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Phase transitions with spontaneous modulation —the dipolar Ising ferromagnet
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A uniaxial ferromagnet of finite thickness spontaneously breaks into parallel "striped"
domains as a result of demagnetizing forces. In a sufficiently large applied magnetic field a tran-

sition takes place to a hexagonal or "bubble" phase. We study the phase diagram of this sys-

tem with the use of a Ginzburg-Landau approach and we investigate the effects of dislocations

on the two-dimensional order of the modulated phases.

I. INTRODUCTION

Modulated phases in which an order parameter has
a spontaneous spatial variation may be thought of as
resulting from a competition between short-range at-
tractive forces leading to a local alignment and
longer-range repulsive forces leading to a competitive
antialignment. Examples' are charge-density-wave
systems and anisotropic magnetic systems such as the
axial next-nearest-neighbor Ising (ANNNI) model'
or the helical antiferromagnet. ' Spin-glasses, in

which the competing interactions are disordered, ex-
hibit even more complex phases. '

The nature of the phase transitions of models of
this type has recently received renewed attention.
The purpose of this paper is to discuss the phase dia-
gram of a particular class of spontaneously modulated
systems, represented by the dipolar ferromagnet with
uniaxial anisotropy in the geometry of a slab of finite
thickness D and infinite extent in the plane.

At low temperatures, in zero applied field, this
class of magnet (much studied in connection with
bubble memory applications4) spontaneously orders
in a structure of stripe domains, whose period results
from a balance between domain-wall energy and
demagnetizing energy. Above a critical applied field,
a first-order transition takes place to a hexagonal
phase, which we will refer to as the "bubble" phase.
At still higher fields, a further transition takes place
to a uniformly magnetized phase.

A basic distinguishing feature of this class of
models relative to the anisotropic models (of the
ANNNI type) is the complete degeneracy of the
Hamiltonian with respect to orientation in the plane.
In particular, this means that fluctuations into the
striped phase at high temperatures strongly suppress
the Ginzburg-Landau mean-field transition, as first
discussed by Brazovskii. 6

Another important distinction from models of the
ANNNI type arises from the long-ranged nature of
the dipolar interaction: For finite slab thickness, the
dipolar coupling is always relevant, no matter how

weak relative to the nearest-neighbor exchange. So
the ground state of the system remains modulated at
all values of the ratio a(gp, 8)~/JD. (See Sec. II for
definitions. )

In this paper, we first discuss the phase diagram of
the system in an applied magnetic field in the context
of a Ginzburg-Landau approach, then study the ef-
fects of defects and fluctuations on the mean-field
phase transitions. In Sec. II, the model is formulated
as lying in a class of two-dimensional Ginzburg-
Landau models with nonlocal interactions, and in
Sec. III, the effects of an applied field are worked out
in the Ginzburg-Landau approach. In Sec. IV, we
show that dislocations in the striped phase will always
lead to absence of positional order in this phase at
finite temperature, but that a Kosterlitz-Thouless
transition will occur in the bubble phase.

II. MODEL

We consider a slab of thickness D of a strongly
uniaxial (Ising-like) material. At low temperatures
and zero applied field, the system breaks into
domains due to the competition between exchange
and dipolar forces, with a zero net magnetization
[Fig. 1(a)]. We take the system as isotropic in the xy
plane. Assuming a periodic structure of period 2d,
the energy of the system per unit surface of the slab
may be written7

1

E 4 ( + g (1 —e ""D~) M2
r n odd ~

In Eq. (1), g is a parameter characterizing the
domain-wall thickness. 4 The first term represents the
wall energy and the second the demagnetizing contri-
bution. The equilibrium distance is given by

9E

There are a number of underlying assumptions in Eq.
(1), such as the fact that the walls are taken to be
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FIG. 1. (a) Low-temperature zero-field ground state; (b)
bubble lattice.

system. The phase transition is therefore expected to
be of the Brazovskii type. 6

The above assumption, that the walls are straight
in the z direction (normal to the slab plane) reduces
the statistical-mechanical problem to two dimensions.
In the context of a Ginzburg-Landau approach, the
three-dimensional free-energy functional may be re-
duced to two dimensions as follows: The total free
energy may be written

F
&

d x(Fgggh +FD)

where F,„,h is the bulk ferromagnetic contribution
averaged over the slab thickness, and FD is the sur-
face demagnetizing term. For a microscopic Ising-
like model of a ferromagnet with coordination
number z, lattice spacing a, and nearest-neighbor fer-
romagnetic exchange J, we may write

straight, branching in the wall structure is neglected,
etc. Typically, these assumptions are valid for ratios
2 & D/g & 20 (Refs. 4, 8—10) which we will consider
from now on. In a perpendicular magnetic field H
above a critical value, it is well known that the
striped structure of Fig. 1(a) gives way to a bubble
lattice structure [Fig. 1(b)]. In general, the energies
of the two structures are quite close.

If one ~ants to study the phase transitions between
paramagnetic, striped, and bubble phases, one has to
deal with dipolar forces, which, because of their an-
isotropic long-range character, can have subtle ef-
fects. For instance, they have been shown to be
relevant close to four space dimensions. ' In our
"two-dimensional" system, their effect is contained
in the infinite sum of Eq. (I), resulting from the
domain structure. This function varies as
D2/d ln(D/d) for D & d, leading to a nonzero period
(at T =0) for all values of the ratio gD/d'. So the
long-range character leads to a coupling which is al-

ways relevant, as discussed in Sec. I.
At nonzero temperature the walls will be smeared

out by fluctuations, "and one may anticipate that,
close to T„ the infinite sum of Eq. (1) will be dom-
inated by the first harmonic. This approximation is
familiar in the context of modulated Ising structures
where, in mean field, the amplitude of the nth har-
monic grows as ( T, —T) "i' below T,. We also antici-
pate that the stripe lattice will be broken by disloca-
tions, leading to a fluid "smecticlike" model with no
positional long-range order, but with orientational or-
der. '4

The key point is that in a Ginzburg-Landau (GL)
free energy, the competition between the wall energy
[(V'P)' term] and the dipolar term will yield, close
to the critical temperature, a nonzero optimal wave
vector as in Eq. (1); the direction of this wave vector
is arbitrary in the xy plane, due to the isotropy of the

mF,„,h= J('7m)2+
3 (T—Tq) + m4

2a a 2 12a

mD
gpgH 3 p (4)

FD = — dS cr4
2 Jg

where o- is the charge distribution of the surfaces
created by nonzero magnetization m(r) and 4 is the
magnetic potential on the surface, created by o-.

For a general magnetization of this form, the
demagnetizing term may be rewritten

FD = ,
' d'x d'x'm (x—)g (x,x') m (x'), (5)

where

4~
g(x,x') = (gps)' dq (1 e'D)—

aJ q

x exp[iq(x —x')]

We thus see that the dipolar magnet falls into a gen-
eral class of models with competing short-range at-
traction and longer-range repulsion.

The Ginzburg-Landau instability condition may
now be seen to occur at a finite q vector, such that

4~ (1-e-~D) + =0 . (6)
dq dq q a

where nl(x) is the slab average of the magnetization
oriented along the z direction, and g p,~ is the gyro-
magnetic coefficient. T~ is the mean-field ferromag-
netic transition temperature (ks is set equal to uni-
ty),

TF =zJ

The contribution of the demagnetizing term is'
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The resulting mean-field phase transition occurs at a
transition temperature T„above the transition for the
uniform ferromagnet T~.

III. GINZBURG-LANDAU PHASE DIAGRAM

Following Brazovskii, we study two basic modulat-
ed solutions:

(i) the stripe solution,

and qo, obtained by minimizing F~ is given by

qp= [2ma(gp, )'/JD]'

assuming qpD » 1. As seen from Eq. (9), the
bubble phase is stabilized by a suitable choice of phase
relations between the three simultaneous modulations
[Eq. (7b)], such that the term in mspms3 becomes
negative and sufficiently large. '

On minimizing Eqs. (S) or (9), one finds a stability
condition for the applied field beyond which a real
solution no longer exists, given by

m = m, p+ m, cos(qox) (7a) 3um, p & f~: m—, =0 (10)

with

(ii) the bubble solution,

3

m = map+ g mscos(k r;),
i 1

(7b)

for the striped phase;

—, umao & —fqo: ma=012

for the bubble phase. Equations (10) and (11) corre-
spond to critical fields

3

g k(=0, lkl =qo . 0
bc=

3 3, (12a)

Note that since we are dealing with a magnetic prob-
lem, the bubble solution is not present in a zero mag-
netic field. " The solutions (i) and (ii) do not in-

clude, as mentioned before, higher-order harmonics,
which in our approximation grow more slowly at tem-
peratures just below the phase transition. Inserting
Eqs. (7a) and (7b) in Eq. (6), we have

(i) f, = ' = i fomg'o+ ~ um, 4p —hm, p
x y

(ii) fs = =
&

fpmsp +
4 umsp —hmsp

B 1 p 1 4

LxLy

+3 ms~(
~ fo + 4 ufo ) +

3~
ums4

—5
hB o '

zo3

12 fo 3oof&p (12b)

A numerical study of f, and fs shows that these sta-

bility fields are never reached and the system under-
goes a first-order transition at critical fields 0 ( h„
AB & h,', h, . The phase diagram is shown in Fig. 2
with the particular choice ( Tp= To ), since we want

to focus on the phase transition at Tq . For different

values of the parameters the phase boundaries
change, but the topology of Fig. 2 is preserved.

The (S) ~(8) transition is also first order but ap-

parently with a continuous magnetization m, o = mBo at
the phase boundary.

+ (T umsp ms +
p

ums )
3 4 (9)

where

—fp= —(T—TF) +(gps) 2mD = (T Tp)
1 1 D D
2 2 2a 2a

1
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FIG. 2. Ginzburg-Landau phase diagram: solid lines,
first-order phase boundaries; dashed lines, critical fields.
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IV. FLUCTUATION EFFECTS

+(T TF) d—q
D

2Q
(13)

where the integration is carried out in the xy plane.
The elastic contribution of Eq. (13) may be rewritten
as

(~' —eo )'
5F, =

2 J mqm q, , 2
fq"dq

2(2qp)

The phase diagram of Fig. 2 did not take fluctua-
tions into account, which in the stripe or bubble solu-
tions appears to be essential. Brazovskii, using first-
order perturbation theory, found that the phase tran-
sition for h =0 was driven first order by fluctuations,
with a shift of transitions temperature,

(T, —
Tq ) =—(Qo»''

qp

On the other hand, the absence of long-range order
in systems with a one-dimensional modulation raises
questions about the validity of a perturbation
analysis &3, i7, is We now show that the absence of ri-
gidity for shear distortions of the stripe lattice means
that dislocation pairs in the stripe lattice will always
be unbound at finite temperature, leading to an ab-
sence of positional long-range order in this phase. To
see this, we retain the first term of Eq. (6) beyond
the GL approximation of Sec. III to give

1 (e —eo)'
~s 2 mqm —q fqp + fq

SE,~
=

2
d r(2p, u& + Xu»)

1

with

u„= ,'(B,uj—+iju,), ij =x,y,
where the Lame coefficients are

p, = X = —„fq"ms2q$

where ms is the same as in Eq. (9). Neglecting tem-
porarily the term (1 —e qD) in fq [Eq. (6)], we find

m9qr ms
( )2

8 qp
(17)

With these Lame coefficients, we can estimate the
dislocation unbinding temperature T for the bubble
lattice' using

1 1 &p—+
p, p +~ 4mkgT~

(18)

order. In general, it will be expected to have orienta-
tional order up to some temperature above which dis-
clination pairs become unbound. ' However, the
Brazovskii perturbational analysis leads to a first-
order transition. As in other melting transitions, one
cannot tell a priori whether the disclination unbinding
temperature comes above or below the Brazovskii
first-order transition temperature.

For the bubble phase, we show that dislocation un-

binding will occur at a finite temperature Kosterlitz-
Thouless transition.

A similar analysis of the elastic behavior in the
bubble case leads to

f" [('7'm)' —2qo (Vm)'
2 8qj

+ qo m'] d'x (14)

In general, we expect this to provide an overestimate
of the melting temperature. In Eq. (18), ap is the
bubble lattice spacing, related to qp by

The peculiarity of the Brazovskii phase transition
shows up in the elasticity. In a phase-only approxi-
mation, one has

m( r ) = m Re(exp(iqp[x+ u(xy)]]) = m Re(e'4')

4m
ap = (19)

Inserting values for is, and X from Eq. (17) we find

AT =vm~ap, leading to

(15) ks T =— ms ( T,H )
a

(20)

where x is the direction of the one-dimensional (1D)
modulation, of amplitude m [Eq. (8) with h =0].
One has then, in the harmonic approximation,

g~e( 32 fq ms J d ququ —q(4qpq„'+qy ) (16)

At finite temperatures, the interaction energy of a
pair of dislocations in an elastic medium, character-
ized by Eq. (16), falls off more rapidly than the loga-
rithm of the isotropic case. Consequently, dislocation
pairs are always unbound at finite temperature and
the striped phase does not have positional long-range

where s is a numerical coefficient given by 3J3/64qr
=—2.6 x 10 '. We note that in this approximation, T
scales like ap, i.e., with the slab thickness D. In the
region of T„mg varies, in the GL approximation, as

ms2 =—[ Tg(H) —T]J
where Te(H) is a bubble-ferromagnetic instability
temperature at fixed H, and C is a number of order
unity. Since for practical samples, D/a may be
several hundred, this leads to a bubble lattice melting
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temperature very close to the bubble-ferromagnetic
instability boundary

ks T~ rrD/2aC ka Ts(H)
J 1+rrD/2aC J

1

2aC ka Te(H).I J
Since the actual bubble-ferromagnetic phase boun-
dary is first order in the GL approximation and is
likely to be displaced by corrections of the Brazovskii
type, it is not possible to give an accurate numerical
prediction of the location of the bubble melting tran-
sition. So our analysis serves to indicate where to
look for the transition: Experimental observation
would provide a stimulus for more detailed study of
models of the Brazovskii class.

V. SUMMARY AND CONCLUSIONS

the transition between the stripe and bubble phases
to remain first order even in the presence of fluctua-
tion effects.

Our discussion has been based on an Ising type of
model. For non-Ising systems with large enough
uniaxial anisotropy, we expect the same behavior. '

For vectorial spins, one expects a critical field below
which the spins are canted. " The same situation is
to be found whenever demagnetizing effects are im-
portant. '

Experiments have shown that the bubble-stripe
phase transition is strongly first order at low tempera-
tures, but, to our knowledge, there is no experimen-
tal report of stripe or bubble melting. It now seems
possible to prepare amorphous ferromagnets with low
in-plane anisotropy, 4 to which the theory developed
here could apply. Since the bubble melting tempera-
ture scales with sample thickness, this could provide
an interesting laboratory system in which to study
two-dimensional melting.

Our analysis shows that there are two types of fluc-
tuation effects which cause melting of the stripe and
bubble structures. The first type are the directional
fluctuations discussed by Brazovskii which are ex-
pected to lead to first-order transitions. The second
type are dislocations leading to second-order melting
of the Kosterlitz-Thouless type. Our analysis, which
neglects higher harmonics of the spontaneous modu-
lation, will be expected to be valid only at tempera-
tures close to the paramagnetic transition. We expect
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