We now focus our attention on the microscopic
behavior for r ( (e2/D, which dominates what hap-
pens at q & I/g and/or «) & D/g2. According to the
scaling theory"6 the diffusion constant D(L) is
length-scale (L) dependent, and, in fact, it is propor-
tional to 1/L for L « $. It thus follows'6 that
(r2(t) ) —r2 3, and F(q, t) =exp[ —(At)2 3] where
A —Dgq', D again being the macroscopic diffusion
constant. It is now possible only to evaluate
S()(q, «)) for «) (& 5 and «) » A, a convenient in-

terpolation formula being

5I3 3/3
. (10)~,a'i'+ ~'i'

This yields from (6) the conductivity in the micro-
scopic (both metal and insulator!) range. '" For
«) —r;„( and q —I;„', where I;3 —D(r;„, this agrees
with the dc conductivity in the microscopic range pre-
viously discussed, '6 and has important consequences
as far as the temperature dependence of the low-

frequency conductivity is concerned. One can also
evaluate a(q«)) in, this range, which yields again an
interpolation form

4me2n (0)e(q, «)) =1+
2/3 g2/3~s +~

The static e(q, 0) can be evaluated at T =0, which
again yields (qa0) =,1+1/q A .
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To summarize: The linear-response expressions
for e(q, ca) and o (q, ca) can be evaluated around the
localization transition. In particular, the static dielec-
tric constant for the insulator is shown to diverge, for
noninteracting quasiparticles, with an exponent twice
that characterizing the vanishing of the conductivity
from the metallic side, a result which is quite dif-
ferent from the macroscopic composite case. New
expressions and power laws are found in the micro-
scopic range. All these quantities appear to satisfy a
sort of dynamic scaling' ' which will be discussed,
along with the detailed optical properties elsewhere.

Finally, it is straightforward to evaluate from our
expressions and well-known general relationships the
physical dynamic structure factor S(q, ca) for the de-
generate disordered Fermi system [which is, of
course, different from the hypothetical Se(q, ca) used
here]. We would like to suggest that this can be
measured, in principle, by scattering high-frequency

electromagnetic radiation to which the system is rela-
tively transparent. For low-density conductors such
as In203, this includes visible light. ' This may
prove to be a further useful way to probe the details
of these systems.
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