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Surface photoeffect in small spheres
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A new method is developed to calculate the photoabsorption and photoyield of small

spheres. Numerical results are presented for the case of free-electron spheres for photon
energies below the plasmon energies. It is found that the excitation of electron-hole pairs
due to the presence of the surface results in enhancements in photoabsorption and pho-
toyields that are typically 10—10 relative to the classical results, which only include the
excitation of transverse modes. Furthermore, enhancements of the order 10—10 are
found in the photoyield of small spheres relative to plane surfaces. These results are con-
sistent with recent experimental results on a number of non-free-electron materials.

I. INTRODUCTION

In recent years the spatial variation of the pho-
ton field at a metal surface has been identified as
an important element in photoemission experi-
ments. ' This variation is associated with the ex-
citation of plasmons and electron-hole (e-h) pairs
by p-polarized incident light; the presence of the
surface breaks the symmetry and provides a
momentum source for the excitations. There has
been a parallel theoretical effort ' to the experi-
mental one. This work has progressed from in-

clusion of surface plasmons via an additional boun-

dary condition' to the unified treatment of
plasmon and e-h —pair excitations assuming an in-
finite surface barrier " to the use of a realistic
surface potential. " ' All theoretical work has
been restricted to free-electron metals.

Most studies have focused on plane surfaces,
however, small particles [e.g. (15—50)-A radii] are
of interest in a number of contexts, particularly in

atmospheric physics. ' Recent experiments by
Schmitt-Ott, Schurtenberger, and Siegmann ' (SSS)
have focused attention on the unusual optical prop-
erties of such particles. They find that the photo-
yields at threshold of small particles of Ag, Au,
MoO&, and WO& are much larger (-10—10 ) than
the yields from large radii cylinders of the same
materials. More precisely, at threshold the yields
obey the Fowler-Nordheim relation Y =c (fico 8), —
where %co is the photon energy, 8 the work func-
tion, and c is a constant. SSS find that c for the
sphere is much larger than the c for the large ra-
dius cylinder (which may be thought of as a plane
surface). The wide variety of materials which

show the enhanced yield suggests that the enhance-
ment may be related to e-h —pair excitations rather
than plasmons, and it is our purpose to investigate
this possibility on the basis of a free-electron
model for the sphere. Non-free-electron models
are left for the future. Most theoretical work on
small spheres has concentrated on the static polari-
zability ' or on plasmon excitations. The
present work is the first to focus on the contribu-
tion of e-h —pair excitations to the frequency-
dependent absorption and yield for a sphere.

In a classic work, Mie treated the transverse
modes of the sphere. Ruppin more recently in-
cluded plasmon excitation in the spirit of Melnyk
and Harrison' for a plane surface via an addition-
al boundary condition. We treat e-h —pair excita-
tions on an equal footing with plasmon excitations.
The reason that e-III. —pair excitations are much
more important in the case of a sphere than for a
plane surface (or large radius cylinder) is as fol-
lows. In the absence of e-h —pair excitations a
sphere exhibits a sharp peak in adsorption at a fre-
quency co=co&!V3, where coy is the plasmon fre-
quency. The adsorption peak is due to excitation
of a surface-plasmon-like mode. If e-h —pair exci-
tations are taken into account, the system can
respond off resonance as well as at coyly 3. Thus
there is a large enhancement in the adsorption well
away from .co& relative to the Mie case of trans-
verse modes only. In the case of a plane it is well
known that the surface plasmon at toy/W2 cannot
be excited by incident light, and consequently in-
clusion of e-h pairs has little effect on the adsorp-
tion.

The key element of our treatment is the use of
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the bulk response function and the simulation of
the effects of the surface by a fictitious surface
current as discussed in Sec. IV. It will be demon-
strated that this approach reproduces the quantum
mechanical results of Kliewer and Fuchs ' '" and
of Melnyk and Harrison' for the plane surface
and of Mieio and Ruppin s for the sphere, and this
approach allows inclusion of e-h —pair effects in
the optical absorption and yield for the first time.
A brief description of our work has. already been

reported. '

In Sec. II, we derive formulas for the absorption
and yield and show that they depend primarily on
the self-consistent determination of the electric and
magnetic fields. In Sec. III, we review a number
of previous calculations of the fields for both plane
surfaces and spheres. In Sec. IV, we introduce our
method for calculating the fields in a sphere in-

cluding the effects of e-h —pair production and
demonstrate that the method exactly reproduces
the results of Kliewer and Fuchs ' " for a plane
surface. In Sec. V, the method is applied to the
case of a sphere, formulas for the yield and absorp
tion are given, and it is pointed out that these re-
sults reduce to those of Mie and Ruppin in the
appropriate limits. In Sec. VI, numerical results
are presented and the cases of the sphere and plane
surface are campared.
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and using Eq. (2.3a) and Eq. (2.4) in Eq. (2.2a)
gives

R= — 2Re r r'Ar 0 rr' Ar'*,

where the conductivity tensor 0, is given by

(2.5a)

In Eq. (2.2b), A is the total vector potential in the
Coulombgauge in which the electric potential is
zero and P =—iA'V. Integrating the term involv-

ing P A in (2.2b) by parts yields

M& (e/c——)fd r A(r) j;i(r},

II. THEORY FOR THE ABSORPTION
AND YIELD

In order to calculate the absorption and the
yield, it is necessary to know the rate at which en-

ergy is absorbed by the solid. From a classical
point of view this is simply given by the Poynting
vector,

R, (r) =(c/8ir) Re[ 7 [E(r)XH(r)~]],

X j,,(r) j,.(r')~ .

Use of

E= —(1/c}A=i (co/c}A

in Eq. (2.5a) yields

R =(2/irtc) Im fd r A( r ). j ( r ),

(2.5b)

(2.6)

(2.7)

(2.1}

where 8, is the rate of energy absorption per unit
volume and E,H are the electric and magnetic
fields. It is useful to derive Eq. (2.1) fram quan-
tum mechanics where the rate for absorption by
the entire solid is given by the golden rule,

where j is the total current given by

j (r)=fd r'o(r, r ') E(r ') .

Use of Eq. (2.6) and Maxwell's equations gives

(2.8)

A & =.' ~.(ExH*)+ . —(IEI'+ IHI'}.
LN 2ico Bt

gf (1 ff) IMij I—
~,J

X5(e;+~~—e, ),

where fiez is the photon energy and

(2.2a)

(2.9)

(2.10)

The time average of the second term on the right-
hand side (rhs) of Eq. (2.8) is zero because
E,Ha:cos(tot), and use of Eq. (2.9) in (2.7) yields

8 =fd r Re[(c/8ir) 7'(EXH*)] .
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Therefore the classical expression for R, (r },Eq.
(2.1), is in agreement with the quantum mechanical
one in the sense of Eq. (2.10); i.e., if the quantum
mechanical expression of the absorption per unit
volume is taken as the integral of Eq. (2.10). The
optical absorption is the absorption per incident
photon and is given by

(2.11)

where Io is the incident photon flux.
The reason for identifying an expression that

gives the absorption per unit volume rather than a
total absorption is that we wish to also calculate a
yield which is given by

F=fd r R, (r )P, (r )P~(r )/Io,

where R, is the rate that photons are absorbed at a
point r, P, (r) is the probability an electron pho-
toexcited at point r reaches the surface, and P„(r}
is the probability it escapes. %e are interested in
calculating the yield at threshold so P, represents
the probability that the photoexcited electron
reaches the surface without any inelastic scattering.

Before turning to the calculation of R,(r ), we
will deal with P,P„ in Eq. (2.12). These quanti-
ties, which measure the probability that a photoex-
cited electron actually contributes to the threshold

yield, will differ for a plane surface and a sphere.
The calculation for the case of a plane surface is as
follows. The energy of a photoexcited electron
may be written as

ek ——(A' /2m)(kii+k f), (2.13)

where k~ is the momentum of the electron in a
direction normal to the surface. The electron will
escape from the solid if it has a normal energy
greater than the work function (t), i.e.,

firn~+
(A' /2m)k~ & ez+ P, (2.14)

—d/A,
—(z/A, )I 1+(k~i/kj )2i1/2

I', =e- =e (2.15)

where d is the distance the electron must trave1 to
reach the surface assuming a straight trajectory
and motion in the direction k =(k~~, kj ), A, is the
mean free path, and z is the shortest distance be-
tween the point of photoexcitation and the surface.
Let P(z} be the probability that an electron pho-
toexcited a distance z from the surface escapes
without scattering. Use of Eqs. (2.14} and (2.15}
gives

where eF is the Fermi energy. The probability that
the electron gets to the surface without inelastic
scattering is

kF
(2.16)

whcrc kF is thc Fermi momentum and
N =(4m/3)kr, and

b, =(fur„—P)/eF . (2.17)

Equation (2.16}assumes that the excited electrons
have a homogeneous momentum distribution. %e
are interested in P(z) at threshold, i.e., for 6 «1
in which case

P, (z)P~(z)= „be—(2.18)

k~=k(1 r+r pz)'~2, — (2.19)

where r=r/R, p=k r=cos8~, and R is the
sphere radius. The condition for escape is from

We next discuss the corresponding calculation for
a sphere. Consider the probability of escape
without scattering for an electron photoexcited at r
where the origin is chosen to be the center of the
sphere. The electron moves towards the surface
with a momentum k, and the component of
momentum normal to the surface is

l

Eqs. (2.14) and (2.17),

k~)kFv'1 —b . (2.20)

The distance the electron travels in reaching the
surface is

(2.21)

y=V 1 —b./[1+r (p 1)]'~—(2.22b)

At threshold b, «1 and d(r, p) can be replaced by
its value at p = 1 for p ~ 0 and by its value at
p =—1 for p &0 so that

and the probability an electron photoexcited at r
escapes without scattering is

kF
P(r)=(2n/E) f dp, f dkk e

kFy

(2.22a)
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P, (r)P„(r)~(e ' "' +e '"+"' )(2ir/E) f dk kd

(g/ —2) )1/2 kFy

(R r—)/i—, +e —(R+r)/i.
)

3 (g/r—)2
}6 (2.23)

The reason for the rather singular behavior of Eq.
(2.23) at r =0 is that at threshold only electrons
traveling normal to the sphere can escape and all
electrons originating at r =0 satisfy that condition.

It is now useful to compare the yields of a plane
surface and a sphere at threshold assuming a con-
stant excitation rate R, (r) =R, . The yields are
given by

(2.24)

(2.25)

where a =1/[(c/8n. )EO]. Use of Eq. (2.23) and Io
=(c/8'}EoyrR gives the sphere yield as

F, =aR~ —„b A,(1 e "—/ ) . (2.26}

Thus,

P

F= fd rP,P„.
Io

Use of Eq. (2.18) for P,P and Io (c/8m——)EO S, .
where Eo is the amplitude of the incident light and

S is the surface area of the plane, gives the yield
for the plane

where j and p are the total current and charge
density. In the gauge where the scalar potential is
zero,

E=—(1/c}A, (3.2a)

(3.2b)

where A is the vector potential. From Eq. (3.1)
and (3.2), A satisfies

VXVXA ——
C

'2

A= -- j,
C

(3.3)

4r .j(r)=-
C

A(r}
C

+ — fd'r' V(r, r ') A(r ') .

where it has been assumed that A-A(r)e
The current j and the vector potential A are relat-
ed via the dielectric tensor e =V(r, r ',co) by the
equation

y /lr 4(1 —2R/i,
) (2.27)

(3.4)

and 0& F, /Yz &4 for 0&R/A, & co. For A, »R
the plane surface has the larger yield since photon

absorption takes place over a length A, in the plane

and a length R in'the sphere. The main point is

that if R, is constant the sphere yield cannot be
. more than 4 times the plane yield.

Use of Eq. (3.4) in (3.3) gives
T 2

N7 y 7 yA ——e.A=0,
C

where

V.A= fd r' V(r, r ').A(r ') .

(3.5a)

(3.5b)

III. REVIE% OF CALCULATIONS OF E,H
FOR THE PLANE AND THE SPHERE

(3.1b}

V' E=4mp,

V.H=O

(3.1c)

(3.1d}

We now review calculations of E and H for a
plane and a sphere that (1) treat excitations of
transverse modes only (this yields the Fresnel equa-
tions for a plane and Mie theory for a sphere) and

(2) include plasmons plus transverse modes.
Maxwell s equations may be written in their mi-

croscopic form as (for )M =1)

7 XE+(1/c)H=O, (3.1a)

V' XH —(1/c)E =4m/cj, .

In order to determine E,H in the solid given an
incident photon field, it is necessary to apply the
boundary conditions satisfied by the fields. These
are derived from Eqs. (3.1a) and (3.1b) in the usual

way
' and give

(3.6a)

(3.6b)

E~~ continuous,

H~~ continuous,

where the derivation assumes that E,H and j are
not singular at the boundary. However an addi-
tional boundary condition can be derived from Eq.
(3.lc). Constructing a pill box across the solid sur-

face in the usual way and integrating Eq. (3.1c)
over the volume of the box V~ gives
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f dVV E=4n f dVp.

Letting the width of the pill box shrink yields

f dV()' E=O,

(3.7)

(3.8)
(3.14a)

where

The A vector outside the plane surface represents
the incoming and scattered light

iko. r —ik, r
Ao=eoAo e +e, A, e

as long as the charge density is finite. Use of
Green's theorem gives

f dS E=O, (3 9)
and

r

k=k= N
0 s—

C
(3.14b)

where the integral is over the surface of the pill
box. Equation (3.9) implies

eo'k0=0, es'ks =0 (3.14c)

Ez continuous (3.10}

so the two conditions are not independent. The ex-
citation of plasmons by p-polarized light is a direct
consequence of Eq. (3.1c}and that effect was also
overlooked for many years.

In an infinite mediaV=V(r —r '), and Eq. (3.5a)
can be Fourier transformed to give

kxkxA(k) ——7 (k) A(k)=0,
C

and this condition has been discussed in detail. by
Melnyk and Harrison. ' The boundary condition
Eq. (3.10) has traditionally been overlooked; how-

ever, it has validity equal to that of Eq. (3.6b)
which rests on the assumption that the current j is
well behaved while Eq. (3.10) depends on p being
well behaved. j and p are related by the equation
of continuity

(3.1 1)

+g =GI Ag e +QAI e (3.15a)

where k and q satisfy

k —— e, (k,co) =0,
C

(3.15b)

and

The amplitudes A„Az are determined by the use
of the boundary conditions (3.6}. Thus the Fresnel
equations are derived by assuming that Maxwell's
equation in the semi-infinite solid can be replaced

by those in the bulk and that only transverse exci-
tations need be considered. This latter condition
should be relaxed as discussed by Melnyk and Har-
rison'; it is now well known that p-polarized light
incident on a plane surface can create plasmons.
This effect can be treated' using Eq. (3.14) by as-

suming e includes a longitudinal response as well

as a transverse one. Equation (3.12) then implies
that'

(3.12) ei(q, co) =0, (3.15c)

Aii(r)=@i,Aerie'" ',
with k determined by

(3.13a)

r

e, (0)=0,N
(3.13b)

and

where A(k) is the Fourier transform of A(r ) and
V is the Fourier transform of the bulk dielectric
tensor. The Fresnel equations for a semi-infinite
plane surface are derived by assuming that in the
solid A satisfies Eq. (3.12), where 7 =V, (k,co) and

e, is the transverse dielectric tensor which is usual-

ly taken to have its k =0 value. Equation (3.12}
has the solution

where ei is the longitudinal dielectric function.
The A vector outside the solid is still given by Eq.
(3.14). The presence of the longitudinal wave in

Eq. (3.15a) means that an extra boundary condition
is required to determine A~, and this condition is
given by Eq. (3.10). The creation of plasmons is
only important for photon energies co where Eq.
(3.15c) can be satisfied; however, even for co (co~
Eq. (3.15c}has solutions with complex q.

We next review Mie theory, ' the excitation of
transverse modes in a sphere by an incident photon
beam. The theory makes use of a basis set which
is written in spherical coordinates. The basis vec-
tors are denoted by m; and n; where i represents a
set of quantuin numbers to be defined and m;, n;
satisfy

eI, k=0. (3.13c) Vx VXC—k'C=O, (3.16)
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V.C=O (3.17)
venient way of writing the m, n and 1 is

where C represents any of the m;, n;. In order to
find m, n, it is convenient to define an auxiliary
vector 1 which satisfies

rnid. «r)= &j—&(kr)LYi~.
0 0

l(1+1) .ni, (k, r ) = ji( kr) Yi,rme
0

(3.26a)

VX1=0,
so that

1=V

A condition is now imposed on g,

V'1(+k'/=0,

which implies that 1 satisfies

V V. 1 +k'1 =0.
It is now straightforwards to show that if

(3.18)

(3.19)

(3.20)

(3.21)

[krj, (kr)]'
f XLFbne skr 0

1 i,(k, r) = kj'i'(kr) Y~,r

ji(kr)
XLFbne ~kr 0

where

L= —irX V,

(3.26b)

(3.26c)

(3.26d)

and

m=V X(rg)= —r X 1

=(1/k) V X n,

n=(1/k) V Xm,

(3.22a)

(3.22b)

and the prime denotes differentiation with respect
to kr. In the sphere A~ must be well behaved so
zi(kr) =ji(kr), a spherical Bessel function of the
first kind.

The coefficients a;,b; in Eq. (3.25) are obtained
by solving the boundary value problem; the incom-
ing plane wave is expressed as '

then m, n satisfies Eqs. (3.16) and (3.17). Thus a
solution of Eq. (3.20) yields rn, n. The solution of
(3.20) is

.( 21+1Ai=A;gi' [m&i0(r ko)
1=0 +

(3.23a) —in'„(r, ko)], (3.27)
r

cos
Yi™(8,8)=P& (cos8)X ',„'mp, (3.23b)

where z„ is a spherical Bessel function, Y is an
even or odd real spherical harmonic, and PI is a
Legendre polynomial.

In Mie theory, it is assumed that the dielectric
tensor V iri Eq. (3.14) is the bulk local transverse
dielectric response so that A satisfies Eqs. (3.16)
and (3.17) with

'2

k z = —e, (O,co) .
C

(3.24)

Consequently, if one writes

Aii =g(a;m;+b;n;), (3.25)

where A~ represents the vector potential in the
sphere, then Aii will satisfy the wave equation
(3.16) because m;, n; do, and Az will be transverse
since m;, n; are. Furthermore, m;, n; are expressed
in spherical coordinates so the boundary condi-
tions, Ell, Hll continuous can be applied. A con-

(3.28)

The boundary conditions Ell Hll continuous are
used to determine a;, b;, d;, and e; in terms of Ao.

The optical absorption as a function of co in the
limit koR, k,R && 1 predicted by Mie theory for a
free-electron metal is shown in Fig. 1. There is a
large peak in the absorption at

co&
/v 3 that can be

easily understood from electrostatics. In the
k0~0 limit, the incident electric field, Eoxe
reduces to Eox, a constant field, and the corre-
sponding electric field in the sphere is '

Es ——3EO/(@+2),
where e is the dielectric function at k =0,

2
COp&=a-

oi(e+i/r) '

(3.29)

(3.30)

where ko ——(co/c), and the z& entering (3.27) is a
Bessel function of the first kind while that entering
reflected wave A„ is an outgoing Hankel function;

" i (21+I)
A, =g (dimii, ieinii, ) . —

, I l+1
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where r is a relaxation time. Equations (3.29) and

(3.30) show that E~ peaks at co=co~/~3.
Mie theory for a sphere was extended by Rup-

pin to include longitudinal excitations in the
form of plasmons by noting that in the long-

wavelength limit the vector potential that describes
plasmons satisfies

V V Ap]+q Ap]
——0

V )& Ap] 0

(3.31a)

(3.31b)

co=uz+yq 2 (3.31c}

and y is material dependent. Equations (3.31) are

satisfied bg the 1; defined in Eqs. (3.18)—(3.21),
and thus A~~ can be expanded in the 1; and the
total vector potential in the sphere has the form

Aii +[a;—m—;(r,k)+b; n;(r, k)+c& 1;(r,q)],

(3.37)

where k satisfies Eq. (3.24). The vector potential
outside the sphere has the same form as before, A
=A;+A, with A;,A„given by Eqs. (3.27) and

(3.28). There is now an additional coefficient c;
and so the additional boundary condition, Eq con-

tinuous, must be used.
The optical absorption a for a free-electron

small sphere including plasmon excitations is
determined by Ruppin. The peak at co&/v 3 is

shifted slightly and there are peaks in a. The
peaks result when the excited plasmons have a
wavelength q which satisfy a geometric resonance

condition; i.e., when co, the frequency of the in-

cident light, is such that the plasmon wave vector
given by Eq. (3.31c) satisfies a resonant condition.
These resonances are very similar to those that oc-
cur in a thin film when qiu =no where qi is the
component of the plasmon wave vector perpendic-
ular to the film, a is the thickness of the film and

n is an odd integer.

IV. THEORY OF SURFACE-INDUCED
ABSORPTION

where the plasmon wave vector q is related to ~ by

(4.1)%XVX@—— ~& A= J,
C

where ez is the bulk dielectric tensor and J is a
general current located at the surface of the solid.
The role of this fictitious surface current is to
simulate the scattering of electrons from the sur-

face. J and A will be determined by the boundary

conditions E~~, H~~, and E& continuous. It will be
shown that the ansatz, Eq. (4.1), exactly reproduces
the quantum mechanical results of Kliewer and

Fuchs ' '" for the case of a plane surface if Vii is
taken to be the Lindhard dielectric tensor. If the
longitudinal response function is the hydrodynamic

one rather than that of Lindhard the results of
Melnyk and Harrison' are obtained. For a sphere,
use of the hydrodynamic response in Eq. (4.1) will

be shown to yield the results of Ruppin, and Mie
theory follows if the longitudinal response is

neglected altogether. Thus the ansatz, Eq. (4.1), is

capable of reproducing a large number of previous

results despite the absence of a fundamental justifi-
cation.

There are actually two different ways that the

ansatz of Eq. (4.1}can be interpreted. The first is

to let J be a general current confined to the sur-

face of the solid; J will have two components
parallel to the surface of the solid and one normal

to the surface. The second possibility is to restrict
J to being a surface current without a component
normal to the surface. In this case, it would ap-

pear that the three boundary conditions will over-

determine A; however, a solution of

then due to excitation of transverse modes,
plasmons, and in the case of non-free-electron met-
als, interband transitions, but surface-induced
e-k —pair production is neglected. This effect has
been discussed in detail for the case of a plane sur-

face and a free-electron solid ' and we now

study the case of a free-electron sphere. To this
end we make the ansatz that the vector potential of
a finite solid is determined by that of an infinite
solid with a current located at the actual surface.
That is, the vmtor potential of the solid satisfies

The theories we have reviewed thus far assume

that the vector potential in the solid is determined

by the vector potential in an infinite media. Thus
the dielectric tensor e is replaced by that appropri-
ate to the bulk and surface effects are included

only via the boundary conditions. Absorption is

(4.2)%XVX@——
C

can be added to the Geld A obtained from Eq.
(4.1). In particular, we add the solution for the

transverse field A, obtained from Eq. (4.2) which

satisfies
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VX VXA, —k'A, =o, (4.3)

J =5(z)(j„x+j„y+j,z), (4.4)

where j„,jz,j, are functions of x and y to be deter-
mined from the boundary conditions and hence
from the form of the incident light which we write

where k is given by Eq. (3.15b}.
The two different forms of the ansatz give ident-

ical results for a number of different cases; they
both reproduce the results of Kliewer and
Fuchs6'7" for the plane surface and those of Rup-
pin and Mie as discussed above. The results are
not identical for the case of a sphere when e-h ex-
citations are taken into account. However, the nu-

merical values for the adsorption predicted by the
two treatments are in remarkably close agreement
as will be discussed in Sec. VI.

In order to illustrate the use of the ansatz (in
both forms), we apply it to the case of a semi-

infinite solid. We begin by using Eq. (4.1) to
determine the vector potential for the case of a
plane wave incident on the plane surface of a free-

electron metal and show that Eq. (4.1) gives pre-
cisely the results of Kliewer and Fuchs ' "who

carried out a quantum mechanical treatment. It is
also significant that the theory of Kliewer and
Fuchs reproduces that of Melnyk and Harrison'
in the limit of a hydrodynamic longitudinal

response function, i.e., small wave vectors and no
e-h —pair excitations. For the case of a plane sur-
face located at z =0 the general form for the ficti-
tious current J is

—A,"+ikA,
' —k+„=y„5(z),

ikA„'+k A, k—pB, =y, 5(z),
—Ay"+k2Ay k—pB =y 5(z),

where the prime denotes differentiation with
respect to z and

B;(z)= g f dz'e1(k, z —z')

(4.9a)

(4.9b)

(4.9c)

&&AJ(z'), i =x,z (4.10a)

(4.10b)

d ' k'
A„(z)= P e'~' y

q g

1 1—y, kp
qg

(4.11a)

A, (z) =f e'~' —y„kp +
qg koq eI

L

I 2 p2
+g

q g koq2e~

(4.11b)

B~(z)=f dz'e~(k, z —z')A~(z'),

where eij(k,z} is the Fourier transform (with
respect to x) of the bulk dielectric tensor. Equa-
tion (4.9a} can be Fourier transformed with respect
to z and solved for A„Az to obtain [Appendix A,
Eq. (A5)] the following:

i( ko r —cot)
Ap

=Crape

(4.5) where

kp ——(co/c)' . (4.6)

where e and ko lie in the xz plane for the case of p
polarization and

q2 I 2+p2

g =e' —kpei(e),

ei ——ei(q},

(4.11c)

(4.11d)

(4.11e)

The fact that ko lies in the xz plane as well as the
boundary conditions imply that the bulk vector po-
tential which satisfies Eq. (4.1) must have the form

and e„e~ are the transverse and longitudinal bulk
dielectric functions. The wave vector in vacuum
has the form, Eq. (A7),

A(r )=A(z)e' (4.7)

and the fictitious current, Eq. (4.4), must be of the
form

(4.8)

where y; is a constant. Our treatment now follows
the formalism of Ref. 11 rather closely. Equa-
tion (4.1) written in rectangular coordinates gives

lpOZ —lpOZ—ppAp(e —pe )
A„' '(z)=

ko

kAp(e '+pe ' }
A, '(z)=

kp

where

po=ko-k2 —2 2

(4.12a)

(4.12b)

(4.12c)
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Equations (4.12) follow from the equations for the
vector potential outside the solid and from Eq.
(4.5). Use of the boundary conditions and the ap-
proximation e, (q) =e,(0) yields the results of Eq.
(A16),

is now added to A„(z),A, (z) given by Eqs. (4.11a)
and (4.11b) [assuming e, (q) =e, (0)]. Use of the
three boundary conditions to match A to the vacu-
um solution Eqs. (4.12a) and (4.12b) yields the re-
sult A;"'=0 and Eq. (4.13b) is again obtained.

Xy Xs=o

2pokoAO

(4.13a}

V. ABSORPTION BY A SPHERICAL
METAL PARTICLE

i ,—(p—o+p&)+k I 2
——1

dp 1 1

2m g eI

(4.13b)

where

p, =koe, (0)—k (4.13c)

Pt 1 ip ~
(4.14a)

(4.14b}

These results agree exactly with those of Kliewer
and Fuchs ' "and demonstrate that the ansatz,
Eq. (4.1), is exact within the approximation of
specular scattering for the case of a plane surface.

We next use the form of the ansatz in which the
current J has no component normal to the surface
This means j,=0 in Eq. (4.4) and therefore y, =0
in Eqs. (4.8)—(4.11). However, the particular solu-

tion of Eq. (4.3} given by

The case of a sphere is now treated using the an-
satz of Eq. (4.1). The results include the effects of
e-h —pair excitations. It will be shown that if this
effect is neglected by approximating the longitudi-
nal dielectric function by the hydrodynamic one,
then the results of Ruppin are obtained, and if
longitudinal response is neglected altogether, then
the results of Mie theory follow. It will also be
pointed out that some recent results of Dasgupta
and Fuchs' may be obtained by altering the form
of the fictitious current J entering Eq. (4.1).

According to the ansatz of Eq. (4.1), a fictitious
surface current is introduced at the surface of the
sphere of radius R which separates two regions,
each of which is filled by the bulk material and
described by the bulk dielectric tensor. Solutions
to Eq. (4.1} for r &R are taken to be equal to the
vector potential inside the metal particle of the ac-
tual problem.

It is convenient to expand the solutions of Eq.
(4.1) in terms of the functions rn, n, and 1 intro-
duced in Eqs. (3.26),

A(r)= (i/ko)g— dk[ai(k)m», (k, r)+bi(k)n», (k, r)+ci(k) 1ii, (k, r)],i (2l+1)
!=1 + (5.1)

(5.2)

where ko ——co/c, and the specific choices of m = 1 and even or odd spherical harmonics for the m, n, and 1

are determined by the fact that the incident light is linearly polarized, Eq. (3.27). The fields in the metal
particle can be excited over a range of wave vectors, k, due to the dispersion of the transverse and longitudi-
nal modes. The absorption is given by

u=(1/ir) I dQr Re(E)&H~),

where E and H are determined from A by Eq. (3.2). Therefore we need to solve for the coefficients ai(k),
bi(k), and ci(k) in (5.1). In terms of the model problem, these are determined by the coupling to the ficti-
tious current in (4.1}. In the case that we use the general form of the fictitious current, it can be written in
terms of a general expansion in vector spherical harmonics on the surface r =R:

—i " .I 2l+1J = 5(r —R)gi (airYeiI+PiLY, i&+y&r XLY,&i),ko, , l (1+1) (5.3)

where a, P, and y are constants. This expression
for the current is appropriate for the first form of
the ansatz. The constants are coupling strengths
for the current and they can be related to the field (5.4a)

coefficients a, b, and c by an extremely useful

theorem which we derive in Appendix 8 and we

state here as

Vs rn(k, r) =e, (k)m(k, r),
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Vs n(k, r) =e,(k)n(k, r ),
Vs 1(k,r) =el(k) 1(k, r) .

(5.4b)

(5.4c)

These relations have many applications for the
electrodynamics of particles. Using (5.1) and (5.3)
in (4.1), and applying (5.4), we find in Appendix C:

From H~~ continuous one obtains

i fdk gl(kj)l(kR) —el/i(kpR ) =jl(kpR )
k

k0

(5.6c)
8 jl(kR)

al(k) =i (k—R) Pi k' —k0'e,

bl(k)= —tiyl[kRj l(kR)]'+aljl(kR) I

8

C

kZ
X

k —k0e,

(s.sa)

(5.5b)

f dk j ai(k) f kRjl(kR)]'}—dl [kpRhi(kpR )]'

= [koRj ((koR )]', (5.6d)

and from El continuous,

c,(k)= [l}il(i+1)j,(kR)
C

+al [kRj i (kR)] }
R

k pel
(5.5c)

fdk [ai{k)jl(kR)] di&i{koR—) =jl{koR) (5.6a)

kRjl(kR)
i fdk bl(k)

jl(kR)
+cl(k)

el [koR&l(—koR)]'1

k0R

[koRji(kpR)]', (5.6b)
1

ko~

The coupling constants a, P, and y for the
model problem can be determined by applying the
boundary conditions E~~, H~~, and E& continuous at
the surface of the particle between the fields of the
actual problem. For the actual problem, in addi-
tion to the excited field (5.1) within the particle
and the incoming field {3.27) outside of the parti-
cle, there will be a reflected field outside the parti-
cle given by Eq. (3.28). The boundary conditions
are now applied to Eq. (3.27) (with A; =1), Eq.
(3.28), and Eq. (5.1). One obtains from E~~ con-
tinuous the conditions

i f dk bl(k)
+ jl(kR)+cl(k)kjl'(kR)

l(l+1)
~ (k R) l(l+1) .

(k R)0 k& JI 0
0 0

(5.6e)

Here hl is the Hankel function of the first kind.
Equations (5.5) and (5.6) yield equations for the
coupling constants a,P, y, and thus the particle
fields by (5.1), (3.27), and (3.28). However, for the
case of optical excitation of small metal particles,
we can approximate e(k, co) by its local form

(e0,co). It is necessary to operate in the x-ray re-
gion in order to produce important structure from
the transverse dispersion for the particle sizes con-
sidered here. Using a local transverse dielectric
function, the contributions to the integrals over
wave vector in (5.1) from the denominators involv-
ing e, in (S.sa) and (S.sb) can be done analytically
and this simplifies the equations for the coupling
constants. In this approximation A(r ) can also be
explicitly obtained by the use of Eqs. (S.5) in Eq.
(S.l):

PlktR~!(kiR)ml1 {kt r )+ Il Vl[k Rhl(ktR )] +alhl{k R )}n11 (k r)
i '(2l +1)
l /+1

—[1/(vriko)] f dk[iyll(1+1)Ji(kR)+aikRji (kR)]1(k, r)
ei(k) el(o)
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C
KEI =—

R
(I + 1)2}1

2
41rhl(kpR ) I ——bq

(5.8a)

The contour techniques used in the integrals over k
in Eqs. (5.1) and (5.6) and the resolution of ambi-
guities at r =R that arise from the boundary con-
ditions, Eq. (5.6},are illustrated in Appendix D.
Integrals over the longitudinal dielectric function
still remain; however, these can be evaluated nu-

merically. The solutions for the coupling constants
are found by straightforward, but lengthy, algebra
to be given by

gl" (-i+1}gl"'
g(3) (i 1)g(2)

(I + 1)(g(1)g(3) g(2)g(2))

(i+1)g(2) g(3)

I l
——hl(kpR)fk, Rjl(k, R)]'

—jl(k,R)[kpRhl(kpR )]',
gl"=R I dq[el '(q) —1]fl'(qR),

fl" '(p}= [jl(p }]'

fl"'(P}=Jl(P}PJl i(P}f—l (P}

(5.8d)

(5.8e)

(5.8f}

(5.8g)

(5.8}1)

C

R 4~k, Rk0Rr, ' (5.8b) = [Pjl —1(P}l

and k, =k()e, (p)) to get

(5.8i)

c 1
Vl R il

where

[1—(i+ l)2}1]
r

4m.hl(kpR} 1 ——bq
2

(5.8c} fl"'(p}=jl(p}pjl 1(p}-
The expressions for al, Pl, and yl are now used

with (5.1) to evaluate the absorption as given by
(5.2). The necessary angular integrals are given in

Appendix E, and we find

k
™l~(I jl«R)I[k(Rjl«R)]'j* —

I
B(!,'Jl'(k(R)[k(RJI (k(R)j'(k('ik()

2(21 + 1)

l=i

where

Al =42rk, Rhl(k(R )—pl,
R
c

dq Cl(q) Bl'k,'Rjl'(ktR) (5.9a)

(5 9b)

R
Bl =i4nIiyl[k, Rh.—l(k, R) 'j+a lh( l,kR)j,c

Cl(q) = —
2 [el (q) el (0)]—[—iyll (1+1j)~(qR)+alqRj/ (qR)] .

8 g y R

0

(5.9c)

(5.9d)

The only approximation in (5.9) within our surface
current ansatz is the neglect of dispersion for the
transverse dielectric constant. The expressions fur-
ther simplify greatly if retardation can also be
neglected. For particles with R & 50 A excited at
optical frequencies, this is certainly the case be-
cause kpR k,R «1. In this regime the Bessel
functions of argument kpR and k,R can be ex-
panded to lowest order. %hen' this is done, the
first term in the large parentheses of (5.9a) is
found to be real and thus the pl coupling constant
of the surface current (5.3) does not contribute to
the absorption in this limit. The second and third
terms then combine to give a very simple expres-

sion

a= —2 g (k()R ) '[(2/ —1)!!]
I=&

(5.10)

where 61 is given by (5.8e). For the very small
spheres considered in this limit, the I =1 term
dominates.

In the limit the e-h —pair excitations are neglect-
ed but plasmon excitation is allowed by using a
plasmon pole dielectric function, it is easily shown
(Appendix F) that
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I+1
2 21+1

1 —1
~(0)

A((r}= —(ilko) g [a) m) (,(k„r)i (2l + 1)
l (1 + 1)

poi( ((po} {2—l +1)J((po}
X

poji (po)
(5.11)

+b,"'n„,(k„r)],

(5.14)
The absorption obtained by use of Eq. (5.11) in Eq.
(5.8) can be shown to be equal to that calculated
from the theory of Ruppin.

There is an aspect of this theory that is not en-

tirely satisfactory; there are terms that arise from
the boundary conditions (5.6) of the form

j((kR )
a( '(k)= —i(kR) PI

'

c k —koe
(5.15a)

where k, satisfies (3.15b). The quantities
a)' ', b( ', c( ' are given by Eq. (5.5) with a( ——0:

00 1
lim aI I dk[krj( ((kr)kRj( )(kR)]
r~R e( k

=(zl I dk[kRjI )(kR)] —1
0 eI(k

b) '(k) =—i[kRj((kR)]' 2 yI ',
c k —koe,

c( '(k)= -il(l+1)j((kR)
2 yI '.

c koe)

(5.15b)

+ lim al I "k «jI )(«)kR-jl 1(kR} .—
r~Z

(5.12)

The precise reason this type of term appears in the
theory is discussed at the beginning of Appendix
D. In the case I =1, the second integral on the rhs
of Eq. (5.12) is zero for r & R and infinite for
r =R. For obvious reasons, we have set the in-
tegral equal to zero in deriving Eq. (5.9). The
singular behavior can be traced directly to the
charge density associated with the radial current
density; i.e., p= —V j includes a term proportion-
al to ale/Br5(r —R). The second form of the an-
satz avoids this problem, although as mentioned
earlier both forms yield numerical results that are
very similar.

%e next calculate the adsorption using the
second form of the ansatz; the fictitious surface
current has no component normal to the surface so
that Eq. (5.3) is replaced by

aI(k)~ aI '(k),

b,")(k)+gk —k, )b,'",
c((k)~cI '(k) .

(5.17a)

(5.17b)

(5.17c)

The boundary conditions together with Eq. (5.15)
yield expressions for PI ', yI ', and bI"' The quan-.
tity PI

' is equal to P( of Eq. (5.8b), and

(5.15c)

Use of {5.15a) in (5.1) results in a contribution to
Ao proportional to PI 'ml)0(k„r), exactly the same
form as the first term in Eq. (5.14). Consequently,
aI" merely serves to redefine P~ ', and one set

aI ——0.(1)

This in not true for bI"' because use of (5.15b) in
(5.1) yields two terms, one proportional to

yI 'nI), (k„r) and a second that comes from the
pole at k =0.

The boundary conditions are given by Eq. (5.6)
with the replacements

~Jo= ( —l /ko )5(r —R )

X X l l 1
(A rY0)(+y( rXLY„I) .

i (21+1) (()) (())

(, l(l+1

{5.13)

A,I =l (l +1)gl—
l +1+le,

R),
1 —E'g

c 1 I

8R hl(koR) kI
' (5.18a)

(5.18b)

The field Ao that satisfies Eq. (4.1) (with J re-

placed by Jo} is given by Eq. (5.1) with ba,()c(
now denoted by a~' ', b~ ', ch '. To this field is ad-
ded a solution of Eq. (4.2),

QI =R I dqjI(qR) ——,(5.18c)
ce

o ~I(q) e,

RI RJ dq qR ~j('(q—R—~)

Xi((qR '} 1 1

eg(q) e,
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g(&) (l + 1)g( )

l 1+— 1 ——
2 2l+1 e,

(5.19b)

Also,

bi
"= n——[.k, Rh((k, R )]'y'(",

C

where

(5.20a)

where E,
—=e&(0), and for numerical purposes (see

Appendix D) it is best to express Q( and R( in
terms of Qc" and Q(

' of Eq. (S.gg):
r

(5.19a)

The l =1 term agrees with the result of Ref. 17.
The threshold yield for a sphere is given by Eq.

(2.12) with P,P given by Eq. (2.23) and R, given
by Eq. (2.1) with E,H determined from the vector
potential A in the sphere. The yield determined in
this way is the threshold yield because P,P„ofEq.
(2.23) are derived by assuming the photon energy is
only a little larger than the work function. In the
case of a sphere Eq. (2.23) gives P,P„cc(1Ir) due
to the semiclassical treatment of the photoexcited
electron. In a proper quantum-mechanical treat-
ment the electron would be described by a wave
packet. %e simply assume now in a small sphere
the electron is uniformly distributed and so P,P„
is approximated by its average over the sphere,

P, (r)P„(r)—(3A IR )[1—exp( —2R /A, )], (5.23)

where A, is the electron mean free path. Thus the
yield is given by

(5.20b)
Y=(3A, /R )[1—exp( —2R/A, )]a, (5.24)

where

5, = kj &(k,R ) hi(k, R ) ——1
le . 1

2 E,
(5.20c)

The adsorption is obtained from Eq (S.9a). with Ai
given by (5.9b) and Bi is replaced by B&' ', where

where u is the absorption of the sphere. This pro-
cedure probably underestimates the yield since
R, (r) is largest in the center of the sphere where
P, (r)P (r) is largest (if calculated quantum
mechanically).

The transverse dielectric function e, that appears
in the various formulas in this section is taken to
be

Bi' ' 4ni [k,Rh——c(kcR—)]'(iyi +iy( '),
C

(5.218)

2

e, (q, co)=r-, (0,co)= 1— Q)p

co(co+i/r) ' (5.25)

and Ci is replaced by Ci ', where

kp c

Xl(l+1)j((qR)i' ' . (5.21b)

where ~ is a phenomenlogical relaxation time and
ei(q, co) is the Lindhard dielectric function as
modified by Mermin to take account of the relax-
ation time ~. For q =0, ei ——e„where e, is given
by Eq. (5.25).

In the limit kpR, k,R g&1, the adsorption is given
by

2 (l+1)(21+1) (koR)

[(2l —1)))l'

X1m[a

+lg(Rg'(e, —[e, i
2)] .

(5.22)

VI. NUMERICAL RESULTS AND DISCUSSION

In Fig. 1, we present results for the adsorption
of a sphere as a function of the frequency of the
incident light. The curves labeled aM;„a&, and a»
refer to the adsorption calculated by Mie theory,
by Eq. (5.10) and Eq. (5.22), respectively. Thus a&

refers to the form of the ansatz that includes a
component of the fictitious current that is normal
to the surface whereas an does not. The calcula-
tions were carried out for a sphere radius of 25 A,
an electron density corresponding to Na (r, =4),
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FIG. 1. Plot of the absorption of a sphere with ra-
D

dius R =25 A, electron density r, =4, and scattering
time co~~=10 . aM;, is the adsorption given by Mie
theory and includes only transverse mode excitation. a&

and an include e-h excitations as well as plasmons and
transverse modes and are calculated from two different
forms of the ansatz. They are given by Eqs, (5.10) and

(5.22), respectively.

It might appear that the enhanced yields of SSS
are simply due to such an effect which occurs
when e(co, )+2=0. In a free-electron material, this
condition yields co, =co&/v 3, while in the materials
used by SSS co, can be determined from the mea-
sured values of e(co). It is found that the threshold
energies observed by SSS do not correspond to co„
and consequently surface-plasmon excitation can-
not explain their results.

The results for u~ and a~~ shown in Fig. 1 are re-
markably similar, which is encouraging in that it
suggests that the results are somewhat insensitive
to the particular ansatz used for the fictitious
current. It is clear from the curves that there is a
large enhancement with respect to the Mie result
and this must be due to e-h —pair excitation. The
enhancement is least near co~/v 3 where the ad-
sorption is dominated by the transverse modes. aq
has a rather peculiar behavior co&', for this reason
and owing to the difficulty discussed immediately
after Eq. (5.12), we favor the adsorption given by

&Ir
In Fig. 2, the yield of a sphere is compared to

180

I60—

and coze=10 . The adsorption shows no dramatic
dependence on R (for koR «1) or on r, The.
choice co&~——10 is appropriate to weak electron
scattering and has been used extensively by
Kliewer. It has been pointed out that within the
local-field approximation the effect of e-h pairs
can be incorporated into Mie theory in an approxi-
mate way by the use of a relaxation time r=R/U~
where vz is the Fermi velocity. In the case of Fig.
1, this would give cuz~-20. However, the local-
field approximation is clearly invalid if nonlocal
effects are taken into account, and thus while the
scheme of simulating e-h —pair excitation by
means of a scattering time ~=A/vF is quite physi-
cally appealing, it has yet to be justified in a
rigorous way.

Mie theory includes only transverse modes, and
the inclusion of longitudinal modes by the theory
of Ruppin yields essentially no change from Mie
theory for co & co& because the plasmons have ener-
gies above co& and are only weakly excited. The
plasmon excitation is due to a nonzero value of r
The peak in the adsorption at co~/v 3 is due to the
excitation of surface plasmon modes of the sphere.

I40

I20

IOO

(0
j)

(0)
S p

—x—=Y jYS p

80—

40

20

~X
X
I

0, I 0.3 0.5 0.7 0.9

FIG. 2. Plot of the ratio of the yield of a sphere to
that of a plane surface. The parameters are as in Fig. 1;
also, the electron mean free path A, =21.2 A, and for the
plane the angle of incidence is 9=45'. Y,' '/Y~ ' is the
ratio when only transverse excitations are considered
and Y, /F~ includes e-III pairs and plasmons as well.
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that of a plane surface. The sphere yield is given

by Eq. (5.24) in conjunction with a» while the
yield of a plane surface is obtained from the theory
of Kliewer. SSS compared the yield of a sphere
wjth that of a large-radius wire. There have not
been any calculations of the yield for a wire so we

approximate a large radius wire by a plane surface
with light incident at 45' (it is not possible to aver-

age the yield of a plane over all angles because
Kliewer's theory is invalid for large angles of in-
cidence). Two curves are presented in Fig. 2;
Y,

' '/Yz 'is the ratio of sphere to plane yields in
the case that only transverse excitations are con-
sidered while Y, /Y~ includes e-h pairs (as well as
plasmons which have a negligible effect for
co &co&}. Because SSS used unpolarized light, we
use a yield for the plane that is an average of the
yields for s- and p-polarized light. Again we have
used R =25 A, r, =4, co&~——10, and A, =21.2 A.
The calculations are relatively insensitive to all the
parameters except ~zv., as will be discussed. The
enhanced values of Y, /Y~ compared to Y,

' '/Y~ '

indicate that e-h —pair excitation enhances the
yield of a sphere far more than they enhance the
yield of a plane surface. This is directly related to
the ability of the sphere to respond off resonance,
i.e., away from co~/~3, when e-h —pair excitations
are taken into account combined with the fact that
light cannot excite surface plasmons in the case of
a plane surface.

0
In Fig. 3, we plot a» and aM;, for R =25 A,

r, =4, and co&~
——10, 10, and 10 . It is seen that

aM;, ~ (co~r) ' because the absorption is due to
transverse modes only. a» includes e-h —pair exci-
tations and so does not scale with (co~r} ' In Fig. .
4 we plot Y~

' and Y~, the yields for a plane sur-
face not including and including e-h —pair excita-
tions. The parameters chosen are again r, =4,
A, =21.2 A, and cope= IO, 10, and 10 . Yp

' is the
yield due to transverse modes only and is propor-
tional to (uzi) while Yz includes e-h —pair exci-
tations. Just as in the case of the sphere, the in-

crease in the yield due to e-h pairs does not scale
with (coze) '. The enhancements in the yields in
both cases becomes quite small for

cozen & 10 . This
is relevant because an estimate of co&~ for the alkali
metals as obtained from the plasmon broadening
gives coze & 10 and the effects we are concerned
with would be small at least in the case for which
our calculations should really apply since they
make use of the free electron dielectric function.
However, there are two arguments that counter
such a conclusion: (i) The plasmon damping is
primarily due to interband transitions which are

Io-'-

lo

IO

QJ p7= IO~

IO

p7 = IO

IO
O. I 0.5 0.5 0.7 0.9

OJp

FIG. 3. Plot of aM;„an (as in Fig. 1) for 8 =25 A,
r, =4, and copy=10, 10, and 103.

lo

4Jp7= 10

(0)= Yp

~ ~ e ~ = '(p

~ ~ ~ ~ ~ ~ ~ ~

4J p7= IQ2

IO

~ ~ ~ ~

IO-' I

O. I

I

0.5
I

0.7
l

0.9

(dp

FIG. 4. Plot of Fp
' and Yp (as in Fig. 2) for a

plane surface with r, =4, A, =21 2 A and Q)p~ 10 10,
and 10 .

not explicitly included in the dielectric function we

used; i.e., there are no interband e-h excitations.
Thus, it is inconsistent to use a value of

cozen
es-

timated from plasmon dampling without including
interband adsorption in calculating the optical
properties. (ii) The current theory, which
represents an extension of the semiclassical infinite
barrier (SCIB) approximation to the case of a
sphere, has a number of strong points; it makes use
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of the bulk dielectric function, it treats transverse
and longitudinal modes on an equal footing, and
the physics is fairly transparent. It has the draw-
back that it may not be as accurate as one would
wish. There is strong evidence that the theory
greatly underestimates the importance of the e-h

excitations relative to transverse ones in the optical
adsorption. Calculations by Feibelman'
predict a much larger contribution to the absorp-
tion due to e-h pairs than does the Kliewer theory
(SCIB) and there is experimental evidence ' favor-

ing Feibelman. A large e-h —pair contribution to
the optical absorption relative to the transverse
mode contribution is obviously favorable to the ar-

gument that such effects are important in spheres,
and by examining the ratio of Yz to Yz, both cal-
culated in the SCIB approximation rather than just
the magnitude of F„we may be eliminating some
of the error that arises from the SCIB.

In conclusion, we have extended the calculation
of the surface photoelectron effect to the case of a
sphere through the use of an ansatz that simulates
boundary scattering by a fictitious current. We
have presented numerical results for a free-electron
sphere with weak scattering and we find that effect
of e-h —pair excitations is much larger for a sphere
than for a plane surface. While the results are not
directly applicable to the nonfree-electron materials
used by SSS, they are certainly suggestive.

Note added in proof. Very recently Apell and
I.jungbert (unpublished) developed a method for
the sphere that allows inclusion of e-h excitations
without requiring the SCIB approximation; howev-

er, no numerical results are presented.

APPENMX A

We solve for the vector potential A assuming the
ansatz equation (4.1) in the case of a plane surface.
Combining Eqs. (4.7a) and (4.7b) yields

ikk~~„+k&P,' = [iky„5(z)+y—,5'(z)], (Al)

—k [pA„(p) —kA, (p) ]

8 (q)=, [p'e, (q)+k'~i(q)],

e (q)= [k e, (q)+p~et(q)],

(Asa)

e' (q) =e' (q)=, [&t(q) ei—(q) ] (A5c)

Use of (AS) in (A2) and (A4) and solving for
A„,A, gives

A, (p)=y„[R' '(p) —(klko) S' '(p)]

—y, k [R"'(p) +k S' "(p)],
A, (p)= —y„k[R'"(p)+k S'"(p)]

+y, [k R' '(p) —ko S' '(p)],

where

R "(p}=p'~Iq'[q' —koei(q) l]

S"(p)=p'i'[q'et(q)] .

(A6a)

(A6c)

(A6d)

The magnetic field is Hz(z}=A„' ikA, an—d use of
(A6a) and (A6b) gives the Fourier transform of
Hy(z}:

H, (p»}=t[y.p y.k]ilq' k—oui(q)l . —(A7)

In order to apply the boundary conditions we re-
quire A„(z~ 0),A, (z —+ 0), where Az(z), A&(z) are

A„(,) =y„[R(')(z}—

(krak,

)'S("(z)]

—y, k[R"'(z)—k() S'"(z)],

y„k[R "(z)—k S'"(z)]

—k() [e (q)A„(p) +e (q)A, (p) ]=y, .

The elements of the dielectric tensor are related to
the transverse and longitudinal dielectric function

~, and ~I by"

where 8( is defined in Eq. (4.8a).
Introducing the Fourier transforms of e and A

gives where

+y [k'R' '(z) —k() S' '(z)] (A8b)

ikk B„()+k pB,
'

=ikk', [e (q)A„(p)+e„,(q)A, (p)]

+ik()p[e (q)A„(p)+e (q)A, (p)],

(l)(z) P eiPzR (i)(p)
00

277

S(i)(z} P &iPzS(i)(p)
2'1T

(A8d)

where

=p +~ =—1k'~ —fpfg

The Fourier transform of Eq. (4.7b) gives

(A3)

In the limit z~ 0, R "(z)~0 since R') is an odd
function of p. However, S("(z}~0 because
S'"(p)~p

' for large p. This is dealt with by
writing
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&"'(z~ 0)= f (p lq')(ei ' —1)

dp+ f (plq')e's'

q, =koer(0) .2 2

Similarly from (A7),

H„(z~ 0)= ——,[1„—(k/p, )1;] .

(A14)

(A15)

By replacing e, (q) by e, (0) in (A6c) one obtains

R' '(z —+0)=—,q, ( k—'+ip, '}, (Al 1)

=i/2, (A9)

where 5~ 0+. Similarly,

S'o'(z —+0)= f (1/q )(ei
' 1)+—(1/2k),

(A10)

S' '(z 0)= f (p /q )(ei ' 1)—(—1/2k) .
2%

From (4.10a) and (4.10b) the fields outside the
solid satisfy

A„(z~ 0)= —(po/ko)Ao(1 p),—

A& (z~ 0)=(klko)Ao( 1+p)

Hy(z~ 0)= ikoA—o(1+p) .

(A16)

(A17)

(A18)

Use of the boundary conditions A, H~ continu-
oUs now gives

R' '(z~ 0)= —,q, (k+ip, ),
where

2—2 2
P~ =6

(A12)

(A13)

I

y, =o,
pAo+(i /2ko)y„= —Ao .

Use of A„continuous and (A19) gives

(A19)

(A20)

pAo }'.«—o/po} 2« —ipr} —
~ «lko) —«lko}, ——1 =Ao2 dP 1

2K q
(A21)

The result (A19) ensures that the final expressions for A„,A, agree with those of Ref. 11 [compare (A6a) and
(A6b} with 8.12 of Ref. 11j.

APPENDIX 8

The theorem expressed by (5Aa), (5.4b), and (5.4c) is proved by Fourier transforming the tensor product
and then using an integral representation of the spherical vector functions. Here we demonstrate (5.4a), and
the others follow similarly. The expression for m(k, r ) given in (3.26a) can be written as '

rn(k, r}=A f dQk(k X r)e'"' Y(Qk), (81

where A =i /4m. and subscripts have been dropped for simplicity. Then using the fact that m is purely
transverse, we write

d k'
Vs(r) m(k, r)= .f e'" 'V, (k') m(k, k'),

(2m)

where. m(k, k') is the Fourier transform of m(k, r).
With the use of (81), the right-hand side of (82) yields

d k'
A f eik' r f d3rre ik'. r'V—(k~). f dQ (kXrr)eik r'Y(Q )

(2n. )

(82)

=iA f d k'e'"'' f dQkY(Qk)Vi(k') (k X V k.)5(k ' —k) .

Now integrate by parts to get

d k'
A f e'""f d'r'e '""'e (k') f dQ„(kXr')e'"' Y(Qk)

(2m )

iA f dQk Y—(Qk)V, (k).(kX V
k )e '"''

=A f dQk Y(Qk)V (k).(k X r )e' "'
=V(k).m(k, r) . (83)



3064 DAVID R. PENN AND R. W. RENDELL 26

APPENDIX C

Equation (5.5) is derived. Use of (5.1), (5.3), and (5.4) in (4.1) gives

$ f dk[(k k—oe, )(a;m;+b;n;) k—otic 1,]= 5(r —R) $(a,yr+. pLY, +yr&&LY),
C

(Cl)

where i stands for an appropriate set of quantum numbers. Taking the divergence of both sides of (Cl) and
using the fact that P' rn = V' n =0 gives

2 4m 1 8 5(r —R)kog dkk eicj (kr)Y;= g a;—z r5(r R-)Y;—iy—i(i+1) Yc,. ' r2 r

Equation (C2} yields

c;=— [a;kRj (kR)+iy;(i+1)j;(kR)] .8Rc

(C2)

(C3)

Use of Eq. (3.26) in (Cl) and a comparison of the terms proportional to LY; gives

i f—dk(k2 —k02E, )a;j;(kr)= 5(r —R)P;,
C

which gives

a;=i8 p; k' —ko

Use of (C5) in (Cl) yields

$ f dk[(k —karat)b n —kamic 1;]= '5(r —R)$(a;Yr+y r)&LY ) .
C

Taking the curl of both sides of (C6) gives

4m 5(r —R)- 1 8
i $ f—dkk(k koc, )bj;(k—r)LY;= $ ia; — LY; —y;

— r5(r —R)LY;

(C5)

(C6)

Equation (C7) yields

b;= —
2 Ia;j;(kr)+iy;[kRj;(kR)]'[ .8 kR

C k kOEt

(C7)

(C8)

APPENDIX D

The use of (5.5) in (5.1) and then application of
the boundary conditions on the surface of the
sphere yield a number of integrals over wave vec-
tors that involve the dielectric functions and prod-
ucts of Bessel functions. We point out some pit-
falls involved in evaluating these integrals on the
surface of the sphere and illustrate these with some
typical examples.

The field coefficients ai(k), bi(k), and ci(k) in
(5.5) involve Bessel functions evaluated at the sur-
face r =R because of the nature of the current in

(5.3). When (5.5) is used in (5.1), we obtain an ex-
pression for the fields inside the sphere, r &R.
Application of the boundary conditions requires
that r approach R from below. In this limit it is
necessary to differentiate between integrals such as

I,(g) = f dk g(k)ji(kR ~ )kR j/ (kR )

(Dl)

and

Is(g)= f dkg(k)ji(kR ~)kR ~j/ (kR ~},
(D2)
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2(21+1) R&'+' '

, z&'+'
Ib(1)=—

2I 1
(I+1)

2 2l+1 R&'+' '

(D3)

(D4)

which differ by n/2R as 5.—& 0.
This difference arising from the behavior of the

integrand at infinity is eliminated if g(k) itself ap-
proaches zero as k~ 00. When ez is approximat-
ed as a local function, typical integrals which re-

sult are given by g (k) =(k —kr )
' in (Dl) and

(D2} [k, =koe, (0)]. When the contours are per-

where R & =R+5, R ~ =R —5, and g (k) is an
even function of k. If g (k) does not approach zero
as k ~ oo, it is possible for I, and Ib to have dif-
ferent values in the limit 5~ 0. This can be seen
in the example g (k) =1 by evaluating I, and Ib by
contours. The convergence of the integrands on
the piece of the contours at infinity is controlled

by the Bessel function with argument kR &. Thus
we can divide (Bl}into two integrals using

j((kR &)=—,[h("(kR &)+h(' (kR )], and (B2)
I

into two tntegrals using j( (kR ) = —,[h("' (kR }
I

+h( ' (kR & )]. The contours involving h("' can
then be closed in the upper half-plane and those in-

volving h( can be closed in the lower half-plane.
However, since the convergence of I, and Ib is
controlled by different functions, i.e., h(" and

Ih("', the residues at k =0 also differ. We find

formed as above we find

I~((k —k() )= j((k(R )k(R h( (k(R )
2I Jl

1 1

2k, 21+1 k,R
' (D5)

I ((k —k ) ')= j((k(R )k(R h("' (k,R )

1+1 1

2k, 21+1 k,R
(D6)

These are seen to be identical in the limit 5~ 0
I

when we use j((x)h(" (x)—j (( x)hj "(x)=(/x .
The pole structure of g (k) and the k =0 poles
combine to give the same result in each case.

Other integrals which arise are those involving
the longitudinal dielectric function such as
g(k}=e( '(k} in (Dl) and (D2). These integrals we
have chosen to evaluate numerically. However,
since e((k)~ 1 as k~ ao, ambiguities similar to
(D3) and (D4) present a problem for numerical
evaluation. This can be overcome by adding and
subtracting 1 from the integrand. We then have a
well-defined integral with g(k}=e( '(k) —1 which
can be calculated numeri'cally in a straightforward
manner. The remaining pieces can be evaluated
analytically by contours, in this example yielding
(D3} and (D4).

APPENDIX E

(El)

We present the integrals over solid angle involving the spherical ve:tor functions which are necessary to
calculate the small-particle absorption as given by (5.2). Integrals between functions of opposite parity van-
ish identically. The nonvanishing integrals are as follows:

[k(Rj((k,R )]' 2g
dQ r" (m0((X n.'«) =j((k,R ) l'(I +1)'5„,

21+1

[k,Rj((k,R )]'f d&r" (n, ((Xm', (()= j('(k,R)— I (I+1) 5((,
21 +1 (E2)

f dQr ( l, i(Xm,',()=— j((kR)j('(k,R) — 1 (I+1) 5(( .
R ' ii+1

Here m=m(k„r), n=n(k„r), and 1 = 1(k, r).

(E3)

APPENDIX F

In this appendix, we derive an expression for the absorption assuming that there are no e-h —pair excita-
tions, but that plasmons can be excited. Thus we evaluate Eq. (5.8) for the case that
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(Fl)

In order to evaluate (5.8), we requiri: EI of (5.7e) and consequently the Qi' of Eq. (5.7g). These integrals
can be done by contour integration as is demonstrated for Q~"',

Q~"'=R f dq(e~~' —1j)I(qR) = lim (1/2R) f dq(ez~' —1)Jt(qR )Jt(qR ) . (F2)

Qi" now has the same form as the integrals dis-

cussed in Appendix D, the term ji(qR ~
) is split

into terms proportional to e'~ and e ', and

the correspnding contours are closed in the upper-
and lower-half planes. There is then a contribution

from the pole at q =0 from the plasmon wave vec-

tor qp)

Qi =XPO Ji i(PO)—PA i(po)—~

where

pp —Ip p]R

2miR

(F4d)

ep)(qadi ) =0, (F3)

Qi
(1) 1

(0)
+'YJl Po P

(F4a)

(F4b)

where q&~ will in general be complex. One obtains where hi is the Hankel function of the first kind.
The two different expressions for Qi' ', Eqs. (F4b)
and (F4c) result from replacing jI i(qRj)i(qR) by

j&,(qR ~)J'i(qR~) or byji i(qR ~)Jt(qR ~) in Eq.
(5.6g). Use of Eq. (F4) in Eq. (5.6e) gives

l+1 1 —1
2 21 +1 equi(0)

1

()
1 +'YPo Jl 1(PO)Jii(PO—)

2 ep) 0 POJI i(Po) (—21+1—)ji(pp)
X

POJI(PO)
(F5)
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