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A conventional-size conductor with an extraordinary high resistance along one of the axes (z)
may have at reasonable temperatures a vanishingly small resistance p~, p~ in a magnetic field

along z when the Fermi energy corresponds to a localized state.

Usually experimenters have aimed at high-
temperature superconductors. However, one may
also consider the possibility of a finite-temperature
ideal conductor, ' i.e., a zero resistance. Meanwhile,
such a conductor, for all practical purposes except for
the Meissner effect, would be indistinguishable from
a superconductor. In fact, an ideal conductivity may
have already been observed experimentally in quan-
tized Hall-effect experiments. The quantized Hall ef-
fect is recognized as a method for the determination
of the fine-structure constant' and for a resistance
standard. '4 But the quantized Hall effect provides
also' a zero resistance p (more accurately, an ex-
ponentially small resistance at low enough tempera-
tures). The observed value"" of p was less than the
experimental error and less than the resistance of any
known nonsuperconductor. It would be very in-

teresting to measure the actual value of p, and there-
fore of the fine-structure constant determination, by
the decay time of a dc current in a Corbino disk. But
the conditions for an ideal conductivity are more gen-
eral than those of the quantized Hall effect, and may
be met for a conventional size of a conductor at
reasonable temperatures, and magnetic fields, if: (i)
A conductor is very anisotropic and has an extremely
high resistance p along one direction (say, z). More
specifically, the energy change he, related to fixed
quasimomentum projections p„, p~, and changing p„
is small compared to the total bandwidthstbt [and
thus the fixed energy surfaces e(p) = const of almost
two-dimensional charges are close to cylinders, in a
general case noncircular]. An example of such a ma-
terial may be CsAsF5. (ii) A magnetic field 8 =8, is

strong enough to provide the cyclotron frequency
«t, & he/ir, k&T (ktt is the Boltzmann constant, T is
the temperature). (iii) The Fermi energy eF lies
within the localized states and its distance Se from

the nearest extended state is Se ) kb T (see Fig. 1).
If an electron effective mass is small, then Ae and

the temperature may be high (e.g. , if m' —10 '
g,

then 8 = 30 kG allows for T, 3 e/ks & 300 K, while if
m" —10 "

g, then the same 8 implies T, ha/ktt & 3 K).

FIG. 1. Energy spectrum of a charged quasiparticle in an
ideal conductor. (Such a spectrum is provided, e.g. , by the
dispersion law

=D coso.'~ +D cosAy + 5E cosP;

in the absence of a magnetic field o. = pa/k; P =p, b/k;
A~ && D. ) The ordinal number of a quantized extended
level is vL, their total number is v —aF/scan„ the number of
localized states per unit volume is & W, tee, /e+, N, is the to-
tal charge density. A very weak (Ref. 7) dependence of e
on the y position of a classical orbit center is neglected.
Note that all presented states are electron ones, since their
o), —=o),(vL,p, ) ) 0.
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When 8~ && k& T, the situation is similar to that of
the quantized Ha11 effect: Extended states below ~~
are completely (with the exponential accuracy) filled,
and thus have the exponentially small dissipation and
exponentially large mean-free-path time v, whereas
localized states do not contribute into the current.

Thus, any conventional conductor of arbitrary
dimensions with the "bandwidth along B" Ae» k~T yields the ideal conductor conditions of the
quantized Hall effect when hem, & Ae & Se » k~ T.
A highly anisotropic material with a small effective
mass m' (in the xy plane) may meet these conditions
at reasonable temperatures and magnetic fields.

Since one knows how to evaluate m' and he for a
given material, it may be an easier task to create a
high-temperature quasi-ideal conductor than a high-
temperature superconductor.

Electric and magnetic fields and a current must be
orthogonal, so the topology requires to use a Corbino
disk or to complement an ideal conductor by a com-
mon conductor or superconductor in a small region.
A finite junction resistance is immaterial in a very
long conductor,

Diamagnetic properties of a quasi-ideal conductor
are also considered. The calculation of the current j
is conventional —see, e.g. , Ref. 7. An interesting
point is its straightforward applicability to free elec-
trons in an arbitrary (in particular, random) potential,
independent of the coordinate along E && 8, and thus
very special (cf. Refs. 9 and 10).

A strong magnetic field B ll z, in both classical and
quantum cases, provides' the conductivities 0-

—o~ —(co,'r ) ' and the resistivities p
—p~ ~ r ',

if the difference N between electron and hole densi-
ties is N & 0. When v ~, then conductivities and
resistivities simultaneously tend to zero. Physically
this is not surprising. In the absence of the dissipa-
tion, orthogonal electric E and magnetic fields pro-
vide the motion of all charges with the same average
velocity cI x I/8' (which is equivalent to the refer-
ence system moving with such a velocity), thus pro-
ducing a current density

j =eNcExa/8',

and a nondissipative Hall current J~ related to the
potential difference U~.

Jn = eNc Un/8

tivity p'.

p=E)/j =0, (5)

where v, e, and H are the electron velocity, charge,
and Hamiltonian. The Hamiltonian, neglecting inter-
band transitions, equals

H=eo(p) +eEy pooB;— .

p = (il'/I )V —eA /c; A = A„=—8,
p, o is an electron magnetic moment; the energy
e= e&=—e„„depends on an integer n (n represents the
electron spin projection o-, the number of the band
and the number of the diamagnetic Landau level)
and continuous K (in a periodic lattice, K represents
quasimomentum projections I'„, p„sample surfaces
make some n discrete). The surfaces make the
motion along y finite, and thus, e.g. ,

(~») &x= (y) &&= (I/&) [Hy]&&=, o

(square brackets denote a commutator). So,

and thus an ideal conductor. [In Eqs. (4) and (5),
ie/E= j F/E', E, =E. j/f'. ]

All these results are probably independent of
electron-electron interactions, crystal lattice imperfec-
tions, nonlinearity with E, experimental details, etc.,
and imply a resistance, exponentially decreasing with
the temperature.

Now I present the solution for charged quasiparti-
cles with an arbitrary dispersion law eo(p) in an elec-
tric field E = E» (with the electrostatic potential

@= —eEy) and a magnetic field 8 =8, (with the
vector potential in the Landau gauge A -A„=—By).
The crucial point of the further considerations is a
completely nondissipative equilibrium (in given
external fields) situation, with exact (i.e.,
nonsmeared by forbidden inelastic collisions) electron
energy levels and equilibrium Fermi distribution
function fF. All considerations are immediately gen-
eralized to a Fermi-liquid interaction (which just
makes the energy spectrum and the distribution func-
tion inter-related).

The current j equals

j=e Tr[vfF(H)],

with the Hall constant R~,

Rn=B/(ceN) .

j»=eh ' dn X(v»)..fF(e..) =0.
gg ll K

Similarly,

(9)

Since, by Eq. (1), E, 8, and j are othogonal, a
fixed E provides jq = 0, i.e., the zero conductivity o-.

~=JE/E =o,

whereas a fixed j provides EJ = 0, i.e., the zero resis-

j,=0. (10)

To evaluate the Hall current j„,note that, by Eq. (7),

p» = (i /t) [H p»] =—(eB/c) (i /t ) [H x] —eE

= —(eB/c) u„—eE,
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and therefore

X —v e hp, /hm'cz (14)

(Ap, is the period of p„v —er/lito, is the number of
occupied levels); X oscillates with 1/8 and may be of
any sign. The value of the integer v increases at cer-
tain values of B, in the region hB which corresponds
to tA~, —k~T, and then provides the extra factor
lito, /kttT for X in Eq. (14). A large enough value of
X implies magnetic moment density wave —see Ref.
11 and references therein.

Any theoretical proof of a zero resistance is handi-

capped by its being based on a certain idealized

u„=—(cps/eB) —(cE/8) .

Thus, ' according to Eqs. (6) and (11),

j„=- (ec—E/8) TrfF = Nec—E/8 .

This reasoning is straightforwardly applicable to
free electrons (so= p /2m) in an arbitrary y
independent potential U = U(x, z) —cf. Ref. 10.

The calculations of the de Haas —van Alphen sus-
ceptibility X (per unit volume) are similar to those of
Ref. 11 and lead to

model. However, the physics of the suggested ideal
conductor is essentially the same as that of the quan-
tized Hall effect. Recent quantized Hall-effect
experiments on GaAs-A1„6ai „As heterojunctions
indicate an incredible lour limit for an electron
scattering time: 7 ) 1.5.10 sec, i.e., at least 5 @10
times higher than r at 8 = 0. These figures (which I
learned after the paper was completed) are probably
the most convincing demonstration of the possibility
of the suggested ideal conductor.

In summary, the current in the quantized Hall ef-
fect is like that in an ideal conductor —to exponential
accuracy, it is nondissipative. The conditions for
quantized Hall effect are generalized from a "pure"
two-dimensional case to a quasi-two-dimensional case
(in the sense of the corresponding dispersion law) of
a conductor, highly anisotropic in one direction.
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