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Systematic approach for comparing paraelectric tunneling models to resonance data
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In paraelectric systems, reorientable impurity dipoles can give rise to resonance absorp-

tion of microwaves at liquid-helium temperatures. Several current models exist to explain

paraelectricity in terms of tunneling between neighboring dipole orientations. In this pa-

per we divide tunneling parameter space into several regions in which the effects of an

additional electric field dependence facilitates data analysis of paraelectric resonance spec-
tra. %e give results for the two standard dipole models and for two field orientations,

producing 32 multiple-energy-level diagrams and sum rules. These diagrams and sum

rules greatly facilitate data analysis and allow a strong test of the theory.

INTRODUCTION

Finite-group theory plays a central role in the
study of molecules and crystals. In 1965 a new

area in solid-state physics opened in which group
theory is particularly applicable, when tunneling
centers were discovered in doped alkali-halide crys-
tals. ' These centers are formed by monatomic or
molecular impurities which produce reorientable
electric dipoles in the host crystal at a vacancy site.
Typically the dipole orientation is restricted by a
strong crystal potential to specific sets of
equivalent directions. Reorientation, however, can
occur by a temperature-independent tunneling pro-
cess at rates up to 10+' .s ', producing a multi-
plet of tunneling-split energy levels. The impurity
centers carry an electric dipole moment p which
can couple to an external dc electric field Ee, via a
—p E interaction. The combination of the tunnel

splittings and the electric field interaction produces
effects, including resonance absorption, which are
quite similar to those in paramagnetism; by analo-

gy, this new field is called paraelectricity.
Among the dozen experimental techniques used

in paraelectric research, microwave spectroscopy
typically provides the most complete characteriza-
tion of the paraelectric species, since in principle
and for fast tunneling systems, all of the impor-
tant parameters of the existing tunneling models
can be extracted from the data. In the past, how-

ever, such a complete characterization has been
hampered on two accounts: Lack of broadband
data and lack of an efficient method for exhaus-

tively obtaining the best fit of the model to the

data.
Recently with the development in our lab of an

extremely broadband spectrometer (8—216 GHz,
0—150 kV/cm), a wealth of data has been

discovered on several new and complicated
paraelectric systems. The quality and quantity of
this new data has triggered the need for a much
more precise fit with the existing models, the re-

sults of which could provide a critical test of these
models.

We now report the development of a systematic
method utilizing finite-group theory by which a
small number of sets of parameters can be obtained
which necessarily includes the best possible fit to
the data. If these results are poor, one has effec-
tively tested the model, since one knows in princi-

ple by this method that there can be no better fit
under the existing assumptions of the test. Hence
the potential power of the paraelectric resonance
data now available may be engaged in a strong test
of existing paraelectric theory.

TUNNELING MODELS IN PARAELECTRICITY

Gne of the most successful models used in
paraelectricity was developed in 1966—1967 when

Gomez, Bowen, and Krumhansl (GBK) and oth-
ers extended Hund's double harmonic oscillator
tunneling model to the cubic symmetry of the
alkali-halide crystals. In the GBK model, the po-
tential multiwell is composed of n equivalent sim-

ple harmonic oscillator wells Formed by the host
crystal at the defect site, and represented by a tun-
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neling crystal-field Hamiltonian H, . The wells lie
along either the six (100), the eight (111),or the
12 (110) crystal directions. The sets of states lo-
calized in these well form six-, eight-, and 12-fold-
degenerate-directed state bases for H, . With finite
barriers between wells, directed states in different
wells overlap slightly, and tunneling between wells

produces a tunneling-split multiplet. Following
GBK, we use rl, p, , v, and o to represent the ma-

trix elements for tunneling to nearest-, second-
nearest-, third-nearest-, and fourth-nearest-neighbor
wells, respectively. Each tunneling eigenstate is
characterized by the irreducible representation ac-
cording to which it transforms, such as His, T2„,
etc., where we follow standard group theoretic no-
tation. These eigenstates and their eigenvalues are
easily obtained from group theory. Differences
between eigenvalues are called zero-field splittings
(ZFS), since they occur in the absence of external
electric fields.

A paraelectric salt can be strongly polarized

by a —p Ed, interaction with an external dc elec-
tric field, Ed,. As the field is turned on, the cubic
symmetry of the defect center is broken, and new

eigenstates of the total Hamiltonian H, +HE form.
In the simplest case, the application of the external
field lowers the symmetry of the impurity from Ol,
to C4„, C3„, or C2„as the field is applied parallel to
either the (100), the (111),or the (110) crystal
directions, respectively. The levels usually move at
first quadratically (as the net dipole moment of the
eigenstates of H, +HE emerges) and then linearly
in the applied field. Sets of directed states which
lie in planes perpendicular to the applied field
remain degenerate with respect to the —p.E in-

teraction; remnant tunneling between states in
these planes continues to lift their dengeneracy
slightly. Hence energy levels that move together at
high fields usually carry a fine tunneling structure
imposed on the linear electric field effect [Fig.
1(a)].

PARAELECTRIC RESONANCE

types: A~~A~, Bi~Bi, B2~82, and E—+E.
Microwave absorption is recorded at a given fre-
quency and temperature as the external electric
field is swept through resonance. Each of these
traces typically displays several absorption lines. '

Finally, a composite graph of the coinpiled data
for a given field orientation is constructed with

frequency as the abscissa and field as the ordinant.
At high fields, these lines display the asymptotic
linearity of their energy levels, and their slopes are
termed "high" and "low" as indicated in Fig. 1(b).

PREVIOUS PROCEDURES FOR FITTING
THE MODEL
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In the past, no rigorous algorithm existed for fit-
ting the models to the PER data. One might be
able to argue against one or more dipole models by
some general observations: the number of ZFS's
found in the data, the number of sets of resonance
lines with different slopes, and the ratios of these

Paraelectric resonance (PER) is a highly sensi-
tive techmque for studying the spectrum of a
paraelectric impurity. Samples are mounted in a
multimode microwave cavity at liquid-helium tem-
peratures, and Ed, is applied parallel to either the
(100), (111),or (110) crystal axes. The mi-
crowave electric field E~ is usually applied parallel
to the dc field, so that resonance transitions corre-
spond to allowed electric dipole transitions of the
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FIG. 1. Electric field dependence of the energy levels

of a (110) system is shown in part (a) for p+0;
.n =v=o =0. Notice the linearity of the dependence at
high fields. Resonance transitions (allowed lines only)
are shown in (b) for E~~ ~Ed, where the field dependence
is graphed against energy.
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slopes in different field orientations. " However,
these considerations are complicated by several
problems. First of all, arguments based on the ab-

sence of ZFS's are contingent on the possibility
that several such splittings may be degenerate;
missing in the data (when the transition matrix ele-

ments are too small); at frequencies above the spec-
trometer band; or poorly resolved (due to line
broadening). Next, lines that vary little with elec-
tric field are quite hard to detect. Finally, the
comparison of slopes in the high-field limits of dif-
ferent field orientations does not in all cases give
unambiguous results, as the same ratio of slopes
can in some cases occur in more than one dipole
model.

The problem of fitting a given model can also be
considerably protracted if the data are extensive
and complex, or alternatively if so few lines have
been seen that many equally feasible alternative fits
are possible. One might start by assuming that a
given tunneling parameter should be dominant,
with the choice being based on theoretical grounds
or on evidence from other paraelectric experiments.
However, there are no strong general theoretical
grounds for the choice of the dominant tunneling
parameter: GBK considered two different ex-

tremes of the harmonic potential well and found
that either g or 0. could dominant. Early experi-
ments on RbC1:Ag+ suggested that the system was

(111)with ri dominant; yet I.uty argued that it
was a (110) system with p dominant instead. '

Hence, one often begins by inspecting the gross
features of the data, attempting to identify the
dominant parameter(s) empirically. For example,
the ratio of the relative intensities of the strong
lines at high fields can be compared to perturba-
tion calculations to suggest which parameters are
largest. However, this can be misleading, since
relative intensities depend on experimental parame-
ters which are hard to measure accurately. Often,
too, data cannot be obtained at high enough fre-
quency for all lines to be in the high-field limit, as
when larger splittings are involved.

Next, a numerical search may be made for sets
of tunneling parameters which match the experi-
mental zero-field splittings. If all the splittings
have been seen in the data, this procedure can be
fruitful, although its details still depend on which
of the three tunneling models one uses. The nu-

merical search we tried using the (110) model was

especially time consuming, since halving the search
increment lengthens the total search time by a fac-
tor of 16. Still the final, unavoidable problem with
any numerical search is finite-mesh size: One is

never certain that the best posst'ble fit has actually
been obtained after a given search.

Numerical solutions of the total Hamiltonian

H, +HE can then be pursued. For a given dipole
model, electric field orientation, dipole moment
(obtained asymptotically from the high-field spec-
tra and the model assumed), and a given set of
tunneling parameters, we numerically generated a
plot of the theoretical resonance spectra, scaled to
coincide with the composite graph of the experi-
mental data, allowing direct visual comparison.
Relative intensities were also tabulated for T=4.2
and 1.3 K.

In our research on the paraelectric species
KBr:Li+, approximately 100 such plots were pro-
duced from sets of tunneling parameters which had
been found to match the splittings in the data to
within our experimental resolution. Unfortunately,
even small (1%) changes in a given tunneling
parameter often produced enormous changes in
several lines in the theoretical spectrum. Without
a systematic basis for meticulously adjusting the
parameters, the resulting search was almost ran-
dom. In working with KBr:Li+, the results of
months of computer work were particularly unre-

warding and inconclusive.
Hence, a systematic method was needed by

which the choice of tunneling parameters could be
obtained. The method should make no prior as-
sumptions regarding which tunneling parameter is
to be dominant, but should treat each parameter on
an equal basis allowing for positive as well as nega-
tive values for the tunneling parameters. ' The
method should be efficient and practical. It neces-
sarily includes certain assumptions about the
data. ' However, within these assumptions, it
should enable one to identify a small set of possible
tunneling parameters which necessarily includes the
best possible fit for the model to the data.

NEW METHOD: MULTIPLE ENERGY-LEVEL
DIAGRAMS

The method I now present uses multiple energy-
level diagrams'~ in which the spectra for E~

~

(100)
and E~

~

(111)arejointly displayed for all possible
arrangements of the zero field energy l-evels in all
three dipole models. The power of this method
arises from two observations: (a) For each such di-

agram, there is a distinct scheme by which the en-

ergy levels at zero field evolve into- those at high
fields, and hence a unique set of characteristics for
the resulting resonance transition spectra; (b) for
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each such diagram, there are continuous sets of
values of each tunneling parameter for which the
order of the zero-field energies, and hence the
characteristics of the connection scheme to high
fields, is invariant.

Hence, though one thinks of the tunneling
parameters as determining the characteristics of
the resonance data, one can equivalently think of
the discrete arrangements of the zero-field energy
levels as the determining factor, thereby transform-
ing the problem from finding the values of several
continuous variables with few analytic tools avail-
able to one of finding the most appropriate dia-
gram out of a small set (32) of such diagrams.

In particular, the data can now be analyzed by
comparing them to the diagrams, noticing the
slopes of the allowed and forbidden lines at high
fields and the manner in which they connect to the
ZFS's, looking for sum rules among these ZFS's
and checking for them in the data, and so on.
Normally, there are at most only two or three
choices for assigning the observed ZFS's to the
theoretical splittings per diagram. Since one is
simultaneously employing the spectra for two dif-
ferent field orientations, the number of such quali-
tative fits is minimized because the data must now
be simultaneously consistent with two different
field orinetations which share the same zero-field
ordering. Once the best qualitative fits have been
found, the tunneling parameters can be obtained
algebraically from the sizes of the ZFS's. Using
the values of the tunneling parameters thus found,
the full theoretical spectra can be numerically gen-
erated and compared with the data. We now know
that within a given diagram no simple adjustment
of the parameters will significantly change the
overall fits since the parameters have been optim-
ized algebraically already. The set of such fits
therefore necessarily includes the best possible fit
to the data.

In order to construct the multiple energy level
diagrams, we must make two assumptions: (1) that
the A,s zero-field eigenstate has the lowest ener-

gy,
' and (2) that no two energy levels, character-

ized by the same irreducible representation, may
cross when E+0. From (1) it follows that for m
zero-field energy levels, there are (m —1)!ways in
which the levels can be ordered. Since there are
two tunneling parameters for the (100) there must
be two independent zero-field splittings and hence
three zero-field energy levels. Thus there are only
two different diagrams for the (100) model. For
the (111)model with three tunneling parameters,
there are four energy levels and hence six possible

diagrams. For the (110) model with four tunnel-
ing parameters, there are five energy levels and
hence 24 possible diagrams. Using (2), it follows
that, for each possible ordering of the zero-field
energies, there exists a unique scheme for connect-
ing them to the available energy levels at high
fields. We obtain this scheme from the decomposi-
tion rules for each energy eigenstate as the Oi,
symmetry is lowered by Ez„and from the symme-
try of the available eigenstates at high fields. The
complete set of 32 diagrams is given in Fig. 2.

As an example, consider the (110) dipole sys-
tem with E~,

~ ~

(100). As Es, is applied, the cubic
symmetry of the zero-field eigenstates is reduced to
C4.„and the five states decomposed into nine states
as:

3 ig~A i, Eg —+3 i 68I, TI„—+A; 8 E,

7"2g~82 SE, T2„~BIE .

(In Table I the complete set of decompositions for
each dipole model and each field orientation is
given. ) At high fields, the available energy levels
are arranged in three distinct groups: two, com-
posed of 3 i, Bi, and E states, vary as +pElv 2,
while the third, composed of A I, Bz, and E states,
remains unaffected by Ez,. Now all nine levels

produced by the decomposition of the zero-field
states must connect with these nine available levels
at high field. By assumption (2) there exists a
unique set of such connections for a given ordering
of the five zero-field energies.

Sum rules between the ZFS's also exist. For ex-

ample, in diagram 2 of the (110) system, the tran-
sition Eg to Ti„(ad) equals the sum of the transi-
tion Eg to T2„(ab) plus the transition T2„ to
Ti„(bd).

Along with interesting features particular to
each of the 32 diagrams, there are several general
features for each model which deserve special at-
tention. Assuming in general the lack of acciden-
tal degeneracies, ' we observe that for (100) di

poles with two tunneling parameters, three zero-
field energy levels, three ZFS's, and two diagrams:

(1) In both diagrams, all three ZFS's are allowed
splittings in the (100) regime (E~

~
(100)), with

sum rules among them in both cases.
(2) The largest ZFS also occurs as an allowed

splitting in the (111) regime in diagram 1.
(3) All allowed transitions in both diagrams and

in both (100) and (111)regimes are singlets in
the following sense. Each ZFS is connected to, at
most, one allowed line. Doublets (two lines with
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FIG. 2. 32 multiple diagrams are catagorized by the three types of standard tunneling models, (100), (111),and

(110). In each diagram we join the spectra for Ii i
(100) (C4„) with that for Ii i

(111) (C3„) according to the order of
the zero-field energies. To simplify notation, we label the zero-field energy levels a to d from top to bottom in the
(111)system and a to e (from top to bottom) for the (110) system. Sum rules between ZFS's of allowed transitions
are given for each diagram. In addition, ZFS s which join allowed transitions in both (100) and (111)are indicated
in a box. ZFS s that connect to two allowed lines for a given field orientation are underlined (e.g., transition cd in dia-

gram 1 of the (110) model).
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FIG. 2 (Continued. )

the same ZFS) may only occur if strain-allowed
transitions are considered.

For (ill ) dipoles with three tunneling parame-

ters, four zero-field energy levels, six ZFS's, and

six diagrams:
(1) Sum rules occur in all six diagrams for the
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FIG. 2. (Continued. )

allowed (111)transitions. No sum rules occur in

any of the diagrams in the allowed (100) transi-
tions.

(2) In all six diagrams, all six ZFS's are allowed

(111)transitions. Hence, no new ZFS's are found
in the (100) transitions, even including forbidden
transitions. The largest splitting is an allowed
(100) transition only in diagrams 2 and 3.
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For each diagram the allowed transitions for
E~

~

(100) and E~
~
(111)that have the same ZFS's

are tabulated in a box at the bottom. The zero-
field states are labeled a, b, c, and d starting toith a
at the top and the three types of slopes for
E~

~
(111)are labeled by the transitions at high-E

field (see Fig. 2). High denotes a transition from
the lowest state to the highest, medium denotes a
transition from the lowest to the second-highest
group of states or from the second-lowest group to
the highest, and low denotes transitions between
neighboring groups of states. For example, in dia-

gram 1, th-re is no allowed E~
~

(100) line that has
the same ZFS as the high slope (111)-line. There
is one ZFS that joins both to a low-slope (111)-
allowed line and a (100)-allowed line—the ab
splitting (T2s T»). Two med—ium slope (111-)
lines (4A ~~23

&
3A &~12 ~) are joined to allowed

(100) li~es (282~1&2,2A, ~IA, ) through the
ZFS ac (T2s —A2„) and bd (T&„—A ~s), respectively.

For (1 la) dipoles with four tunneling parame-
ters, five zero-field energy levels, 10 ZFS's, and 24
diagrams:

(1) In the (100) regimes of all diagrams, there
are only seven allowed hnes, all of which are sing-
lets: No two allowed lines for E~

~

(100) may share
the same ZFS. Only seven of the 10 possible
ZFS's can occur in the (100) data as allowed
lines.

(2) In the ( 111) regimes of all diagrams, there

TABLE I. Decomposition of eigenstates of OI, sym-
metry into eigenstates of C4„, C3„, and C2„symmetry for
the (100), (111),and (110) dipole models, respective-
ly.

C3,

are only eight allowed lines. In some cases, all
eight lines are singlets; in other cases, two of them
must arise from the same ZFS. If the T2& and T&„
eigenstates are the second- and third-largest eigen-
states (in either order), then all eight lines are sing-
lets. In this case, two of the 10 ZFS's are not al-
lowed in the (111)data. If this condition is not
met, then the T~„—T2 splitting is a doublet, and
three splittings cannot occur in the (111)data.
Thus, the only (allowed) doublet ZFS's occurs as
the T,„T2s s—plitting in the (111)data.

(3) In all diagrams, at least one (the A ~s
—T2„),

and in some cases two (the Ate
—T2„and

Es —T2s), of the ten ZFS's are not allowed in either
the (100) or the (111)spectrum.

These remarkable conclusions arise from the fol-
lowing arguments (cf. Fig. 2). In the (100) re-

gimes of all diagrams, no allowed lines arise from
the following three splittings: A &~

—T», A &~
—T&~,

Es —T2s. In the (111) regimes of all diagrams,
no allowed lines arise from the following two split-
tings: A jz —T», A&z —Ez. In addition, when

eigenstates Tq~ and T~„are not the second- and
third-largest eigenstates (in either order), then an

additional ZFS is not seen in the data. That ZFS
is the transition between second- and third-largest
eigenstates, for which there are five possibilities:

T» —T2„(diagrams 1, 3, 4, and 6), T&„Es (dia-—
grams 11, 15, 18, and 24), T2s T2„(diagra—ms 2,
5, 7, and 8), T2s Es (diagram—s 14, 16, 19, and 22),
or T2„Es (diagram—s 10, 12, 20, and 21). Hence,
in all diagrams, the A ~~

—T» splitting is not seen
in either the (100) or (111)data, and in those di-

agrams (14, 16, 19, and 22) in which the T2s and

Ez eigenstates are second and third largest, the

Tpg Elg splitting is also not seen in either the
(100) or (111)data.

(4) In every diagram there is at least one, and in

many cases several, sum rules among the allowed
ZFS's. The number of sum rules in each diagram
is such as to leave only four splittings numerically
independent.

(5) In diagrams 1 —6, there are no low-slope
lines allowed in (100) and (111)data with the
same splitting. In diagrams 7—18, there is only
one low-slope line in the (100) and (111)data
with the same ZFS, and it is never the smallest
ZFS. In diagrams 19—22, there are two such
lines, neither of which is the smallest ZFS possible.
Only in diagrams 23 and 24 does a low-slope line
occur in both ( 100) and ( 111) data with the
same ZFS which can be the smallest ZFS.

(6) The largest ZFS is not allowed in diagrams
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for which the T2„state is highest (diagrams
13—16, 23 and 24). It is allowed in only (100)
data for diagrams for which the Eg state is highest

(I, 2, 5, 6, 9, and 17). It is allowed in (111)data
only if the T2g state is highest (diagrams 3, 4,
10—12, and 18). It is allowed in both (100) and

(111)data if the Ti„state is highest (diagrams 7,
8, and 19—22).

For this dipole system, we also indicate in Fig. 2
the connection of high (H} or low (L) -slope (100)
lines to a high (h) or low (I) -slope (111) line
through a specific ZFS. Again the five zero-field
states are labled a, b, c, d, and e from top to bot-
tom. Hence, the letters "bd" in the H-/ quandrant
of the box in diagram 1, (110) model, refer to the
T2„—T2g splitting as connecting a high-slope
(100) line to a low-slope (111)line. The under-
lining of the letters "cd" indicates that the cd split-

ting is a (111)doublet (recall that there are no
(100)-allowed doublets). A transition appearing
in two quadrants as in box 10, "ad", indicates the
doublet splitting includes a high- and low-slope
(111) line. Beside each box we include the sum
rules for that diagram.

In summary, we have obtained a set of diagrams
for the three simple tunneling systems that give the
connections between the high-field and zero-field
states and provide some detailed information about
the allowed transitions for Edcl IE~ with E
or (111).
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