
PHYSICAL REVIEW B VOLUME 26, NUMBER 6 15 SEPTEMBER 1982

Theory of lattice-dynamical properties of solids: Application to Si and Ge

M. T. Yin* and Marvin L. Cohen
Department of Physics, University of California, and Materials and Molecular Research Division,

Lawrence Berkeley Laboratory, Berkeley, California 94720
(Received 1 March 1982)

It is demonstrated that the ab initio pseudopotential theory within the local-density-

functional formalism provides an accurate theoretical framework for the study of lattice-

dynamical properties of solids. With the use of atomic numbers and masses of constit-

uent elements and the crystal structure as the only input information, the calculated pho-

non frequencies and mode-Gruneisen parameters at I and X, the third-order force con-

stant for LTO (1 I, the shear modulus, and the zone-center TA [110]velocity are all in ex-

cellent agreement with experiment. Comparison with other microscopic calculations is

made.

I. INTRODUCTION

In this paper, we present an ab initio microscop-
ic theory for the lattice-dynamical properties of
solids and demonstrate that the theory yields a
variety of properties such as selected phonon fre-

quencies of Si and Ge in excellent agreement with

experiment. Part of the results have been briefly
reported previously. ' The theory is based on an
ab initio pseudopotential method within the local-
density-functional formalism. The lattice dynami-

cal properties are studied with the use of the
frozen-phonon approach.

The lattice dynamics of tetrahedrally coordinat-
ed semiconductors has been an active area of
research in solid-state physics. One of the most
interesting features of the phonon spectra of these
materials is that the TA modes are low lying in en-

ergy with dispersion curves which become flat
away from the zone center. An early phenomeno-

logical analysis of the dispersion curves using the
force constant model indicates that the interatomic
interaction extends to fifth-nearest neighbors. Sub-

sequently, a variety of phenomenological models

have been used to fit the phonon dispersion of
semiconductors, among which a six-parameter
valence farce-field model and a four-parameter
adiabatic bond-charge model' yield phonon disper-

sion curves for covalent semiconductors in rather

good agreement with experiment.
There are two commonly used approaches in the

microscopic studies of lattice dynamics of covalent
semiconductors: the dielectric function approach"

and the frozen-phonon approach. Both ap-
proaches have been applied ' ' to covalent semi-
conductors, in particular Si using pseudopotentials
fitted to experimental excitation data such as the
atomic (or ionic) excitation energies or bulk excita-
tion spectra. These studies have helped to advance
the microscopic understanding of lattice vibrations
and fair agreement with measured phonon disper-
sion curves was achieved. However, various addi-
tional assumptions have been utilized in these stud-
ies, such as the introduction of a multiplicative
constant to satisfy the acoustic sum rule, ' the
Hartree approximation for the inversion of dielec-
tric matrices, ' ' the truncation of a continued-
fraction series, and the use of a constant parameter
Eo for a k-dependent function, ' and an ad hoc
linear repulsive force between nearest neighbors. '
The use of empirically fitted pseudopotentials and
additional assumptions make it difficult to ascer-
tain whether the lattice dynamical properties can
be accurately calculated using only the essential in-
put of atomic identities and crystal structures.

The present study represents the first ab initio
lattice dynamical calculation in which the only in-

put information consists of the atomic numbers,
atomic masses of the constituent elements, and the
crystal structure; no ad hoc assumptions are made.
The excellent agreement of the results with experi-
ment demonstrates that the local-density-functional
formalism yields accurate results for lattice
dynamics. Recently, an all-electron calculation'
on the phonon properties at I and X of Si has

basically confirmed our findings' and gives, in ad-

26 3259 1982 The American Physical Society



M. T. YIN AND MARVIN L. COHEN

dition, the internal strain parameter and the cubic
force constant for TO (I ) in excellent agreement
with experiment.

In the following section, we will first discuss the
momentum-space formulation' for the calcula-
tions of total energies and atomic forces and
present a careful treatment of the divergent prob-
lem caused by the long-range Coulomb interaction,
A generalized frozen-phonon approach is then
presented. In Sec. III the calculation procedures
are discussed in detail. The results of calculation
for Si and Qe are given in Sec. IV. In Sec. V our
results are discussed and compared with other
work. Final conclusions are given in Sec. VI. In
the Appendix, we show that the convergence of the
phonon frequencies at I' with respect to the dimen-
sion of the dielectric matrix is rather slow.

II. THEORY

A. Total energies and atomic forces

Almost all of the lattice dynamical properties of
solids can be derived from a knowledge of the total
energy' (E„,) of solids as a function of atomic
positions; To calculate E«, from first principles,
we employ three approximations: {i) the adiabatic
(Born-Oppenheimer) approximation in which the
electrons are assumed to be in the ground state
with respect to the instantaneous nuclear positions
and the ground-state energy (i.e., E„,) is then the
effective potential for the nuclear motions, (ii) the
local-density-functional approximation in which
the electronic exchange-correlation interaction is
approximated by a local density functional, and

(iii) the pseudopotential approximation ' in which
the interactions between valence electrons and
atomic cores are simulated by pseudopotentials.

In the crystalline total energy calculation, it is
advantageous to transform the real space integrals
into summations in momentum space. The
momentum-space formalism has been derived by
Ihm, Zunger, and Cohen. ' In the following, we
will discuss the momentum-space formalism for
the total energies of crystalline solids and solve the
problem of the divergences in the zero-momentum
components using simple arguments instead of em-

ploying a limit procedure for small G.
The total energy of the crystal in the pseudopo-

tential theory can be expressed as follows (rydberg
units are used):

E„,=E~„+E +E~+E„,[p]+E„,
where

Ek;„=gn; fdr g';(r)( —V )g;(r),

E = g n; fdr 1{,'(r)v, (r 1—: —r, )l(;(r),
i, 1,s

EH = , fd—rp{r ) VH ( r ),

2Z~Z

~
1+~,—~,

~

p(r)=gn;
~
g;(r)

~

(4)

The symbols n; and 1{;(r) are, respectively, the oc-
cupation number and the (pseudo) wave function
for the one-electron state i. X is the number of
cells in the crystal, and 1 is the lattice vector.
The symbols Z, and w, are, respectively, the core
charge and the basis vector for atom s in the cell,
and U, is its core pseudopotential. In general, U, is
angular-momentum dependent (nonlocal) and can
be expressed as

U, ( r )=QU, I(r)9'I,
I

where 9'I is the projection operator for angular
momentum I. The carets are used to denote nonlo-
cal operators, and the summation over / goes from
zero to infinity.

The expression for Ek;„has the form of the elec-
tronic kinetic energy and may be interpreted as
such. A word of caution is in order. When the
atom is pseudized, the kinetic energy and the po-
tential energy are mixed in a complicated way.
Hence, Ek;„ in the pseudopotential case has no
direct relationship with the all-electron counter-
part. The remaining contributions are as follows:
E„is the electron-core interaction energy, EH is
the electron-electron Coulomb energy (Hartree en-

ergy), and E„ is the core-core Coulomb energy.
Here we assume that atomic cores are well local-
ized and the overlapping between them usually
described by a Born-Mayer potential and van der
Waals interaction is negligible. This assumption
breaks down if atoms are brought so closely to-
gether that atomic cores overlap with each other
appreciably. The prime in the summation of Eq.
(5) excludes the term in which I = 1

' and s =s'.
E„,[p] is the electronic exchange-correlation ener-

gy. Within the local-density-functional approxima-
tion, it can be expressed by:

E„,[p]=fp(r)e„,(p(r))dr, (&)

where e„,(p(r)) is a function of p(r) and may be
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and a remaining finite part. Then, the sum Ec,~
of E„",EH, and E„is just the electrostatic ener-

gy of the system consisting of a periodic distribu-
tion p(r ) of electrons in a lattice of positive point
charges. %e may now add a positive and a nega-
tive background to the system and divide the
whole system into a subsystem A composed of a
lattice of positive point charges plus a neutralizing

negative background and a subsystem B composed
of a periodic electronic distribution p( r) plus a
neutralizing positive background. Because of the
superposition property of the Coulomb interaction,

Ec,„i is the sum of the Coulomb energy E" of sub-

system A, the Coulomb energy E of subsystem 8,
and the Coulomb interaction energy E" between

subsystems A and B. E is just the Ewald energy
which we will denote as E,', henceforth. E and

E can then be expressed in momentum space as
summations over the reciprocal-lattice vector 6:

E = Q IEa(G)
~

(10)

interpolated from exchange-correlation energies
calculated for the systems of an interacting homo-

geneous electron gas with various densities. The
r-space integrations are over the whole crystal
volume Q, and the energies are also for the whole
crystal. The electrons mentioned here and hence-
forth refer to the valence electrons only.

Because of the long-range nature of the Coul-
omb interaction, E, EH, and E„diverge individ-

ually. They all have an infinite zero-momentum
term when expressed by summations in momentum
space. Let us first decompose E„into a divergent
Coulomb interaction energy between valence elec-
trons and cores,

—2zs
E = rpr

-, , fr —RY, /

respectively. Now that the cell average (i.e., the
zero-momentum term} of the electric field vanishes
in a periodic system, the G=O terms in Eqs. (10}
and (11) are identically zero, and thus can be ex-
cluded from the summations. We may then use
Poisson's equation and obtain alternative expres-
sions for Eqs. (10) and (11}:

(12)

E" =Qg'p~(G)V"(G), (13)

Ug(r)=ug(r)+ pug t(r)Rt,
l=o

where

(14)

u,'t(r) =u, t(r) u,(r)—
and the local potential u, (r) has the 2Z,Ir-
Coulomb tail but does not have the I /r singularity
at the origin. This term can be chosen from the
u, t's. The potential u,'t(r) is then a short-range
function of r. After Fourier transformation, we

then obtain the expression of the total energy per
eel/:

where V"(G) is the Fourier transform of
—2Zs

-, , fr —R-, , /

The prime signs in Eqs. (12) and (13}indicate that
the zero-momentum terms are excluded from the
summations. We note that in a physical system
p(G} decreases rapidly as

~
G

~

increases so that
the summations in Eqs. (12}and (13}are conver-
gent.

In practical calculations, it is advantageous to
further decompose the ab initio core pseudopoten-
tial into

E"= gE„'(G) E,(G),
G

Etot =Ekin+Eec+EH +E +Ecc

where Eq and Ee are the Fourier transforms of the
electric fields of subsystem A and subsystem 8,

with individual energy contributions expressed as
follows:

Ei|n= ~ gnt
~
A(kt+G) ~'(k;+G}',

i, G

E~=Q, +p~(G)e *u,(G)+ g [n;pt'(k;+G)t/i;(k;+G')e 'u,'t(k, +G,ki+G')],
S, G i, 6, 6',s l

(18)
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Ea=
2 2 -, Ip(6)l'
2 G IGI'

E„,=0,gp*(6)e„,(6),

(19)

cos[6 (~, r—;)]exp
4m', 1

+ o 4g

erfc(rix)+ 2g (21)

0, is the cell volume (0, =0/N). The primes in the G summations exclude the G=O term. The prime in

the 1 summation in Eq. (21}excludes the 1 =0 term when s =s', r) is a parameter controlling the conver-

gency of the Ewald summations. The symbols k; and P; are, respectively, the crystal momentum and the
wave function in momentum soace of state i.

For nonzero 6's, v, (6) in Eq. (18) is the Fourier transform of v, (r), i.e.,

v, (6+0)= fdr e ' 'v, (r) .0,
The zero-momentum term of v, (G) is defined as follows:

2Z
v, (G =0)=— d r v, (r)+0, ' r

(23)

which is part of the zero-momentum term of the Fourier transform of v, (r). The other part is the zero-
momentum term of the Coulomb interaction ( 2Z, /r), —which has been shown above to cancel with the
divergent terms in EH and E„. The primes in Eq. (16) indicate the exclusion of the canceling infinite zero-

momentum contributions. The Fourier transform of v,'~(r)9'~ in Eq. (18) has the functional form:

k k'
v,'~(k, k')= (2l+1)pq f v,'I(rj)I(

~

k
~
rj)~(

~

k'
~

r)r dr, (24)

where I'I and jI are, respectively, Legendre and spherical Bessel functions.
The momentum-space formalism is closely related to the plane-wave method for the calculation of elec-

tronic structures. The Schrodinger equation used in the plane-wave method can be easily derived variation-
ally from the expression for the total energy in Eq. (16). Using the resulting eigenvalues e; s, we obtain an
alternative expression for the total energy (per cell):

1 IE...= gn;e( EH+—bE„,+E—„,
l

where

(25)

bE„,=Q,gp*(G)[e„,(6) V„,(6)]— (26)

and V„, is the exchange-correlation potential,

d (pe„,)
Uxc =

dp
(27}

The double summation over 6's in Eq. (18) is absorbed in the simple summation of the eigenvalues of the
occupied states in Eq. (25).

The force F' acting on atom s is the negative derivative of E„, (per cell) with respect to a basis vector r, .
The terms containing implicit derivatives of the wave functions vanish (Hellmann-Feynman theorem)~ '
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and a simple expression is derived as follows:

where

(28)

='~.X& (G)Ge 'v, (G) —~ g [n;g';(k;+G)g;(k;+G)(G —G')
6 i, 6, O', I

Xe 'v,'~(k;+G, k, +G')], (29)

t

=2Z, gZ, g' sin[6 (T, —r;)]exp( —
~

6
~

/4r)2)

.~ a

r

x erfc(rl
~
x

~
) 2rlx

x=]+v S S

Fe' is the force contribution from the valence elec-
trons, and F,' is the force contribution from the
other atomic cores.

S. Lattice-dynamical study

In principle, any phonon with lattice momentum
commensurate with the reciprocal lattice vectors
can be studied using the method presented in the
preceding section for periodic lattices. For such
phonons, there exists a superlattice in which the
motions of corresponding atoms in different super-
cells are identical. We can perform microscopic
calculations of the total energy and atomic forces
as a function of the atomic positions in the super-
cell. The dynamical matrix for the atoms in the
supercell can then be constructed in the harmonic
approximation and the phonon frequencies and po-
larizations obtained. The microscopic calculations
also provide information about anharmonic contri-
butions. In fact, such calculations are capable of
yielding all lattice-dynamical information for pho-
nons of lattice momenta commensurate with the
reciprocal-lattice vectors.

In practice, the supercell calculation is limited

by the computational capability in both speed and
memory. The maximum feasible number of atoms
in a supercell is of the order of 10. When the
number of atoms in a supercell is large, another
problem arises. Since the number of degrees of
freedom (Ny) becomes large, one has to calculate

total energies for a large number ( cc Xf ) of distort-
ed geometries to determine the dynamical matrix.
The calculations of (Hellmann-Feynman) atomic
forces are very useful in this respect. The number
of distorted geometries required is relatively small
( 0:Nf). A knowledge of the symmetry properties
also greatly simplifies the determination of the
form of the dynamical matrix and of eigenvectors
for phonons with lattice- momentum at a symmetry
point in the Brillouin zone.

III. CALCULATIONS

Using the atomic numbers as input, the ab initio
pseudopotentials of Si and Ge are generated using
the Hamann-Schluter-Chiang scheme. These
ab initio pseudopotentials have been shown' to
give accurate static structural properties and phase
transformation properties. In particular, the
equilibrium lattice constants of Si and Ge are in
excellent agreement with experiment to within 1%.
This serves as a prerequisite for the present study
of lattice dynamical properties of Si and Ge. A
discussion of ab initio pseudopotentials will be
given elsewhere. '

In this paper, we study the phonon properties at
I and X for Si and Ge. By symmetry, the LO and
TO modes at I' are degenerate [referred to as
LTO(I')], and so are the LO and LA modes at X
[referred to as LOA(X)]. Since the phonon polari-
zations at these points of the diamond lattice are
readily determined by group-theoretic method
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FIG, 1. Phonon polarization at I and X (0,0,2m/a)
for the diamond structure. Atoms are numbered and
denoted by black dots. The solid lines denote an atomic
chain in a (110) plane, and the dashed lines denote the
projection of an atomic chain a distance V 2a/4 away
from that plane where a is the lattice constant.

~ «01k=
BQ Q=0

b2, E«( )u

0
(31)

or from the atomic force F(u),

(32)

where

EE (u«) =E„,(u) E„,(0) —.

(shown in Fig. 1), the 6X 6 dynamical matrices can
be decomposed to 1 X 1 matrices if the phonon po-
larization vectors are chosen as normal coordinates.

The primitive cell for the phonon-distorted lat-
tice contains two atoms for LTO (I ) and four
atoms for phonons at X. The point group for the
phonon-distorted lattice is D3d (symmorphic) for
LTO (I') and D2s (nonsymmorphic) for phonons at
X with different nonsymmorphic translation vec-
tors for different modes. All these phonon-
distorted lattices have inversion symmetry, which
facilitates the computation.

The force constant for a normal mode at I or X
of the diamond lattice can be obtained from the
second derivative of E«,(u) (per atom) with respect
to the amplitude u of the phonon distortion,

ic forces. For each phonon-distorted lattice, we
solve the one-electron Schrodinger equation itera-
tively to self-consistency, at which point the max-
imum difference between the input and the output
screening potential in momentum space is less than
10 Ry and the total energy and the atomic
forces are stable to within 10 Ry and 10
Ry/as, respectively (an is the Bohr radius). The
Wigner interpolation formula for the exchange-
correlation energy is used. The number of plane
waves used in the basis set is increased until the
phonon frequencies converged to about 0.2 THz.
For phonon modes at X, about 300 plane waves are
used for Si and 400 plane waves are used for Ge,
which corresponds to a plane-wave kinetic energy
cutoff of 10 Ry for Si and 12 Ry for Ge. For
LTO (I ), the number of plane waves used is
smaller by a factor of 2 because of a smaller num-

ber of basis atoms. The set of special k points
1 1 1 1 1 1 3 1 1

used is I(4, —,, —,), ( ——,, —,, —,), ( —,, —,, —,),
3 1 1 3 1 1

units of 2n /a where a is the lattice constant) in the
irreducible —, Brillouin zone for LTO (I ) and

1 1 1 1 3 1 3 1 1 3 3 1I(» —,, —,)» ( —,, » —,), (» —,, —,), (» —,, —,)I (in the

reciprocal lattice coordinates) in the irreducible —,

Brillouin zone for phonons at X. The convergent
error of the phonon frequencies with respect to the
number of sampling k points is about 0.2 THz.

IV. RESULTS

For each phonon mode at I or X, we calculate
total energies and atomic forces of the phonon-
distorted lattices with five different amplitudes

0
ranging from 0.01 to 0.1 A. The total energies can
be well represented (to about 1%) by a quadratic
function of the amplitude except for the LTO (I )

mode for which a third-order term is needed for a
good fit. The phonon frequencies can then be de-
duced and are compared to experiment in Table I.
The agreement with experiment ' is excellent.
We note, in particular, that the low-lying TA(X)
mode is well described.

For LTO (I'), there is a third-order anharmonic
term and a cubic force constant k~ may be de-
fined as follows:

The phonon frequency is then,

f=&k/M /2n, . (34)
EE«,(u) =—u '+4k„y,tot 2 xyz

3

(35)

where M is the atomic mass.
In the following, we will discuss the procedures

for the calculations of the total energies and atom-

The experimental value of k„y, can be deduced
from the measured third-order elastic force con-
stants '. In the deduction, the third-order elastic
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TABLE I. Comparison of calculated phonon frequencies (in THz) of Si and Ge at I and

X with experiment (Refs. 29 and 30) (f,„p,). The values for fE (ft) are obtained from energy
(force) calculations. The deviations from experimental values are given in parentheses.

Si

fE
fF
f-p~

Ge
fs
fr
fexpt

LTO (I)

15.16(—2%)
15.14(—3%)
15.53

8.90(—2%)
8.89(—3%)
9.12

12.16(—1%)
11.98(—3%)
12.32

7.01(—3%)
6.96(—3%)
7.21

TO (X)

13.48(—3%)
13.51(—3%)
13.90

7.75(—6%)
7.78(—6%%uo)

8.26

TA (X)

4.45(—1%)
4.37(—3%)
4.49

2.44(2%)
2.45(2%)
2.40

force constants are fitted to the theoretical expres-
sions in Keating's model involving three anhar-
monic force constants. Within Keating's model,

k„~ equals to 16y where y is one of the anharmon-
ic force constants defined in Ref. 32. The calculat-
ed values of k ~ for Si and Ge are compared. to
the deduced values in Table II. The agreement is
excellent. We note that the values of k„z, are nega-
tive, which means that it is more difficult to
compress a bond than to stretch it.

The phonon frequencies and k„», can also be ob-
tained from the calculated atomic forces. The re-
sults are also given in Tables I and II. It is found
that the results obtained from the force calculation
are very close to those obtained from the energy
calculation. This demonstrates that force calcula-
tions using the self-consistent pseudopotential
method can be done very accurately. Some de-
tailed information can also be obtained from the
force calculation. For the LOA (X) mode, the
forces on atom 2 and on atom 3 (Fig. 1) are not
the same for a finite amplitude. For an amplitude

0
of 0.108 A the corresponding force constants are
15.86 eV/A for atom 2 and 17.37 eV/A for atom
3. The force constant difference varies linearly
with respect to amplitude. This represents another
case of anharmonicity. The two different force
constants also indicate that it is harder to compress

E
k~

fexpt

—32.8
—32.6
—35.1

—27.7
—28.1

—27.2

TABLE II. Comparison of the cubic force constant

k~ (in eV/ A') of Si and Ge with experiment (Refs. 31
and 32). The values for kzyg (k„~) are obtained from en-

ergy (force) calculations.

Si

a bond than to stretch it. The average of these two
force constants, however, does not vary with the
amplitude to within 0.5 go and it is used for the
phonon calculation.

As described in the preceding section, the con-
vergency of the calculated results with respect to
the number of sampling k points and the kinetic
energy cutoff Ep„of the plane-wave expansion has
been carefully examined. In Table III, we give re-
sults for phonon frequencies of Si and Ge calculat-
ed with different Ep„'s. Except for the TA (X)
mode, the phonon frequencies are convergent to
less than 10% for small Ep„'s (4—6 Ry). This
convergent test provides useful information about
error estimates for other studies with the use of the
ab initio pseudopotential approach, e.g., the struc-
tural study of the Si(001)-(2X1) surface, in
which, E„„is relatively limited by the computa-
tional capability and memory size of the computer.

The most important features of the TA modes
of Si and Ge, as well as other cubic tetrahedrally
coordinated semiconductors, are that the TA
dispersion curves are low-lying in energy and be-
come flat away from the zone center. The low-
lying feature has already been demonstrated above
with the TA (X) mode. The flatness feature can be
demonstrated by calculating directly the entire
dispersion relation along a specific direction, like
the [001] direction using an ab initio interlayer
force constant approach. This has been done by
the authors and is presented elsewhere. Here we
will demonstrate that the TA velocity, i.e., the ris-
ing slope of the dispersion curve, at the zone center
is rather large. This is an important ingredient re-
lated to the flatness of the TA modes.

The zone-center TA velocity u chosen is the one
propagating along the [110]direction with [110]
polarization. This velocity is associated with the
shear modulus C~~ —C&2 by
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TABLE III. Convergency test of the phonon frequencies of Si and Ge (from energy cal-
culations) with respect to the cutoff energy E~„ for a plane-wave expansion. Frequencies are
in units of THz.

Epw (Ry)

Si

4.5
6
7.6
9

10

LTO (I )

15.55
14.33
14.69
15.06
15.16

LOA (X)

12.85
11.73
11.86
12.06
12.16

TO (X)

14.28
12.75
12.94
13.32
13.48

TA (X)

5.45
5.02
4.69
4.54
4.45

6
8

10
12

8.64
8.71
8.77
8.90

7.10
7.05
6.94
7.01

7.69
7.54
7.58
7.75

3.31
2.84
2.54
2.44

' 1/2«ii —C|2)
2pM

(36)

where p~ is the mass density.
We introduce a homogeneous tetragonal distor-

tion into the diamond lattice, in which the length
scales of the three cubic directions are changed by
1+e, 1+@,and (1+a), respectively, while the
atomic volume 0, are kept constant. The change

~„,(per atom) is related to C|i —Ci2 by

&E„,=30,(Cl i
—Ci2 )e +0 (e ) . (37)

TABLE IV. Comparison of calculated values of
Cii —C|2 and the TA velocity along [110] (with [110]
polarization) of Si and Ge with experiment (Ref. 36).

Si

Theory
Expt.

Ge

Theory
Expt.

C11 ~12
(Mba r)

1.07
1.027

0,74
0.819

VTA [11Q1

(10 cm/sec)

4.79
4.693

2.64
2.770

The third-order contribution can be eliminated by
averaging AE„~,(e) and b,E„~,( —e). Total ener-

gies are calculated with the value of e varying
from 0 to + 0.04. The shear modulus C||—C&z

and the associated TA velocity are obtained from
Eqs. (37) and (36). These values for both Si and
Ge are in excellent agreement with experiment as
shown in Table IV.

It is interesting to examine the individual contri-
butions to the force constants for the phonon

modes at I and X and to the quantity
2a (C|1—Ciq) for Si and Ge. These are given in

Table V. The individual contributions are defined
in Eqs. (16), (31), and (37). The finite amplitude
used is +0.01a for LTO (I'), 0.02a for LOA (X),
and 0.0177a for TO (X) and TA (X) where a is the
lattice constant. We note that the sign of each
contribution is the same for LTO (I ), LOA (X)
and TO (X), whereas TA (X) and 2a (C» Ci2)
have opposite signs. This can be explained as fol-
lows: The TA (X) mode and the Cil —C|2 shear
mode involve bond bending in first order, bond
stretching in second order, and no bond cornpres-
sion. As a result, the valence charge density of the
distorted lattices become more evenly distributed
than that of the ideal lattice, which leads to de-

creases in Eq;„and EH and increases in E,', and

E„,. (The change in E,', can also be qualitatively
explained by bond-length changes. ) In contrast,
the opposite is true for other modes where bond
lengths are changed in first order and the valence
charge density becomes less uniformly distributed.

For the LTO (I'), LOA (X), and TO (X) modes,
the Ewald contribution plays a dominant role in
stabilizing the system and the electronic contribu-
tion reduces the Ewald contribution in the form of
screening. In contrast, the Ewald contribution
(k,', ) for TA (X) as well as for 2a (Cti —C&z } is
negative, which means that the lattice is unstable
with respect to shear distortions associated with
the TA (X}mode and C|1—Ci2 if the electrons are
nonresponsive. The electronic contribution (k, ),
i.e., the sum of kl, ;„,k,'„k~, and k„„overcompen-
sates the Ewald effect and stabilizes the diamond
structure. This is a manifestation of the direction-
al covalent bonds. Since the total contributions for
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TABLE V. Contributions to force constants for phonon modes at and X of (a) Si and (b)

Ge and contributions to the quantity 2a (C~& —C~2). The theoretical results are from total
energy calculations. The experimental values (Refs. 29, 30, and 36) are given in the last row.
All are in units of eV/ A . The electronic contribution k, is the sum of kk;„, k', k~, and

k„,.

LTO (I ) LOA (X) TO (X)

(a) Si

TA (XI 2a (C&~ —C~2)

kg„
k'
k~
k„,
k,
k'
k tot

k exPt
tot

k'

kH

k„,
k,
k'

ktot

k exPt
tot

30.88
—72.28

26.89
—7.30

—21.82
48.26
26.44
27.75

16.40
—38.27

3.11
—0.40

—19.15
42.70
23.55
24.73

11.68
—109.15

42.58
—0.61

—55.52
72.53
17.01
17.46

13.68
—100.91

39.13
—1.43

—49.54
64.15
14.61
15.46

32.57
—146.62

45.82
—7.46

—75.69
96.60
20.91
22.23

(b) Ge

29.84
—131.96

41.82
—7.27

—67.57
85.43
17.86
20.29

—17.49
58.06

—19.39
6.19

27.38
—25.11

2.27
2.32

—10.76
45.72

—15.64
4.67

23.99
—22.22

1.77
1.71

—8.58
57.99

—19.25
5.25

35.40
—28.14

7.26
6.96

—6.43
49.86

—18.10
4.81

30.13
—24.90

5.23
5.79

TA (X) and 2a (C» —C~q) are small, every contri-
bution is important and should be taken into ac-
count in the calculations.

The large difference in the experimental values

of k„, between TA (X) and 2a (C~~ —C~2) is well

described in our calculation. This gives a large ris-

ing slope at the zone center and a low-lying end

point at the zone boundary for TA dispersion
curves, which implies a flat TA dispersion curve

away from the zone center —a prominent feature in

the tetrahedrally coordinated semiconductors. It is
noted that except for the kinetic energy contribu-

tion, the other contributions are almost the same
between TA (X) and 2a (C~~ —C~2). It is the kinet-

ic energy contribution that makes the total contri-
bution of 2a (C» —C&2) larger than that of TA
(X). This may be attributed to the fact that the
Jones zone associated with the C~& —C~2 distortion
is changing from a cubic symmetric shape to an
oblique shape which is more extended in one direc-
tion and less extended in the other two or vice ver-

sa. The C~~ —C~z distorted lattice has a larger
free-electron kinetic energy averaging over the
Jones zone. This gives positive contribution to
Eq;„and makes kz;„ larger (less negative) for
2a (C» —C~2) than for TA (X). As a result, k„„
of 2a (C&& —C~z) is larger than that of TA (X).

(8) LTD(r) (b) TO(X)

FIG. 2. (a) Contour plot of charge-density difference
(in units of 0.025 e/A ) in the (110) plane between an
LTO (I )-distorted lattice with an amplitude of 0.054 A
and the ideal lattice of Si. The dashed contours
represent negative values. The arrows indicate the
atomic movements. (b) Similar plot for TO (X) with an
amplitude of 0.096 A.

Figure 2(a) is a contour plot in the (110}plane of
the charge-density difference between an LTO (I )-

distorted lattice and the ideal lattice of Si. It is
seen that the valence charge becomes more concen-
trated in the region where the bond is compressed
and it becomes less concentrated when the bond is
stretched. . Such phenomena have been observed in
Refs. 38 and 5. Figure 2(b} is a similar contour
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(a) TA(X)
(Atoms not matched)

(b) TA(X)
(Atoms matched}

FIG. 3. Contour plots of charge density difference (in
units of 0.02S e/A ) in the (110) plane between a TA
(X)-distorted lattice with an amplitude of 0.096 A and
ideal lattice. of Si. Relative to the atomic chain (in the
center of the figures) of the ideal lattice, the atomic
chain of the distorted lattice is shifted to the right by an
amplitude of 0.096 A in Fig. (a). In {b), the atomic
chain of the ideal lattice is rigidly shifted by the same
amplitude such that the atomic chains are matched.
The dashed lines denote the projection of an atomic
chain a distance V 2a/4 from this plane.

plot of the charge redistribution for the TO (X)
mode. The maximum charge density at the bond
center varies linearly with respect to bond-length
change as one may expect. It is interesting to note
that the proportionality constant is, to a large ex-
tent, independent of the vibration mode. For ex-

ample, the proportional constant is within
—0.8+0.1 ejA for the LTO (I'), TO (X), and
LOA (X) modes of Si. Such microscopic parame-
ter may be useful for the phenomenological model
with variable bond charges as mentioned in Ref. 8.

The charge redistribution of the TA (X) mode is
.different from those of other modes. As shown in

Fig. 1, the atomic chains are moving against each
other for the TA (X) mode. There are two ways to
represent the charge redistribution. One is to take
the charge density difference between the ideal lat-
tice and the TA (X)-distorted lattice in which the
atomic chain is shifted by a finite amount. This
representation of the charge redistribution is shown

in Fig. 3(a). The prominent feature in this plot
comes from a rigid shift of charge density follow-

ing the motion of the atomic chain. To obtain in-

formation about charge redistribution aside from
the rigid shift, we move the atomic chain in the
ideal lattice by the same amount as in the TA (X)
distortion such that the atomic positions are
matched. The charge-density difference taken in
this case has excluded the effect of a rigid shift.
This is plotted in Fig. 3(b). To get a clear picture
of the charge redistribution, we indicate another

atomic chain in the upper left corner of Fig. 3(b).
That atomic chain is not in the same (110) plane
and part of its projection on the plane of Fig. 3(b)
is shown with dashed lines and an open circle
(atom 3). Relative to chain 1-2, atom 3 is dis-
placed to the left, and the bond between atom 1

and atom 3 is consequently bent. This induces an
increase in charge density in the upper left region
of atom 1 and a decrease in the upper right region
of atom 1. We also find an increase in charge den-

sity above the 1™2bond and a decrease below,
which indicates that the 1-2 bond charge (its posi-
tion may be roughly assigned to the peak position
in charge density) is displaced upward away from
the bond center. This indicates that the bond
charges tend to relax in such a way to preserve a
regular tetrahedral configuration around the atoms.
The charge redistributions for phonon modes of Ge
are similar to those of Si, and thus, a discussion of
Ge is omitted here.

Another interesting feature of the TA modes is
thai the mode-Gruneisen parameters are negative
for zone boundary phonons. We have varied the
lattice constant by 1% to 3% and calculated the
phonon frequencies at I and X for Si and Ge in a
similar way. The mode-Gruneisen parameters y
can then be obtained by the following expression:

dlnco 5 inc)

din V 6 lnv (38)

As shown in Table VI, the results are in excellent
'

agreement with experiment including the negative
value of TA (X). An analysis of various energy
contributions shows that the negative value of the
TA (X) mode-Griineisen parameter comes from the
fact that in that particular mode the electronic
contribution plays the dominant role in stabilizing
the system; %'hen the volume becomes smaller,
the system becomes more metallic and the electron-
ic contribution which tends to increase the TA (X)
frequency becomes less dominant with respect to
the Ewald contribution which tends to lower the
frequencies. This leads to a smaller TA (X) fre-
quency and a negative mode-Griineisen parameter.
The experimental values of the mode-Griineisen
parameter at X of Ge are not known and our
theoretical values serve as a prediction.

V. DISCUSSION

A. Pseudopotential approximation and local-
density-functional approximation

Since the exact solution of the many-body
Schrodinger equation of a multiatomic system is
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TABLE VI. Comparison of calculated mode-Gruneisen parameters for phonons at I and

X of Si and Ge with experiment.

Si
calc.
expt. '

Ge
calc.
expt.

LTO (I)

0.9
0.98

0.9
1.12+0.02b

0.SS+0.08'

LOA (Xj

1.3
1.5

1.4

TO (X)

0.9
0.9

1.0

TA (X)

—1.5
1.4

—1.5

'Reference 39.
bReference 40.
'Reference 41.

impossible to obtain, we employ two important ap-
proximations: the local-density-functional approxi-
mation and the pseudopotential approximation, in
addition to the usual adiabatic (Born-Oppenheimer)
approximation in the present study. The accuracy
of these two approximations will be discussed here.

To nake the pseudopotential approximation
work, the effective pseudopotentials have to satisfy
the "atomic requirement" that they simulate the
all-electron results in the atomic limit, which in-
cludes valence eigenvalues, excitation energies, and
valence wave functions outside the core region for
a range of atomic configurations. Analytic justifi-
cations have been given ' for these requirements.
Numerically, these ab initio pseudopoten-
tials * have been shown to yield band struc-
tures ' and static structural properties of
solids" in close agreement with the all-electron re-
sults. (We note that both the all-electron and the
pseudopotential calculations within the local-
density-functional formalism underestimate the
measured fundamental band gap, e.g., the calculat-
ed fundamental band gap of Si is 0.5 eV compared
to the experimental value of 1.17 eV). A recent
all-electron study' has basically confirmed our
present results. ' Now we will take a different ap-
proach to illustrate the same point.

We have generated a smoother ab initio pseu-
dopotential for Si which meets the atomic re-
quirement, yet is not as satisfactory as the one we
use. It is found that both pseudopotentials give
similar static structural properties and lattice
dynamical properties. For example, the phonon
frequencies calculated using the smooth pseudopo-
tential are 11.93, 13.10, and 4.54 THz for LOA
(X), TO (X), and TA (X) of Si, respectively. These
values differ from the calculated values in Table I
by about 0.2 THz and compare we11 with experi-

ment. This comparison demonstrates that the cal-
culated results are, to a large extent, independent
of the parameters used in the pseudopotential gen-
eration as long as the atomic requirement is satis-
fied.

To examine the local-density-functional approxi-
mation, we have tested different functional forms
for the exchange-correlation energy and found that
the lattice dynamical results differ only by a few

percent. For example, the phonon frequencies cal-
culated using the Hedin-Lundqvist form5O are
15.15, 12.08, 13.31, and 4.52 THz for LTO (I'),
LOA (X), TO (X), and TA (X) of Si, respectively,
which differ from the results (Table I) using the
Wigner form by only 0.1 THz.

B. Comparison arith other
microscopic results

In this section, we will compare the present
study with two recent microscopic studies on the
phonon frequencies of Si using the frozen-phonon
approach by Wendel and Martin (WM) and the
dielectric function approach by Van Camp, Van
Doren, and Devreese' (VVD).

In the frozen-phonon study by WM, the pseudo-
potential used is fitted to the experimental excita-
tion spectra. This empirically fitted pseudopoten-
tial does not give good static structural properties:
The equilibrium lattice constant and bulk modulus
are 4.7 A and 0.70 Mbar, as compared to the ex-
perimental values of 5.43 A and 0.99 Mbar. An
ad hoc linear repulsive force between nearest neigh-
bors is introduced to fit to the experimental lattice
constant. We note that their calculated results de-

pend on this ad hoc force parameter. In particular,
the shear modulus (C» —C,2) and the force con-
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stant for TA (X) change by a factor of 2 when the
ad hoc parameter is excluded, as would be the case
if a commonly used procedure ' is taken to fit the
experimental lattice constant instead of the ad hoc
assumption. In the present study, the pseudopo-
tential is constructed using only the atomic number
as input information. Without any ad hoc assump-
tions, the calculated static structural properties and
the lattice dynamical properties agree well with ex-
periment, which demonstrates that lattice dynami-
cal properties of solids can be accurately calculated
within the local-density-functional formalism.

We have also carried out the calculation of pho-
non frequencies at I' of Si using the dielectric
function approach" and studied the dependence of
the phonon frequencies with respect to the dimen-
sion of the dielectric matrix (see Appendix). It is
found that if the dimension of the dielectric matrix
is 27 as used in Ref. 14, the phonon frequencies at
I are not convergent: the LA (I ) frequency,
which should be zero by symmetry, is still quite
large and the LTO (I") frequency still has appreci-
able fluctuation' (-5 THz). We also find that
b,E„,plays a significant role in the TA (X) mode.
Its magnitude is even larger than b,E„, (see Table
V). Omitting the AE„, contribution will result in
an unphysical imaginary phonon frequency. This
observation implies that E„should be properly in-
duded in the dielectric matrix approach within the
local-density-functional formalism.

While the results by VVD in mapping out the
phonon dispersion relation of Si are remarkable, we
point out that this calculation is model dependent.
The reason why the LA (I') frequency is almost
zero using a 27X27 matrix and the TA (X) fre-
quency is positive in the Hartree approximation as
obtained by VVD seems to arise from the particu-
lar model which involves the truncation of a
continued-fraction series and the use of a constant
parameter E0 to replace the k-dependent p&/p0.

function of lattice constant and the calculated stat-
ic structural properties including the equilibrium
lattice constant are in excellent agreement with ex-
periment when the theory is applied to crystalline
Si and Ge.' This serves as a prerequisite for the
lattice dynamical study. Using the frozen-phonon
approach, we obtain various lattice dynamical
properties of Si and Ge by total energy calculations
and atomic force calculations. They include pho-
non frequencies at I and L, the third-order anhar-
monic force constant for LTO (I'), the shear
modulus C» —C~2, the zone-center TA velocity in
the [110]direction, and the mode-Griineisen
parameters for phonons at I and X. These results
are in excellent agreement with experiment.

In particular, the frequency of the TA (X) mode
is small and the zone-center TA velocity is large,
which implies a flat dispersion curve as experimen-
tally observed for both Si and Ge. An analysis of
contributing factors shows that the kinetic energy

. has a positive contribution to make the zone-center
TA velocity large and it may be attributed to a dis-
torted Jones zone. The abnormal negative value
for the mode-Griineisen parameter of TA (X) of Si
measured experimentally is also well reproduced
in our calculations.

The present lattice dynamical study, together
with our study' ' of the static structural proper-
ties (such as the lattice constant, bulk modulus,
and cohesive energy), crystal stability, and solid-
solid phase transformation, represent a comprehen-
sive structural study for two prototype semicon-
ductors Si and Ge using a unified ab initio pseudo-
potential approach.

TABLE VII. Convergence of the phonon frequencies
{in THz) of LA (I ) and LTO (I ) for Si with respect to
the dimension of the dielectric matrix.

VI. CONCLUSION

The present study represents a unified ab initio
calculation of the lattice dynamical properties of
solids in which the only input information is the
atomic numbers and masses of the constituent ele-
ments and the crystal structure. Using the atomic
numbers, we generate ab initio pseudopotentials to
simulate the interaction between valence electrons
and atomic cores. With the knowledge of the crys-
tal structure, the total energy is computed as a

Dimension of the
dielectric matrix

9
15
27
51
59
65
89

113
137

Expt. '
'Reference 29.

LA (I )

5.60
5.60
3.45
0.97
0.31
0.84
0.42
0.41
0.27
0

LTO (I )

21.84
18.29
17.57
22.84
20.66
22.67
20.38
18.38
18.44
15.53
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APPENDIX

In this appendix we carry out a study of the
dependence of the phonon frequencies at I with

respect to the dimension of the dielectric matrix.
The local pseudopotential given in Ref. 26 is used
for the calculation of the dielectric matrix and the
dynamic matrix at I . The Schrodinger equation is
solved self-consistently using plane waves (-100)

up to 8 Ry in kinetic energy in the basis set and
another set of plane waves (-100) up to 12.5 Ry
through Lowdin's second-order perturbation
schemes. An Xa approach for E„, is used and a
is chosen to be 0.794. Fifty conduction bands are
used in the dielectric matrix calculation, "which
includes the exchange correlation correction. The
subsequent dynamic matrix and phonon frequency
calculations are then carried out. The resulting
phonon frequencies of LA (I') and LTO (I ) are
given in Table VII as a function of the dimension
of the dielectric matrix. [The frequency of TA (I')
is zero.] It is found that the convergence of the
phonon frequencies with respect to the dimension
of the dielectric matrix is rather slow. At a di-
mension of 27, the LA (I ) frequency, which
should be zero because of the translational symme-
try, is still very large, and the LTO (I ) frequency
still has a large fluctuation (-5 THz).

'Present address: Bell Laboratories, Murray Hill, New
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