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The dielectric function of a glassy dielectric is shown to be expressed in terms of the lo-
cal density of states and the average of the squared polarization vector. In this expres-
sion the Coulomb interaction between arbitrary distant points are taken into account
through what we call the dipole approximation. We propose an effective Hamiltonian in
which the long-wavelength optic modes are separated from the other vibrational modes,
and from which we gain insight into the nature of TO and LO vibrational modes in

glassy dielectrics.

I. INTRODUCTION

In 1976, Galeener and Lucovsky' experimentally
showed that in glasses such as vitreous silica
(v —Si0,) or v —GeO,, it is necessary to take ac-
count of the long-range Coulomb interaction for
the explanation of the Raman-scattering data of
those materials. They assigned the unexplained
peaks in the Raman spectra as either transverse op-
tic (TO) or longitudinal optic (LO) by comparing
them with the peaks of €, and Im(—1/¢)
(e=€,+1i¢, is the dielectric constant) which were
obtained from infrared (ir) reflection spectra of the
same materials.

Since in these experiments the wavelength of the
external electric field is much larger than the
characteristic interatomic distance, we should treat
the very large system in order to take account of
the Coulomb interaction properly. Therefore it
was a difficult problem to calculate, for instance,
the ir response from the microscopic model of
glassy dielectrics including the Coulomb interac-
tion even in an approximate way. As far as we
know, the only relevant attempt has been made by
Pick and Yvinec? in the molecular dynamics
method for a model of molecular glass.

In this paper we establish a connection between
the dielectric properties of the isolated small part
of the glassy system (that is, the part whose scale
is much smaller than the wavelength of the exter-
nal field considered) and the dielectric function
€(Q2) of the whole infinite system. In doing so, the
Coulomb interaction between arbitrary distant
points is taken into account in an approximate
way, and from the expression for €(Q) we find a
way to estimate the magnitude of the TO-LO split-
ting of the infinite system in terms of the data of
small systems.
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In Sec. II we give the model vibrational Hamil-
tonian of the infinite glassy system, from which we
derive the expression for the dielectric function
€(Q2). This procedure is in some respects an exten-
sion of Lines’s’ ideas on ferroelectric glasses into
the dynamical case in the paraelectric phase.

Next in Sec. IIT we propose another method to
get the same expression of () by approximating
the model Hamiltonian itself and transcribing it
into what we may call the effective Hamiltonian
for the long-wavelength modes. The form of this
effective Hamiltonian leads us to consider the more
general question as to the nature of optical vibra-
tions in glassy dielectrics, which is the subject to
be discussed in Sec. IV.

II. MODEL HAMILTONIAN AND
THE DIELECTRIC FUNCTION

To begin with we consider instead of the infinite
bulk system an isolated cube of glassy dielectrics of
size L XL X L. The vibrational Hamiltonian of the
system under the external field E© is written in
terms of their normal modes within the harmonic
approximation as

HO=F(5P}+50;0)— 35,0, E”, (1)
f !

where P is the electric dipole moment of the cube
produced by the unit displacement of the mode f.
The polarizability &@'© of this cube can be defined
as

p=a"(Q)-E? )

through the relation between the total dipole mo-
ment P of the cube and the external field, both of
which are assumed to vary with time as
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exp(—iQdt). From Eq. (1) this polarizability can be
expressed in the following form:

‘&(0)(9):2_% .

(3)
7 op—Q?

If L >>a which we assume hereafter (a being a
characteristic interatomic distance), we may replace
@'” by its configurational average defined below.
When () is fixed, the dominant contribution in Eq.
(3) comes from the modes with ws=Q. Because
there are many such terms when L >>a, we can
approximate PP in these dominant terms by its
ensemble average with fixed ()

(BsPrla=3pQN1, 4)

where T is the unit 3X 3 matrix and we have used
the fact that in macroscopically isotropic glasses
there are no preferred directions for p’s except for
the axis of the cubic block. On the same approxi-
mation, we can replace the density of eigenfrequen-
cy N.(Q)=3 8(Q—wy) with its ensemble aver-
age

(25<n—wf)>=NL(m . (5)
f

Therefore, in effect we approximate @'* by the fol-
lowing averaged polarizability:

(@) =a(o)l,
V(o) 2 (6)
Lo (@)
alw)= f m%dm
The detailed meanings of the N, () and pX(Q)
will be discussed in Sec. IV.

Next we consider an infinite glassy dielectric.
This can be regarded formally as an assembly of
L XL XL cubic blocks stuck in a simple cubic ar-
ray. The nature of each block was described
above, and now the interaction between the normal
modes of different blocks can be considered.

For the blocks that are not neighboring each
other, the interblock interactions between them are
the long-range elastic interaction and the Coulomb
interaction. In the ir frequency range we can
neglect the former, whereas the Coulomb interac-
tion between them can be expanded into the
multipole-multipole interactions between the
centers of blocks, and we retain only the dipole-
dipole interaction term which is the lowest order in
the expansion with respect to the distance between
the centers of blocks.

In contrast to this, the interblock interactions be-
tween neighboring blocks are complicated. These

include the short-range part of the non-Coulombic
force as well as the Coulomb interaction whose
multipole expansion does not generally converge.
Nevertheless, we keep here again only the dipole-
dipole interaction term, expecting that as long as
the response to the long-wavelength external field
is concerned, this dipole-dipole term will especially
yield the most dominant contribution in producing
the TO-LO splitting.

Within these approximations the bulk Hamil-
tonian of the infinite system can be written in the
following form:

H =3 H({P)},{Qus},EY)

2 2 Pa’ ab pb (7)
as£b
with
(a)_}
Pa=2ParQus » (8)
f
Vs =R (1—3RR0) )

where H.\” describes the normal vibrations in block
a that are coupled with the external field as given
in Eq. (1), R,,b is the unit vector directing from the
center of block a to that of block b, and R, is the
distance between them. z(f“) denotes summing
over all the normal modes in block a. Within this
approximation, the external field acting on block a
can be replaced by a uniform field that has the
same value as the true field at the center of block
R,.

On the basis of the equation of motion derived
from Eq. (7), we have the following stationary
solution subjected to E[ « exp(—iQ1)]:

B.=a"(Q)E,, (10)
E,=EQ— 3 VuBs - (11)
b(s#a)

"’(0)(0) is defined in Eq. (3) with a subscript a to
both Ps and ws. Upon adopting the same approx-
imation that leads to Eq. (6) we replace aaO)(Q) by
its configuration average (G'”()). Then the
averaged polarization L ~3P, of block a under the
external field

EP=E(K,Q)exp(ik-R, —iQt)

is written as

—>—>

L38,=P(k,Qexplik ‘R, —iQt) , (12)
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- — 3 — —
B, 0)= — 2 /L E9(K,Q).
1+I(kL)a(Q) /L3
(13)
Here we have introduced a function
T@=333 7| F—3 ——
ny ny nj I n l I n |
Xexp(—iq-1) (14)
with
ﬁ':(nl,nz,n3) N (15)

the sum being extended over all integers.

We are now in a position to derive the dielectric
function €(Q2). Taking proper care of the
long-wavelength limit ¢—0 of I'(q) which de-
pends on the direction of ¢, we have for the trans-
verse response (K1E?),

a(Q)/L3
1—47a(Q)/3L3

and for the longitudinal response (k||E®),

__al@)/L®
14 87a(Q)/3L3

It is straightforward to show either from Eq. (16)
or (17) that the dielectric function takes the form

_ 14 87a(Q)/3L°3
1—4ma(Q)/3L3

This function approximately describes the dielec-
tric properties of the bulk system much larger than
the wavelength of the electric field. In this expres-
sion the effect of the long-range part of the
Coulomb interaction is taken into account in the
dipole approximation. The magnitude of the TO-
LO splitting can be estimated from this expression
as will be discussed later in the next section.

P(0,0)= E9(0,0) (16)

P(0,0)= EQ0,0) . a7

€(Q2) (18)

III. EFFECTIVE HAMILTONIAN FORMALISM

In this section we rederive Egs. (16)—(18) by
transforming the model Hamiltonian (7) itself into
an effective Hamiltonian. This procedure tells us
how to deal with a group of modes attributed to
one molecular mode when we calculate the macro-
scopic response of the system. It is shown that in
the derived effective Hamiltonian the optical ac-
tivity of each block can be represented in the form

of a set of effective masses of the coupled oscilla-
tors.

First we divide the frequency range over which
@,¢’s are distributed into sections such that I, the
total range of the w,/’s, is given by

I,=Vl,, (19)

Isz[wwws-{-l)’ Oy 1<0; <@g 1< "7 .

(20)

Here it should be noted that I;’s are independent of
the block suffices a, b, etc. We now regard the
eigenfrequencies within the same section as effec-
tively degenerate at the frequency

o, (0; <D <wg 1 1), that is, we replace each HY
in Eq. (7) with the following function:

1 1_
HO=3 5| 2 Py +53; | 3 Qi
s f f
“’afEIs “’afEIs
). o
where
Ba = 3 ParQas - (22)
f
wafEIs

After the suitable averaging procedure which will
be discussed later, we will formally let the width of
the I of every section vanish.

Now we define the three vectors U5, ﬁé;’, UY in
the subspace of the normal coordinates of the
block a whose eigenfrequencies are in the range I

(O =Baflp H=X0,2, 0gr€L;.  (23)

If the inner products of these vectors satisfy the
following orthogonality conditions:

(T8, 0= 3 (O AT, (24)
f
wafEI
=(1/m)3,, , (25)
where m ) is a constant, then it is easily shown

that we can find the orthogonal transformation in
this subspace which has the following properties:

Q‘S’)=2(T(§S))ng¢;g(S) , (26)
b4
TOT 1T, @
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(Tés))fg:(m(s))l/Z( U(git) )f , (28)

with g =1,2,3 for u=x,y,z, respectively. Equation
(27) is the general definition of the orthogonal
transformation T(S) and its transpose 7, ,,“ and Eq.
(26) gives the new orthogonal coordinates { Q') 2}
introduced by this transformation. Using these
conditions, we can write Eq. (22) as

Pls) _ —1/2(nr (8) A1 (s)
Pa (Qal »¥a2 »

This means that in the new coordinate system only
three of these coordinates are optically active. In
fact, Eq. (25) holds only when we take the configu-

Mﬂ
a3l

m') (29)

eff_zz[ —»(s))z/zm s)+ m ws(—ﬁ(s)

11, .
+22 3 S (P, ) +5@: Z(Q )2
g>4 g>4
. (5)
In this effective Hamiltonian, 7_7"(0 )—*m(s’fi: and

P’ are the momenta conjugate to By and Q&

respectively. The first group of terms can be re-
garded as the Hamiltonian of the simple cubic ar-
ray of multi-mode oscillators having masses {m ¥}
and eigenfrequencies {@;}, and these oscillators are
coupled with those of the different sites (blocks)
through the dipole-dipole interaction indicated by
the second group of terms in Eq. (31). The
remaining terms represent the Einstein oscillators
which are optically inactive and isolated from each
other. This result reminds us of the work done by
Fano* who has studied the nature of the Hamil-
tonian similar to (31) as a model of the collective
excitations of electrons in condensed materials.

It is a straightforward task to derive the dielec-
tric function on the basis of the reformulation so
far given. Following the well-known procedure for
dealing with the periodic system, we get from Eq.
(31) the response of the system to the external field
for the transverse case:

L7%

s) 2
. ( —Q°) Sy =
P(0,0)= E?(0,0)
1 fﬁzll—3 1
- 3 (S)(——2 92)
(32)

and for the longitudinal case
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q”)qu4'2}5:S

gl
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rational average of the left-hand side of the equa-
tion as discussed in Sec. II, and in that case,

(m®)~1 can be shown to be given by
(m)1= [N, e >de (30)

When the number of modes {Q,,} within the sec-
tion I is very large so that the components of the
vectors Uéﬂ) s can be regarded as fairly random, we
may assume that Eq. (25) holds. We shall adopt
this approximation. Then we can rewrite the
model Hamiltonian H into the following form:

2—»(5)

ab 2—»(: ) ]
ab s
- (31)
T
L-3
o 2 (s) 92) N N
P(0,Q)= E(0,0),
_32 1
5 m“’(5§—02)
(33)
which yield the dielectric function in the form
L3
2 s)( QZ)
Q)= py. 1 (34)
1——L~?
3 2 m(@; —Q?)

Since we regard N, (Q) and p%(Q) as smooth func-
tions of , Egs. (32) —(34) become Egs. (16)—(18),
respectively, in the limit of max, | 0y —a; | —0.
Note that the final results are not sensitive to the
size of each block (L X L X L) because for L >>a,
N.(Q)/L? and p%(Q) are to be the intensive quan-
tities.

Bearing these properties of the relevant quanti-
ties involved in €(Q) in mind, Eq. (34) allows us to
estimate the magnitude of the TO-LO splitting
which is seen in the difference in the peak posi-
tions of Qe,(Q) and Im [—e(Q)~!] or in the re-
duced Raman intensity on the assumption that we
know the ir absorption data Qe,(Q) from experi-
ments or the function N, (Q)PXQ)/L? from the
model calculation of the small system. For exam-
ple, consider the case that Qe,(Q) is known to
have a single well-isolated peak at Q =wr with the
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width A and the integrated intensity iy. Then as
an approximation we can choose that

=2

@s, =w5+2iy /3T, (35)
50 <Bsy < D5y 41=05 +4 (36)
(L3m )1 =iy /202, (37)

and for the s other than sy, we set m ¥ =oo. Then

we get from Eq. (34)

Qe (Q)=io[8lor— Q) +8(wr+Q)], (38)
Im[ -~ 1(Q)]=(io/Q)[8(0 — Q)
+8(0p+Q)],  (39)
where
w0t —wh=2iy/T (40)

=(4m/L?) f )P—(—)—d

(41)

In order to have the more detailed results such as
the width of the longitudinal response, or to treat
the more complicated form of N (Q)p%(Q)/L3, we
should evaluate Eq. (18) numerically.

Here one might ask the following questions: If
we assume L >>a, are not then the above men-
tioned TO-LO splittings also in the N, (Q)/L?3 it-
self ? If this is the case, do those splittings lead to
undesired splittings, for instance, in Qe,(Q)? We
will discuss these questions in the next section.

IV. SUMMARY AND DISCUSSION

We constructed a model Hamiltonian for the vi-

brational modes in glassy dielectrics by replacing
J

2
H=3 (724 +03B)+1R 7’ [R}H(B1Ba)—

i=1

The normal modes of this system are easily
analyzed and can be classified into two types, i.e.,
ir-active modes and ir-inactive modes. The latter
bring about only the higher-order electric moments
(quadrupole moments), inducing only the short-
ranged electric field. The ir-inactive modes are
further classified according to the angle between
the p p;’s and the vector connecting the two oscilla-
tors, Rn One mode satisfies Py, Pa| |R12 and may

any kind of disorder in the original glassy system
with the “cellular” disorder in the cubic “lattice.”
The expression for the dielectric response of the in-
finite bulk was obtained from this Hamiltonian by
a method similar to the virtual crystal approxima-
tion in the disordered systems. Then we rederived
the same results by transcribing the above Hamil-
tonian in terms of the induced dipole moments of
the cubic blocks and the other optically inactive
modes along with their conjugate momenta. The
underlying idea is that so far as the response to the
long-wavelength external field is concerned, we can
construct an effective Hamiltonian which consists
of only the macroscopic variables of the blocks in-
dependent of the details of the randomness in-
volved in the systems. Thereby, the selection rules
such as k-selection rule or TO-LO selection rule
should be recovered approximately. In our treat-
ment, the short- and middle-range ( <L) character
of the microscopic Hamiltonian of a glassy system
were shown to be reflected through the factor

N (Q)pHQ)=(Q/m)Im(aD(Q+i0)) . (42)

Up to the present, we have considered only the
long-wavelength optic modes (A >>L) and have ex-
pected implicitly that the quantity N, (Q)p%(Q),
which should be given by the microscopic model
calculation, does not have the TO-LO splittings.
Now we turn our attention to the modes other than
the long-wavelength modes and discuss whether
the above expectation is actually realized or not.

In order to clarify the essential nature of the
normal modes of each block, it is instructive to
consider the following simple model. Take two
identical oscillators with an eigenfrequency w,
separated from each other by a distance |Ry,]|.
We assume that these two oscillators are mutually
coupled through the induced dipole-dipole force,
and hence their Hamiltonian can be written as

3(B-Ri)(B2rRp)] ‘ (43)

I

be called an LO-like mode, whereas the other
modes satisfy B;||B,LR, and may be called TO-
like modes which have doubly degenerate and
lower frequency. Summing up, we can say that if
the two oscillators are coupled in the form of Eq.
(43), the normal modes which do not expose their
total dipole moment (i.e., p;+ P,=0) are neces-
sarily separated into two types according to the
manner in which the two dipoles cancel out.
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These results are the consequence of the anisotro-
pic nature of the dipole-dipole interaction.

Next we consider the case in which there are
many “dimers” (pairs of oscillators, each pair of
which consists of two-coupled oscillators as
described above) and we also assume the dipole-
dipole interaction between the oscillators belonging
to the different dimers. According to the above re-
sults, the ir-inactive modes of these dimers are mu-
tually coupled only through the weak-and short-
ranged interactions. Therefore, these modes are
only weakly perturbed by other pairs and approxi-
mately conserve their own character such as TO-
like or LO-like nature. This is in contrast to the
ir-active modes which are coupled with each other
through the long-range dipole-dipole interaction
giving rise to either new ir-active or ir-inactive (or
weakly active) modes in greater extent.

Although these models are too simple and the
arguments given above are too qualitative to extend
them directly to the general dielectric system, they
are still helpful to gain insight into the relationship
among Ny (Q), N.(Q)pXQ), and the total density
of states of the infinite system. We expect the fol-
lowing argument to hold: Among the normal
modes of block a, a large part of them will be the

modes with small | B,s |, that is, only weakly ir-
active, and these may have either TO-like or LO-
like nature according to the manner in which the
local dipole moments are canceled within the
block. These modes may lead to the TO-LO peak
splittings in N (L), but due to the smallness of
their | B,y |’s they will make relatively small con-
tributions to Nz (Q)p*(Q). On the other hand,
those modes with large | B, | which do not yet
have clear-cut TO or LO nature, couple strongly
with the similar modes of other blocks and consti-
tute the long-wavelength (A=27k !> L) TO or
LO modes described in Secs. IT and III. Roughly
speaking, the total density of states of the infinite
system is the sum of the contributions from the
modes of each block with small | B, | and from
the long-wavelength TO and LO modes. If we
wish to have improved results, however, we will
have to take account of the other interblock in-
teractions which we have neglected in the above ar-
guments.
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