
PHYSICAL REVIE%' 8 VOLUME 26, NUMBER 6 15 SEPTEMBER 1982

Field, impurity, and other effects on cyclotron resonance
in silicon inversion layers

A. Isihara, M. Mukai, and S. J. Lee
Statistica 1 Physics Laboratory, Department of Physics, State University of New York at Buffalo,

Buffalo, ¹wYork, 14260
(Received 21 September 1981; revised manuscript received 25 January 1982)

The density and field (frequency) dependences of the cyclotron effective mass of the

electrons in Si(001) inversion layers measured recently by Wagner, Kennedy, McCombe,

and Tsui are analyzed theoretically in consideration of finite thickness, plasmon, and im-

purity effects. When frequency is increased, the effective mass decreases several percent.

Temperature, valley occupancy transition, and other effects on cyclotron resonance are

discussed. The width function is evaluated explicitly as a function of impurity potentials.

I. INTRODUCTION

The carrier dependences of the effective mass
and scattering time of electrons in inversion or ac-
cumulation layers of metal-oxide —semiconductor
field-effect transistors (MOSFET's) have been
determined effectively by cyclotron resonance or
magnetoconductivity experiments. ' In a recent pa-
per, hereafter called I, we treated the cyclotron
resonance of a two-dimensional electron gas
neglecting thickness and other effects. The
analysis has supported the general view that the
carrier dependences are largely due to many-body
effects. However, theoretical results based on an
idealized model must be taken with caution since
magnetic field, temperature, stress, impurity,
and other effects exist in actual samples.

In view of these dependences and the recent data
of Wagner, Kennedy, McCombe, and Tsuis on

Si[001] inversion layers, we investigate in the
present article those effects which we left out in I.
These include thickness, singularity, impurity, and
field effects. These effects are not nessarily separ-
able from each other. However, we shall try to
clarify their effects individually even though for
numerical results some will be combined.

Although the present analysis shows good gen-
eral agreement with the data of Wagner et al. , we
remark that the data show some complications.
Moreover, Fang, Fowler, and Hartstein have re-
ported that the effective mass of electrons deter-
mined by Shubnikov —de Haas (SdH) oscillations
depends very strongly on oxide charges. They
have revealed that the effective mass obtained by
extrapolation to zero-oxide concentration is

surprisingly a carrier-independent bulk effective
mass. Also, they have found that the effective
mass decreases with decreasing inversion layer
width possibly due to increase in interface scatter-
ing. For convenience, we shall use the natural
units in which %=1 and 2m =1, unless an explicit
display is desirable.

II. THICKNESS EFFECT

In I we used an idealized two-dimensional model
without thickness. Let us investigate the thickness
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FIG. 1. Relative effective-mass shift against n

The small bump represents the effect due to the singu-
larity in the dielectric constant. The data are due to
Wagner et al. (Ref. 3).
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effects on cyclotron effective mass and scattering
time based on Stern-Howard's formula:

Also, the parameter modifies the electron-electron
interaction in the following way:
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Note in this formula that b is a function of elec-
tron densities in inversion and depletion layers.
This parameter enters in the impurity-electron in-

teraction as follows:
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(2.2) In the literature, u (q) is often denoted as v (q) and

vice versa. In addition to thickness, we have

adopted an improved formula for the scattering
time:
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The plasmon contribution is given for finite thickness as follows:
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where p stands for a plasmon and

q Ns=, t=
A

(2.7)

I

I.ee, Ting, and Quinn and also by Ganguley and
Ting. ' We shall discuss their works in compar-
ison with ours in the concluding section.

Formula (2.4) should be compared with Eq. (1.2) of
I. n; is the impurity density.

For our numerical computation, we have chosen
theoretical parameters as follows: eo„——11.7,
e, =3.9, @=7.8, mo ——0.191m„m, =0.98m„
g) 1000 A pgd p 1 5 X 10 cm and the val], ey
degeneracy is 2. We have found that although the
general behavior of the function J(t,r, ) is similar to
that in I, its value and plasmon contribution are
significantly larger. As a result the impurity con-
centration, which reproduces the data well, is
found to be 1.4X10" cm in contrast to
0.33&X 10 in I.

The thickness effects have been considered by

III. SINGULARITY EFFECT

The random-phase approximation (RPA) dielec-
tric function such as used in I possesses a well-
known singularity. In consideration of the thick-
ness effect we have made a more precise numerical
analysis than in I in order to find how the singu-
larity appears in the final results.

A singularity effect on the effective mass is
shown in Fig. 1. The arrow indicates the point
where theoretically a change in slope takes place
due to the singularity. With the "bump" in the
curve due to the change, the theoretical curve
comes somewhat closer to the data. This plot
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should be compared with Fig. 17 of Wagner et al. ,
who used a linear least-squares fit. Also, when the
effective mass is plotted against cor, a small cusp
appears at around co~=4.85.

A similar change in slope appears in the theoret-
ical curve in the collision time also, but the change
is small. Owing to experimental errors it seems
difficult to detect such a small change.
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The data of Wagner et al. show that the effec-
tive mass decreases with magnetic field (frequency)
considerably thoughout all samples. The effective
mass is reduced from around 0.22m, at 10 cm
to 0 195m,. at 60 cm ', i.e., some 10% decrease.
Their data contrast those of Abstreiter et al. , who
reported in the range 3—30 cm ' only a very
small field dependence, which was within the ex-
perimental error.

A small field effect on the effective mass was re-

ported also by Ting, Ying, and Quinn. We shall

comment on their work shortly. In order to find

v (cm ')

FIG. 2. Effective-mass ratio as a function of magnet-
ic field (frequency). The data are due to Wagner et al.
(Ref. 3). Q, sample 1, g, = 1.4&(10i2 cm —2 Q, sample

2, n, =1.49)&10' cm . G, sample 3, n, =1.59y, 10'
cIIl

the field effect, we have generalized the RpA
dielectric function to the case in which the field
energy is much less than the Fermi energy but
larger than the thermal energy. " We have arrived
at for T=O

e(q, co) =1+u(q)lt, (q,co),

l COO 1 2n'
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where

G, (x)=e ~g, (y), g, (y)=81.,(2yy)+21.,' i(2yy), y=(Q/y)(1 —coax), (4.2)
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Here, 8'» ——I „I s being the width function, will
be evaluated shortly, and Q and y are dimension-
less.

Figure 2 compares our theoretical curve with the
data of Wagner et al. for sample 3. As in the next

v(r)= e
~0

2ird2 (4.5)

section, explicit results are obtained for the impuri-

ty potential:
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The parameters are d=17.7 A, n;vo ——6.9)&10
erg cm, and n =1.59&10' cm . These parame-
ters may be compared with those used by Heuser
and Hajdu' for the three-dimensional case with

(5.4)

u(r) e
—P /2d

g2)3/2
(4.6)
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Their potential value for r =0 and d =73 A is 16
meV while our value corresponding to d =18 A
and uo ——6.83X10 erg cm for n,'=1.5&&10"
cm is 21 meV. Therefore, the order of magni-

tude is the same.
The effective mass under a relatively strong

magnetic field is expected to show oscillations.
However, in view of the data of Wagner et al. ,
which do not show such oscillations we have sim-

plified our numerical analysis by choosing the ap-

proximate expression p~ ——2mn. More importantly
the stronger field dependence in our result is due to
the use of the field dependences of the dielectric
function and width function. Since the latter is
determined by the impurity potential, we shall dis-

cuss it in the next section. We note, however, that
the small field dependence of Ting, Ying, and

Quinn is probably due to their replacement of the
width function by a limiting I =2co, /re, which is
expected when the cyclotron radius 1 is much

larger than the range of the impurity potential, i.e.,
relatively weak field. In our case, we have used I',
which is evaluated as a function of field. The
form of the dielectric function is also probably dif-
ferent. Our dielectric function corresponds to the
quantum-mechanically degenerate case.

V. IMPURITY EFFECTS

I ~n' v H' (5.6)

which corresponds to the limiting expression used

by Ting, Ying, and Quinn. If d is small and the
cyclotron orbits are large, the electrons will feel the
field broadly during their entire cyclotron motion.

In the opposite limit of g»1, the potential is

long ranged, P, ~1 and I, cc a/g, so that

I; ccn uu/d . (5.7)

In this case the impurity efftx:t is broad, while the
field localizes the electrons. The probability that
the electrons are under the influence of impurities

may be given by n;/n, leading to the above

square-root dependence.
The linewidth depends on the functional form of

the impurity potential. We remark that the width
function for the screening potential,

We have evaluated the linewidth as a function of
s for (=0.1 and 2. The results are illustrated in

Fig. 3. The upper curve corresponds to /=0. 1 and
the lower to /=2. As we see, the ratio I', /I'p de-

creases with increasing s for a given g. Although
the ratio decreases as a function of g for small
values of g, it actually increases gradually for
larger g values starting around (=1.

In particular when g «1, i.e., 1 »d, the impuri-

ty potential is short ranged, and the field is weak.

The square of the width function I, will be pro-
portional to n;uu/1 . That is,

In our present work we have used the potential
form of Eq. (4.5) for impurity scattering. The
linewidth can be obtained from
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where p» is evaluated from the harmonic oscillator
eigenfunctions as follows: 0.4

p» ——exp( q 1 /4)I. , (q 1 /2—),
where
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FIG. 3. Relative width I,/I'e for two g values as a

function of integer s.
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2
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increases with field strength in accordance with
r 2

i 27M
S
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Also, as the screening constant increases, I, de-
creases. If this screening constant is proportional
to the Fermi momentum as in the case of the
Thomas-Fermi screening, the increase in density
will reduce j,

VI. TEMPERATURE EFFECT

At low but finite temperatures the dielectric
function can be obtained in a Sommerfeld fashion.
At finite temperatures the oscillations of the polar-
izability function is somewhat smooth. We find
the function G, (x) of Eq. (4.2) is given by

2Ji(x)
G, (x)=

yx

2n. + sin(irk/y)

k sinh(n k/a) (6.1)

VII. VALLEY OCCUPANCY EPPECT

So far we have assumed that the two valleys in
the [001] direction of silicon inversion layers are
equally populated. However, as the density of ele:-
trons decreases, their correlations increase, and as a
result a one-valley state may be preferred. '2 The
transition from two-valley to one-valley states have

Here, we have assumed for simplicity that g =2, g
being the Lande factor. If g+2, we need only a
factor ( —1)"cos(gn.k/2) in the sum. The first term
on the right-hand side yields precisely the polariza-
bility in the absence of field. X=2(yy)', y being
defined by Eq. (4.2), and a =coo/2kT

Equation (6.1) shows characteristic oscillations.
The appearance of sinh(n s/a) in the amplitude is
familiar. Owing to this factor G, (x) decreases
when the temperature is increased. Hence, we ex-

pect that the effective mass and relaxation time
will be reduced.

been estimated to be around 3&&10" cm
Associated with this transition is a sudden in-

crease in the Fermi momentum. For two-valley
states it is (nn).'/, while for one-valley states it is
(2n.n)'/2. If impurity scatterings are represented by
a screened Coulomb potential, Eq. (5.9) suggests
that a sudden narrowing in cyclotron resonance
takes place. In Eq. (5.8) we have used different
screening constants ir and R. If i7 is replaced by a,
which is determined by the Fermi momentum,
then Eq. (5.9) indicates that narrowing of a factor
3 may take place.

Recently, Wilson, Allen, and Tsui have reported
a remarkable narrowing and shift if only the
lowest Landau level is partially occupied 'T. heir
data are consistent with those reported by Ken-
nedy, Wagner, McCombe, and Tsui. ' From a plot
of the peak frequency versus magnetic field, Wil-
son el ai. concluded a shifted cyclotron resonance'
rather than a reduced effective mass. Their ob-
served narrowing is dramatic: Below 0.5 for the
filling factor, narrowing by more than a factor of
10 has been observed.

A similar anomaly has been observed in GaAs-
GaAlAs by at least two groups. ' These experi-
ments show that the important parameter is the
filling factor and a certain many-body treatment is
needed. Although the valley occupancy transition
is a many-body effect, it is still unclear whether or
not and how the symmetry-breaking mechanism is
related to a coupling of the electrons to the lattice.
Further theoretical investigations are definitely
needed.

VIII. CONCLUDING REMARKS

We have analyzed theoretically the cyclotron
data of Wagner et al. and achieved some good
agreements. However, the data are more compli-
cated. For instance the effective mass reaches a
maximum at a low density and a minimum at a
high density. The relaxation time exhibits a max-
imum which depends on magnetic field. The
present theory does not explain these effects.

The thickness effect has been considered earlier
by Lee, Ting, and Quinn, who chose the parame-
ter b appearing in Eq. (2.1) as a constant indepen-
dent of carrier density. Later, Ganguley and
Ting' took into consideration the density depen-
dence of b based on a simple expression. We have
used the Stern and Howard formula which gives b
as a function of the electron densities in the inver-
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sion and depletion layers. The constant D which
we chose is very close to what Lee, Ting, and
Quinn used.

With the singularity effect the theoretical effec-
tive mass comes somewhat close to the data. On
the other hand, Wagner et al. used in Fig. 17
straight-line fits for three frequencies. When plot-
ted against roe, the effective mass is expected to
show a small cusp at around 4.85. However, such
a singularity effect may be rather small for experi-
mental detection.

Our analysis shows that the field effect on the
effective mass could reach 10%%uo. However, in view
of the previous work of Abstreiter et al. ,

' further
experimental studies seem to be worthwhile.

The linewidth is directly determined by the im-
purity potential. Hence, the effect of impurity po-
tentials on linewidth is important. In particular we
have analyzed the effects based on a short-range
potential and a screened Coulomb potential. In the
latter case, the screening constant could depend on
electron density, suggesting the density dependence
of the width function.
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