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A simple rigid-molecule model of polymer chains and crystals which utilizes the
extended-point-mass (EPM) approximation is proposed for the analysis of normal mode
vibrations of polymers. The EPM approximation introduces the concept of an effective
size for the rigid molecular units and considerably simplifies the calculations of libration-
libration and libration-translation force constants. The proposed model has been applied
successfully to the lattice-dynamics calculations of polyethylene. The unknown force-
constant parameters are determined from fitting the measurements of long-wavelength

frequencies and the elastic constants. The model imposes restrictions on the relative
values of normal-mode vibrations which make the present assignments of v5(0) and v7{0)
frequencies unacceptable. The present calculations of polyethylene dispersion curves are

1 1 1
the only calculations which exhibit the two features of symmetry about the 00 2, ~ 2 0,

and ——0 points in the Brillouin zone as well as showing three acoustic dispersion

branches. These features are not observed in any of the previous calculations of poly-
ethylene dispersion curves.

I. INTRODUCTION

The complexity of the lattice-dynamical analysis
of a crystalline solid intensifies with increasing
number of atoms in the primitive unit cell.
Among crystalline solids, polymers present the
most difficult situation because of their low sym-

metry and the large number of atoms per unit cell.
For polymers, a Born —von Karman-type' study
based on atom-atom interactions would result in a
very large number of force constant parameters
which could make the calculations prohibitive or
meaningless depending on the number of available
experimental data and the procedure employed for
fitting the force constants to observed properties.

A theoretical interpretation of the mechanical
and thermal properties of crystalline polymers
would be more successful if the model development
utilizes simpliflcations available from the already
known characteristics of inter- and intramolecular
forces in a polymer crystal. The lattice dynamics
of polymers would simplify considerably when the
differences between the internal, external, and lat-
tice modes of vibration are incorporated into the
theoretical analysis. This three-tiered structure of
forces in polymers essentially allows isolation of
each group almost independently of the others and
hence immensely simplifies the calculations.

For polymer crystals, because of stronger intra-
chain interactions, the normal modes of the isolat-
ed chain can be studied relatively independently of

the low-frequency lattice modes. The intrachain
frequencies consist of the two groups of external
and internal modes of vibration. The external
modes include translational and librational modes
which involve rigid motions of the molecular units
as a whole, and hence can be studied independently
of the internal modes through a rigid-molecule ap-
proximation.

Normal mode vibrations in polymer crystals
have not been investigated using a rigid-molecule
approximation, and so far, the studies have utilized
atom-atom interactions and Wilson's I' and G ma-
trix method. Using this method, which becomes
relatively complex for polymers and generally in-
volves a large number of force constants, the lat-
tice dynamics of polyethylene ' and poly-
tetrafluoroethylene have been studied.

The rigid-molecule approximation has been ex-
tensively and successfully applied to a number of
molecular solids such as hexamethylenetetra-
m;„e s, 9 urea ~0 ammonium chloride ii, i2 and sodi-
um azide. ' Although the rigid-molecule approxi-
mation is a significant step from atom atom in--
teraction models in reduction of the number of
force constants, it still involves the relatively diffi-
cult problem of calculating the libration-libration
and libration-translation force constants of in-
teracting rigid molecules. A further simplification
of the rigid molecular treatment can be accom-
panied through the extended-point-mass (EPM)
approximation' which expresses the libration-
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libration and libration-translation force constants
in terms of translation-translation force constants
and a new parameter which relates to the effective
sizes of the interacting rigid molecules.

In order to illustrate the special features of the
EPM approximation as applied to polymer solids,
we have elected to study polyethylene as an exam-
ple. Polyethylene is the simplest polymer structure
and hence becomes the ideal subject for demon-

strating various characteristics of any theoretical
model. The lattice dynamics of polyethylene, using
%ilson's F and 6 matrix method, has been studied
employing atom-atom interactions, dipole-dipole
interactions and noncentral interaction potentials.
These calculations, in general, are complex and in-
volve a relatively large number of parameters fitted
to the observed frequencies. '5

In this study we are presenting a rigid-molecule
treatment of crystalline polymers based on the
EPM approximation. The model calculations will
consider lattice dynamics of polyethylene in order
to illustrate various features of the model when ap-
plied to complex polymer structures. In Sec. II the
EPM approximation is briefly introduced. Section
III considers the lattice dynamics of an isolated
polyethylene chain. In Sec. IV the force constants
of the isolated chain and a two-parameter analyti-
cal interaction potential for intermolecular forces
are used in the lattice-dynamics analysis of an
orthorhombic polyethylene crystal. Section V in-
cludes discussion and concluding remarks.

II. THEORETICAL MODEL

In a polymer crystal the molecular units, i.e., the
combinations of atoms that can be treated as a rig-
id entity translating and librating as a whole, are
designated by the index k in unit cell /. Each mol-
ecule makes the displacement u(lk) and the libra-
tions 8(lk) from its equilibrium configuration.
Writing the force and torque equations for mole-
cules of mass m and moment of inertia I and as-
suming traveling wave solutions of co(q) and wave
vector q, we get

m 9 U

or "=D8 8
where D is the dynamical matrix defined by

The dynamical matrix has the order of 6n )& 6n
where n is the number of molecules per unit cell.
The force constant matrix P is of the form

4y.

4p.

(()y.

0) 0
(j)p. 0p.

(j).p 0.y

4.p 4.y
4p 0y

6 6p (l'p

&y

(3)

y()) y(&)

y(3) y(4) (4)

where P'~' is the libration-libration, P' ' and P' '

the libration-translation, and P") the translation-
translation force constants.

Using the EPM approximation, the expressions
for the force constants become

P~(1',kk') =P„y(l', kk'),

P„p(l', kk') =P~(l', kk')eyp+„(I'k'/k),

P y(1', kk') =P„y(l', kk')e„Q„(k/1'k'), (5)

P p(1', kk') =P„y(l', kk')F., „eYps

&& Rs(1'k'/k)Rq(k/1'k') .

where e ~z is the Levi-Civita symbol and
R(lk/1'k') is the effective size of the molecular
unit lk located at the origin and interacting with
molecule l'k'. Using the intrinsic symmetry in a
crystalline structure, it can be shown that

R(lk/1'k') =—R(l'k'/lk) .

Calculations on hexamine' and NaN3 (Ref. 13)
have shown that for noncovalent bonding the as-
sumption of hard-sphere contact provides satisfac-
tory results for the determination of the effective
molecular sizes. For polymer solids, we propose
that the effective sizes of interacting molecules
bonded by covalent forces be determined, using the
assumption of hard-sphere contact, from the coor-
dinates of the point halfway between the centers of
mass of the interacting molecules. The effective
size of a molecule depends on the orientation of
the interacting molecules, and hence, is direction
dependent. It can be shown that the number of ef-
fective size vectors of a rigid molecule varies
directly with the number of its neighboring interac-
tions.

The application of the EPM approximation to
crystalline polymers will utilize the following two-
tiered analysis based on the observed differences
between internal, external, and lattice modes of vi-
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bration:
(1}The EPM approximation will be applied to

selected rigid molecule units in the isolated chain
and the force constants governing the librational
and translational motions of the external modes
will be calculated.

(2) The lattice dynamics of the crystalline poly-
mer will be analyzed using the EPM approxima-
tion. The force-constant values of the isolated

chain, determined-previously, and a two-body in-
teraction potential of Lennard-Jones form will be
used for calculating the force constants of the
polymer crystal. The interchain force constants
are calculated from the Lennard-Jones potential us-

ing the relationship

(b)

P„y(l', kk') = —5 y+ r2 r dr

~x~y d V

where V is the Lennard-Jones interaction potential

iven b
12 ' '6

0' 0
V(r) =4@

T r

cr and e are the unknown potential parameters and
r =

~

r(k) —r(l'k') ~.
%ith the simple theoretical model as outlined

above, the lattice-dynamics analysis of a crystalline
polymer is reduced to the solution of a two-
parameter dynamical matrix, hence considerably
simplifying and streamlining the normal mode cal-
culations. In Secs. III and IV we will demonstrate
the strength of this simple model in application to
polyethylene crystal.

(c)

FIG. 1. (a) Definitions of structural parameters and
the Cartesian reference axes for polyethylene chain. (b)
Definition of the center of mass of rigid CHq molecule
with X, =+2mHrH cos(Z.HCH)/(2mB+me),
F, =Z, =0 relative to the position of carbon atom.
(c) Definition of rigid-molecule designations for nearest,
12, and next-nearest, 11 and 22, interactions.

where the + sign refers to the 12 interaction in
the positive z axis direction. The translation-
libration and libration-libration force constants are
given in EPM approximation by

P„p(12+ ) = R,(1/2+ )$—+R„(1/2+ )P„, ,

Py (12+)=R,(1/2+)Pyy,

Pyy(12+ ) = —R„(1/2+ )Qyy,

III. POLYETHYLENE CHAIN

The polyethylene chain has a D2~ point group in
a planar zigzag chain, shown in Fig. 1, which in-
cludes two molecular CH2 units per primitive cell
of the linear lattice. Labeling the two CHz units
by k =1 and 2 and utilizing the symmetry opera-
tions of the chain, it can be shown that

p,p(12+ }= —R,(1/2+ )P„,+R„(1/2+ )P

paa(12+ ) =——Rg (1/2+ )Pyy,

Ppp(12+ ) = —R, (1/2+ )P R„(1/2+ }P—
+2R„(1/2+ )R,(1/2+ )P

P~(12+ ) =—R~(1/2+ )Pyy,

P y(12+ )=R„(1/2+ )R,(1/2+ )Pyy .

(10)

P(12+)=

0

0 4xp

6r
0 P~ 0 Pp 0

0ya 0 '((aa 0 Nay

6p
&yr-

(9)

The P(12—) force constants are obtained from
P(12+ ) through the xy plane reflection symmetry
operation. It can be shown that P(11+) has a
similar force-constant matrix form as given in Eqs.
(9) and (10) except for

R„(1/1+ ) =0

P (11+)=0.
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P(11—) is obtained from $(11+) through reflec-
tion symmetry, and P(22+ ) is determined from
P(11+) through the inversion symmetry operation.
The effective sizes R(1/2+ ) and R(1/1+) are
graphically illustrated in Fig. 2.

Using the above force-constant matrices, the self
terms $(0,kk) are calculated using the relations

y,',"(O,kk) =—g y,',"(I,kk ),
I'k'

pIJ '(O, kk) =—g'p~~j '(1',k'k),
I'k'

p,'J'(O, kk) =—g'p~~j '(I', kk'),
1'k'

(12)
P,' '(O, kk) =—g' [ P,'p'r, (—l'k')

I'k'

+P;'r r, (l'k')+ P,'"],
PI~p~(0, kk) =—g' [PI~'rg(1'k')

I'k'

y,',"r„(Ik—)+y,",'],

P,'„'(O,kk) = g' [ P,'I'—ry(l'k'}
1'k'

+yt3)„(I k )+y(4)]

In the above equations only i,j =x,y,z are variable
indhces.

The dynamical matrix is formed according to
Eq. (2) and the dynamical matrix elements are
summarized in the Appendix. The first interesting
feature of the dynamical matrix is that the 12)& 12
matrix has a structure consisting of two indepen-
dent 6)&6 matrices, one for the in-plane and the
other for the out-of-plane modes of vibration. The
6 &(6 in-plane matrix includes translational motions

along the x and z axes, and p librations in the xz
plane about the y axis. The 6&&6 out-of-plane ma-

trix includes translational modes along the y axis
coupled with out-of-plane a (about the x axis in
the yz plane) and y (about the z axis in the xy
plane) librational modes. The decoupling of in-

plane and out-of-plane modes is only dependent on
the rigid-molecule approximation and is indepen-
dent of any assumptions that can be made for the
nature of the intermolecular forces and the range
of neighboring interactions. For polyethylene, the
rigid-CHq approximation is a highly plausible as-
sumption, since the forces holding the C—H bond
(frequencies of -3000 cm ') are considerably
stronger than the forces holding the C—C bond
(frequencies of —1000 cm ').

In order to determine values of the unknown

parameters the dynamical matrix is studied in the
long-wavelength, q=0, limit. At q=0 the two
6)&6 matrices can be reduced to explicit expres-
sions for almost all of the norinal mode frequen-
cies. Defining

c.m.

ai=P (12+), a2 ——P (11+.),

Pi ——Pyy(12+ ), P2
——Pyy(11+ ),

yi ——p (12+), y2=$ (11+),

vi ——P (12+), R, =R,(1/1+),

R,, =R,(1/2+ ),

R„,=R„(1/2+),

(13)

and

FIG. 2. The effective sizes of 12 and 11 molecular
interactions. The centers of mass of the interacting CH2
molecules are identified by )&. The effective size vec-
tors are directed along the line joining the centers of
mass of the interacting molecules.

m 0
0 I (14}

where D is defined in Eq. (2), and using normal
mode designations of Tasumi and Shimanouchi, it
can be shown that
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co~(v4(0)) =[M (11)—M„„(12)]-
2mH+mC

'

co~(vs(0)) = [M~~(11)—M~~(12)] 0——— [R,,p)( —,c 2R—g, )+cR,,pg],

cog(v7(m))=[M (11)+M (12)]- o= — ( —,R,,P)+Rg, P~) ~ (15)

co~{v3(0) )= [Mpp(11) Mpp—(12)]
q

2 1

I
—, c(R—,

,a& R„,—v~)+(R, ,v& R„—
,y&)[rc cos(LCCC)+2r, ~ ]

+2R, a&+2R„,y~ 4R„,R—,,v~ cR,,a—q I,

co~(v;(m))=[M~(11)—M~(12)]- o

I R„P,[rc—cos(LCCC)+2r, ]+2R„,P& I,
where LCCC represents the angle f0~ed by the three carbon atoms in the backbone and the subscript c m.
denotes center of mass. For co (v7(0)) and co (v5(0)) we get

2M~ (11)—co —2Myr(11)

—2Myr(11} M~(11)+M~(12)—co

and for co (v3(m. )) and co {vq(m)) we get

2M~(11)—co —2M,p(11)
—2M,p(11) Mpp(11}+Mpp(12) —co

q =0
=0.

=0,
q =0

(16)

From Eqs. (16) and (17) we can get

co~(vz(0))+co~(vs(0)) =[M~(11)+M~(12)+2Myy(11)]- o

2 4 )
R„P,[rc cos(LCCC)+2r, ]-Z) 2~H+~c

co~(v3(m ) )+co~(v4(m ) )= [Mpp(11)+Mpp(12) +2M~(11)]

2 1

I , c (R,,a~ R„—, v—~) cR,,a—z—
3?V

4zi+(R,,
v

~ R„,y& )[rc cos(LC—CC) +2r, ])—
2plH+mc

An early assessment gives a total of ten unknown
force constants and effective size parameters for
polyethylene. The number of finite frequencies at

q =0 is nine, and hence our analysis may appear to
be a case of abundant parameters available for fit-
ting the frequencies. However, not all of the un-

known parameters are independent, and not all of
the long-wavelength normal mode frequencies have
been measured and assigned.

Going back to the assumptions of the EPM ap-
proximation, the value of R, is determined by the

2

(19)

Rx = rc cos(LCCC)+2r, ~
R,

rc sin(LCCC) 1
(20)

I

hard-sphere radius of contact of interacting mole-
cules and is given by

R, =rc sin(LCCC} .

R„and R, are related by the condition that theZ) 2]

effective size vectors are directed along the line
connecting the centers of mass of the two interact-
ing molecules and hence
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The force constant y2 does not appear in the ex-
pressions for the frequencies at q =0, and there-

fore, the total number of the independent parame-
ters that can be fitted to the known long wave-

length frequencies is seven.

Only eight of the nine frequencies of po-
lyethylene normal mode vibrations at q =0 have
been measured and assigned. Table I summarizes
the available experimental data and their corre-
sponding assignments for polyethylene. From Eqs.
(15) and (18) it is observed that the. in-plane fre-
quencies vi(ir), vs(0},vq(0},v4(ir) can be fitted to the
force constants ai, ai, vi, and yi leaving the un-

known parameters R, , Pi, and Pi for fitting the

out-of-plane frequencies v7(n), v7(.0), vs(ir), and

v,'(0).
Our first attempt at fitting the three parameters

to the four out-of-plane frequencies was unsuccess-
ful. We considered the possibility of adding extra
parameters to make the fit possible. The simplest
choice was to allow variations in R, . However, a2'

study of the equations reveals that R,, and P2 al-

ways appear in the combination R, P2 and hence
Z2

R, could not be used as an independent parameterZ2

for long-wavelength frequencies. The second alter-
native was to allow independent variations of R,Zi

and R„. This flexibility, however, did not produce
1

any improvements in the fit. Our final alternative
was to extend the range of interactions to include
third and even fourth nearest neighbors. Observa-
tions on metallic hydrides' have indicated that
under certain circumstances the weak next-nearest
neighbor force constants could have significant in-
fluence on the dispersion curves. This exercise,
however, proved futile and even with inclusion of
three to five additional parameters of third or
fourth nearest neighbors no satisfactory fit to the
observed frequencies and their corresponding polar-
ization vectors could be obtained.

A closer study of the 2X2 dynamical matrix of
vs(0) and v7(0) reveals a very interesting structure.
It can be shown that regardless of the range of
molecular interactions included in the calculations,
this matrix has the general form of

I'k'

4——P
Pl

4

(I m)'~

4

(I m)'~

[rc cos(LCCC) —2r, ]
2

TABLE I. Normal-mode frequencies of polyethylene chain.

Mode designations

Ref. 3 Ref. 17

Observations

Ref. 3 Ref. 16 Ref. 17 Ref. 18
Frequencies used in

present calculations

vg(m)

v3(0)

v7(0)

vs(~)

v4{0)

vb(n-)

co(CH2)

co(CH2)

p(CH2)

p(CH2)

QCH2)

1 (CH2)

v, (C—C)

v {C—C)

1415

1175

721

1295

1050

1131

1061

1370

1176

725

1295

1050

1131

1061

1372

1176

721

1295

1050

1131

1064

1370

1176

1295

1050

1063

1128

1370

1176

1295

1050

1061
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where

I'k'
P=, ltl =2mH+mc .

X
l'k'

(22)

v5(0) & v7(0) at q =0 . (23)

This conclusion contradicts past assignments ' of
the observed and calculated frequencies of these
modes.

A similar study of the expressions governing
v7(0) and vs(m) shows that for all parametric vari-
ations we will have

The 2X2 dynamical matrix in Eq. (21) is depen-
dent only on the rigid-molecule approximation and
is independent of EPM approximation and the na-

ture or range of interaction forces. Hence, the fre-
quencies v5(0} and v7(0) are seen to be dependent
only on one single parameter, P, defined in Eq.
(22). It can be shown that regardless of the values
that P may assume, the normal modes of vibration
will always obey the relation

2vi
C33 ——A ) 2y) +Sy2-

Q&

with

C44 ~ i (2P1+8P2)
r

C55 ——A ) 2a)+ Sa2 —2—
71

P [rc sin(lCCC)]
A) ———

2 2~8+me
(27)

where p is the polyethylene density taken as 0.997
g/cm .

From measurements of the elastic constants of
polyethylene ' we have the following:

able on polyethylene elastic constants. The deriva-
tion of expressions for the elastic constants of po-
lyethylene is simplified by neglecting the contribu-
tion of the librational modes to the elastic constant
values. Using the method of long waves' it can be
shown that

v7(0) & vtt(n. ), (24)
C» ——2.4y10", (28)

which indicates vs(m) acting as a ceiling for the
value of v7(0). Contrary to our findings, the tradi-
tional assignment for v7(0) is 1170 cm ' which is
greater than the value of 725 cm ' for vs(m). A
measurement of vq(0) frequency is not available
from infrared and Raman spectroscopy.
Analysis based on an extremely simplified picture
of interactions as homogeneous and isotropic elas-
tic rods has suggested a value of about 200 cm
for v5(0).

Based on our theoretical calculations we con-
clude that the existing assignments of frequencies
to vs(0) and v7(0) are unacceptable, and that the
following relations must be satisfied:

v7(0}&725 cm

(25)

in units of dyn/cm . This information is used for
determining the value of y2. Calculations of C~
and C55 from Eq. (26) yield

C44.
——1.92)( 10'

C55 ——0.7S )( 10i2
(29)

(again, in units of dyn/cm ) for the single chain
elastic constants.

The values of the force constants and the effec-
tive size parameters are summarized, respectively,
in Tables II and III. These values are used in cal-
culation of the dispersion curves of polyethylene
chain along the [00$] direction with the results
given in Fig. 3. The two major features of the cal-
culated dispersion curves are their symmetry about
00—, and the existence of three acoustic dispersion

curves. It is of interest to note that none of these

v5(0) & v7(0),

Hence, in our fitting procedure we assume v7(0) to
be an unknown property to be determined from
calculations. Therefore, the three frequencies of
v7(n ), vs(0), and vs(m ) are fitted to be three un-
known parameters R...Pi, and P2.

The value of the force constant y2 cannot be
determined from the long-wavelength frequencies
since it does not appear in any of the expressions
at q =0. We calculate yz from information avail-

1

$1
V~

CX2

13'

y2

—26.44
—28.02
—23.30
—19.34
—0.237
—0.0487
—6.475

TABLE II. Force-constant parameters of poly-
ethylene chain (in 10 dyn/cm).
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TABLE III. Effective size parameters of poly-
ethylene chain (in A). I:00$]

0.173

0.213

1.270

l400-

l200

two features exists in any of the previous lattice-
dynamics calculations of polyethylene. Our ex-

perience shows that both the symmetry and the
acoustic branches could be distorted and lost if self
terms are not properly calculated. The self terms
essentially ensure invariance conditions under
which the chain properties remain the same under
whole-body translation or rotation.

The dispersion curves are calculated using the
structural data of Mathisen, Norman, and Peder-
sen for polyethylene. The calculations of the30

dispersion curves were repeated for different sets of
polyethylene structural parameters, summarized in
Table IV. It is observed that the calculations are
not sensitive to any special set of parameters given
in Table IV.

IV. ORTHORHOMBIC POLYETHYLENE CRYSTAL

IOOO-

I

800-

600-

400

200

0,
0.0 0,2 0.4 0.6 0.8 I.O

FIG. 3. Dispersion curves of polyethylene chain
along [00$] direction. The in-plane modes of vibration
are given as dashed lines and the out-of-plane modes as
solid lines.

The orthorhombic unit cell of polyethylene con-
tains two chains each contributing two CH2
groups. The chains' axes are coincident with the c
axis direction and the planes of the chains make an
angle with respect to the longer lateral, a axis,
basis vector which is defined as the setting angle p.
Various measurements of the setting angle have ar-
rived at the values of 41' ' 42' and 48' '34 We
will utilize both 41' and 48' setting angles in the
calculation of the dispersion curves of crystalline

polyethylene. The orthorhombic lattice parameters
are"

(30)a =7.161, b =4.866, c =2.5412,
0

in units of A.
The dynamical matrix of polyethylene crystal in-

cludes all interactions within a 6-A radius. All in-
terchain translation-translation force constants de-

TABLE IV. Various sets of structural parameters used in the calculation of polyethylene
normal-mode frequencies.

Reference
C—C bond

(A)
C—H bond

(A) LHCH

25
26
27
28
29
30

1.533
1.54
1.54
1.S4
1.5423
1.S32

1.07
1.093
1.1
1.09
1.1147
1.058

111'54'
109'28'
112'
111'47'
113 52'

112 1'

107
109'28'
110'
109'27'
106 8'

109 18'
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pend only on the two parameters, o and e, of the
Lennard-Jones interaction potential. The inter-
chain translation-libration. and libration-libration
force constants are determined from translation-
translation force constants and the effective size
parameters which are calculated from the coordi-
nates of the halfway point between the centers of
mass of the interacting molecules.

The four CH2 molecules in the unit cell are
designated by k =1 and 2 in the chain which has
the same xyz coordinates as the isolated chain of
Fig. 1. The two CH2 units in the second chain are
designated by k =3 and 4. The intrachain 11, 22,
and 12 interaction force constants are identical to
those of the isolated chain. The 33, 44, and 34 in-

teraction force constants are related to the 11, 22,
and 12 force constant matrices through the axes
transformation matrix

cos2f sin2q7 0
—sin2y cos2y 0

0 0 1

(31)

TABLE V. Intermolecular Lennard-Jones potential
parameters as a function of setting angle. Lattice fre-
quencies used for fitting the potential parameters are
also given.

where p is the setting angle.
In order to determine the unknown Lennard-

Jones potential parameters, the measurements of
long-wavelength lattice modes of polyethylene are
utilized. The far-infrared spectrum of crystalline
polyethylene shows two bands of 73 and 94 cm
at room temperature. These two frequencies are
assigned as v5(m)=94 cm ' and v5(n. ) =73
cm '. These two well-established assignments are
used in calculation of the Lennard-Jones interac-
tion potential parameters. Table V summarizes the
values of 0 and e for two setting angles of 41' and
48'.

From values of o. and e in Table V the frequen-

cy of the remaining lattice mode, v9(0), is calculat-
ed and compared with the available neutron
scattering data ' in Table VI. From Table VI it
appears that a setting angle of 41' provides better

agreement with the observed frequencies as com-
pared to the setting angle of 48'. Table VII sum-

marizes the comparison of the calculated single
chain normal mode frequencies with those of the
crystalline polyethylene for the setting angle of 41'.

The dispersion curves of crystalline polyethylene
are calculated along [00(], [gO], and [g'0] direc-
tions and given in Figs. 4 and 5 for 41' setting an-

gle. Similar calculations using the 48' setting angle
give negative eigenvalues for the dynamical matrix
along [gO] and hence are unacceptable as viable
solutions. Our calculations of crystalline polymers,
hence, favor the recent measurements ' of the
setting angle of about 41'.

Except for small values of g, the dispersion
curves of polyethylene chain and crystal along

[00(] are very similar. For all practical purposes,
it seems that the chain provides a good approxima-
tion to the normal modes of the crystal with the
wave vector along the chain axis. Considering the
weak nature of the interchain van der Waals
forces, this observation could have been made
without any calculations. It is also interesting to
note that along [g'0] and [ggO] directions the op-
tical modes remain essentially at constant frequen-
cies with very little dispersion. This characteristic
is based on the fact that the high frequency intra-
chain optical modes are not influenced by weak
van der Waals forces of interchain interactions.

V. DISCUSSION

A simple lattice-dynamics model of crystalline
polymers which uses the EPM approximation is
proposed and applied to the study of normal mode
vibrations of polyethylene chain and crystal. The
calculations of normal mode frequencies for po-
lyethylene involve only a limited number of adjust-
able parameters, but more importantly, they show
the model to be capable of reaching generalizations
about the relative values of the normal mode fre-

TABLE VI. Comparison of the calculated values of
v9( 0 ) with the experimental data.

Setting angle 41' 48' Frequency (cm ')

v5{m) (cm ')
v5{m) (cm ')
e/kg (K)

0. (A)

94
73

180
3.510

94
73

589
3.364

Calculated, (p=41'
Calculated, (p =48'
Observed, Ref. 39
Observed, Ref. 40

39
58
39
46
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FIG. 4. Dispersion curves of orthorhombic polyethylene crystal along [00$] direction; (a) inc1udiug all modes of vi-
bration, (b) showing details of low frequency modes of vibration.

quencies without making any parametric calcula-
tions. This was specifically illustrated for v7(0).

The simplicity of the proposed model and the
limited number of available force constants greatly
reduce the possibility of forcing a fitting of param-
eters to the experimental data. In this analysis, it
is shown that regardless of the range and nature of
forces assumed for intermolecular interactions,
there is no way of fitting the v7(0) mode to its pre-
viously assigned frequency value, and hence modi-
fications in this assignment are necessary. The cal-
culations, without any parametrization of values,
show that v7(0) must be smaller than 725 cm
and our results give a value of 641 cm ' as com-
pared to a previous assignment of 1170 cm

Another interesting feature of our simple calcu-
lations is the appearance of three acoustic modes,
and the symmetry of the dispersion curves about

1 1 1 1 1

00—,, —,—,0, and —,—,0 points in the Brillouin zone.
None of these features which are essential and in-
dependent of the lattice dynamical model is ob-
served in other more complex calculations on
polyethylene,

We believe that the proposed model provides a
high degree of simplification which is especially
useful when the polymer chain becomes more com-
plex in structure. The significance of this simple
model lies in its application to biopolymers where
there is considerable interest in the study of low

frequency vibrations of biological substances.

APPENDIX

The dynamical matrix elements for the isolated
chain are as follows:

M (11)=A~[2a2(cos2rlg 1)—2ai] =——fi(ai, aq),



26 SIMPLE LATTICE-DYNAMICAL MODEL OF POLYMERS 3427

1400-
[QO]

1200-

1000-

800-

600-

400 "

200-

0
0.0 0.1 0.2 0.3

I

0.4 0.5

100 (00

90

80 80

70 70

60 60

50 o6 50

40 40

30 30

20 20

IO lo

0
0.0 O. l 0.2 0.3 0.4 0.5

0
0.0 0.1 0.2 0.3 0.4 0.5
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My@(11)=f, (P„P2),

M (11)=f,(y„y ),
M„p(11)= i 2—A~R,,az si n2n g =f2 (a2,A& ),
My (11)= f2(—p2,A„),

Myy(11) = —2AgR», P|,
M,p(11)=—2'(R», vt —R», y|),
M~@(11)= —My~(11),

Mp„(11)= —M„p(11),

Mp, (11)=M,p(11),

Single chain
mode

v3(0)

v3(m')

v4(0)

v4b(~)

Single chain
frequency (cm ')

1176

1370

1131

Crystalline
frequency (cm ')

1194
1183

1390
1380

1133
1132

1062
1062

TABLE VII. Comparison of the calculated normal
mode frequencies of single chain and crystalline poly-
ethylene.

M~(11)=My'(11),

M (11)=—2[R,,P2(cos2nf —1)+R,,Pt(R i
—R, , )

+2R,2R )p2]/I»»,

Mpp(11) =2[—R,,a2(cos2~g —1)

R)(R»,a)—R„,v, )+R—2(R»,v) R, ,y, )—
+R, u)+R„y)

2R», R» v—i 2R )R» a2]—/Iyy,

M~(11)=2p)R», (R, R2)/I~, —

M~(22) =M~„( 1 1 ), x,y =all x, y, and z

M p(22)=M p(11), a,P—=all a, P, and y

M„p(22) =M„p(11),

v', (0)

v'(m')

vb, (m)

v', (0)

vq(m)

v', (0)

vg(7T)

v9(0)

641

1295

1050

725

1322
1319

73

654
648

1305
1301

1059
1054

733
732

Mye(22) =My~( 11),

Myq(22) = —Myy(11),

M»p(22) = M»p(11), —

M~@(22)= —My~(22),

Mp»(22) = —M„p(22),

Mp, (22) =M,p(22),

M~(22) =My'(22},

M (12)=2A~a, cos~g—=f, (al ),
My@(12)=f3(Pi ),
M (12)=f3(yi),

M (12)=i2AMv, sinn. g,
M~(12)=M~(12),

M (12)=—2R, , P|cosn g/I

Mpp(12) = —2(R, , a&+R„,y& 2R„,R, ,v~ ) co—sag/I~&,

M~(12)= 2R„,P, cosa g/—I
M z(12)=i2R„R,,P, si mgn/(I I )'~2,

My~(12) =M y(12),

M»p(12) =i2A~( —R, a~+R» v&) sin~g,

M~ (12}=i 2A„R, P ~ sinn g,

M„~(12)= 2A,R„,P, cosmg, —

M,p(12) =2A~( —R, v, +R„y~)cos~g,

M~@(12)=—M (12),

Mp„(12)= —M„p(12),

Mp, (12)= —M,p(12),

M~(12) = —Myy(12),
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where
1 1

~M
1 2 ' J X'P~z

2trt H + rtt c (I,tAM )
'

R
~ rc——sin(LCCC),

4mHrH cos(LHCH)
Rz ——rc cos(LCCC)+

2PlH+Nlc

tI, = , 0&/&1.2m/

C

All other elements of the dynamical matrix have a
value of zero.
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