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Quasiperiodic interaction with a metal-insulator transition
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We describe a quantum Hamiltonian in one dimension with a quasiperiodic interaction,

giving rise to a metal-insulator transition at high coupling. This model applies to a linear
wave propagation in a modulated medium, naturally resulting in potentials with incom-

mensurate periods, as is the case for organic linear conductor chains.

Many physical situations deal with a
Schrodinger operator with an almost periodic po-
tential. The first historical example goes back to
Peierls' and describes the one-band Hamiltonian
for a Bloch electron in a magnetic field, in the ap-
proximation where the interband contributions can
be neglected; see Ref. 2.

More recently, the subject became of interest in
the context of the search of organic superconduc-
tors. As predicted by Little, it seems theoretically
easier to get superconductivity at high temperature,
using organic material rather than metals.

Unfortunately most of the first examples of such
materials, such as the well-known tetrathiaful-
valene-tetracyanoquindimethane, "present a metal-
insulator transition at low temperature, due to the
Peierls instability. ' ' The system resembles a
one-dimensional conductor spatjally modulated at
the Fermi wavelength in order to decrease the total
energy of the electron gas. Owing to this extra
modulation, the effective potential seen by each
electron along the chain is quasiperiodic.

If we increase the rigidity of the material, which
has been recently realized with tetramethyltetra-
selenafulvalane PFs (Ref. 7), the Peierls instabihty
can be avoided, and leads to a conductor-
superconductor phase transition, with precursor ef-
fects up to 40 K. In this paper we exhibit a simple
one-dimensional model with a quasiperiodic poten-
tial for which a metal-insulator transition, as re-
ferred to above, is observed.

The investigation of the properties of the spec-

trum of a Hamiltonian with quasiperiodic potential
is an old problem, but recently several au-
thors6' gave a new insjght on jt. Although jt js
known that at high energy most of the spectrum
corresponds to an absolutely continuous spectral
measure, ' ' it has been conjectured that a pure
point spectrum is allowed at low energy leading to
a metal-insulator transition.

One result in this direction has been obtained by
Aubry and Andre ' on a one-dimensional lattice
model, which can be viewed as a good approxima-
tion of the Hamiltonian describing an electron of a
crystal in a high magnetic field. ' ' '

Before the description of the model and results,
we should recall some of the results of Ref 9, .
where the authors consider the Hamiltonian opera-
tor acting on l (Z) by

II(A,,a, 8)g(n) = —,[g(n +1)+g(n —1)j

+ ltcos2m(a n, 8)alt(n), — (1)

where A, is a coupling constant, a is a "random
phase, " and 0 ~ 8 & 1 is an irrational number. It is
simple to prove that the spectrum is independent
of a but depends on (A,,8).

Most authors were interested in the case A, =1,
which corresponds to a Bloch electron in a mag-
netic field proportional to 1/8 in connection with
the de Haas —van Alphen effect. In Ref. 13 Ya
Azbel proposed to relate the structure of the spec-
trum to the continued fraction expansion of 0.
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In Ref. 24, Hofstadter computed numerically the
spectrum of H (A, a,,8) at A, = 1 as a function of 8
and found a result partially in agreement with the
prediction of Azbel. More recently, Aubry and
Andre gave new light on the subject studying the
dependence in the coupling constant A,.

For irrational numbers 8 with good diophantine
approximation property, they gave convincing ar-

gument that the spectrum is absolutely continuous
if A, & 1 and pure point if A, & 1, so the system be-

comes an insulator in this case. The main tool of
their proof is a duality between A, and I/A, : z be-

longs to the spectrum of H(A, ,a, 8) if and only if
( I/A, )z belongs to the spectrum of H (1/A, ,a,8).

More precisely, for almost every energy z there
is an uniform convergence, with respect to a, of
the Liapunov coefficient to the Thouless expres-
sion, as in Ref. 9. From this we conclude, using
the above duality, that the Liapunov coefficient is
bounded below by ink, and then, using an argument
of Pastur (see also Ref. 27), it turns out that the
absolutely continuous spectrum of H (A,,a, 8) is
empty for A, &1.

On the other hand, for 8 satisfying a diophan-
tine condition, i.e.,

3e&0

such that

~

n8 p~ &, —Vn &ltd
c(e)

from the results of Dinaburg and Sinai' with du-

ality again, we can show' the existence of A,o such
that if A, & Ao, the pure point spectrum of H(A, ,a, 8)
is not empty, the corresponding eigenfunctions
having exponential decrease and if A, & 1/k, o, the
absolute continuum spectrum is not empty.

However, as is shown by Gordon, ' in the case
of an irrational number 8 which does not fulfill
the above diophantine condition, there is no eigen-
function and therefore the spectrum is singular
continuous (see Ref. 10}. Using computer analysis,
Aubry and Andre found a spectrum that is a Can-
tor set for any values of A, with a Lebesgue mea-
sure equal to 2

~
1 —A,

~

. For small values of A, , the
energy gaps are localized around the values of
z =coswl8, l = 1,2, . . . of the energy, and the wid-
est forbidden zones correspond to the smallest
values of l.

The aim of this article is to propose another
kind of model which also presents a metal-
insulator transition and to give a series of results,
which allow us to compare the behavior of this

X5(s —n), (2)

where a and 8 are as in (1) and g is a coupling
constant. As before, it is simple to see that the
spectrum is independent of a and bounded below.
This Hamiltonian differs from the one of a
Kronig-Penny model in that the amplitude on
points s =n (n EZ) is modulated in a quasiperiodic
way.

A generalized eigenstate ip of (2) is a solution of
the equation

H(g, a, 8)qs=Eqs .

If n —1&s &n, this equation leads to

e&~Es+B e its

with the following boundary conditions:

lim+(n +e) qs(n —e—) =0

(4)

(Sa)

and

limni'(n +e) qs'(n —e)—

=2g cos2ir(a n8)%(—n) . (Sb)

Inserting (5a) and (5b) into (4), we get a recursion
formula of the form

C„+i I.(a n8, g, —~——E)C„,

where C„ is the column matrix

B„

and l. (a,g, V E ) is some explicit 2X2 matrix de-

pending on a, g, and v E.
The following change of variable simplifies (6):

1 1

—%En &0 E
0

—&Ene
(7)

Now, (6) together with (7) gives the following re-
cursion formula for the D„, and thus for the con-
stants An, »n

model with the above results. Let H(g, a,8}be the
self-adjoint Hamiltonian, densely defined on l. (R)
by

1 d2 +co
H(g, a, 8)=—— — g gcos2m(a —n8)

ds
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&n+i =
2cosv E +2g cos2m(a —n

sinv E
E
1

At this stage we recognize the recursion rela
''

n relation of
the model given by (1), namely,

H(A, ,a, 8)g(n) =zf(n),

with

P(n)
Dn f(& 1)

where (z, A, ) is related to (E,g) by

l

both models. Other properties of the spectra are
related through the nonlinear relations (1 la) and
(lib). In particular, for each value of g, the set
S(8) of points (z, A, ) obtained when E takes all pos-
sible values in ( —oo, + oo ) resembles a snail shell
(see Figs. 1 and 2) that intersects the set X(8) of
points (z, A, ) for which z is in the spectrum of
H(A, ,a, 8). The upper bound of the set X(8) is
given by the function

z =cos~E (1 la) F(A,,8)= f/H(A, ,a, 8)// . (12)

and

sin~E=g (1 lb)

It follows by the Aubry-Andre duality that

F(A, ,8) =AF(1/A, ,8) =F(—A,,8)

It is a matter of simple calculation to verify that

is equivalent, thus we get the same Liapounov ex-

ponent as well as the same rotation number for

=F(A,, 1 —8) . (13)

Furthermore, by a perturbative argument, we get

G. 5
. 909

-q. 0

~T t r ~ ~ w ( S ~ '0 T~I ~ ) ~ ~ ~~ f I

-'I. -').0 -0.5 0.0 0.5 1.
f the "snail shell" S(0) for g =0.909=g, together with the upper andFIG. 1. For 8=23/61, the representation of the "snai s e

lower bounds of the spectrum.
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FIG. 2. For 8=23/61, the representation of the "snail shell" S(8) for g =17.26=g& together with the upper and
lower bounds of the spectrum.

A,
2

+(A, ,8)=1+, +O(A, ') as A,~O,
4sin me

(14)
sin~E,

fc (16)

and by (13) we also get where E, is determined by

F(&,8)=A,+, +O(1/A, ') as A,

4A, sin m.8
z (0)
$,=1

(15)

A closer inspection of the properties of this
function' gives the following.

Lemma: E is a continuous function of (A„8) and
increasing and convex function of A, for A, & 0.

The proof combines (12) with an approximation

by Hamiltonians reduced to finite boxes. Since for

~

)I,
~

& 1 the spectral measure of H(A, ,a, 8) is pure
point, the spectral measure of H(g, a, 8) will also
be pure point in the domain of energy for which
the corresponding points of S(8) belong to
X(8)A I(z, A, ),

~
A,

~
&1I. The conditions under

which such a "mobility edge" is allowed must now
be determined.

The smallest value g, of g for which this situa-
tion occurs is given by the equation

3.5

2.5
0 20/101 40/101

FlG. 3. The upper bound of the spectrum for A, =1.
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FIG. 4. Rescale of part of the curve z(8).

cos~E, =F(1,8) . (17)

Since F(1,8) )F(0,8)=1, writing z(8)=F(1,8),
we get

lnIz(8)+ [z (8) —1]'
~ (8)2

infg, (8)) ln(2+ V 3) .
3

0
-0.5

20/101 40/101

for which the following inequality is easily veri-

fied:

g (o)
C

8=1

0,9

-1.0

0.85

0.8

-1.5

0.75 I I I I I

0 20/101 40/10 i 8
FIG. 5. Critical value of the coupling constant, func-

tion of 8.

E (0)
C

FIG. 6. Critical value of the energy as a function of
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An interesting feature of the model is that g, de-

pends in a crucial way on 8; see Fig S. The graphs
of the functions H~z(8), H~g, (8), and H~E, (8)
are given in Figs. 3—6, using numerical computa-
tion. (Note that the first one already appears in
Ref. 24.) From these figures, the curves appear to
be very singular, since their derivatives seem to be
discontinuous at each rational 8. Following Ref.
24, the curve z(8) has also very interesting scaling
properties. If g &g, (8), the spectral measure is ab-

solutely continuous. For g &g„Figs. 1 and 2
show that the structure of the spectrum is some-
what more involved.

There is a sequence g, (8}&gi &gz & . de-

fined by

sin~E„
gn 1 j

&n
(20)

d
dE E=E

(21)

such that for g„&g &g„+i there is a finite number
of intervals [E;,E ], i =0, 1, . . . , n with

Eo ——inf SpH(g, a, H)&EO &Ei « E; &E &E;+i« E„' &+00, (22)

and the spectral measure is pure point in the
domain

e's'= U [E;,Et ]A Sp[H(g, a, 8)],
c=0

(23)

l

For n ~ ao the following asymptotic expression
arises:

g„=(2n +1)—— +0(n ') . (26)
2 2n+1 ~

and absolutely continuous outside (however, for
certain values of 8, it can happen that
[E„,E„']A SpH(g, a, H) is empty, especially if g is
very close to g„).

Combining (20) with (21) we get

( —1)'
gn=

cos'gn

il„=tanrl„, (2n —1)—& i)„&(2n +1)—.

(25)

From this we get the following values of g for the
first five values of n:

g) ——4.6031,

g2 ——7.7926,

g3 ——10.9473,

g4 ——14.1029,

g5
——17.2631 .

1
H (f g, a, H) =—— —g g cos2n (a nH)—

2 dS n~z

X 5(s —s„), (27)

where f= [f„j„~zis an almost periodic sequence,
with f„&a&0, which fixes the points s„by
s„—s„ i f„. Changing —v—ariables as in (7), but
with s„replacing n, easily gives rise to the follow-
ing recursion formula, which replaces (8):

In particular, at high energy, as is the case for reg-
ular potentials, ' the spectrum is a Cantor set of
positive Lebesgue measure and the spectral mea-
sure is absolutely continuous; see also Refs. 15 and
16.

Note added. A similar change of variables al-
lows us to have the same kind of informations on
the spectrum of a more general Kronig-Penny
model, namely,

On+i=

sin(f„+f„+,)v E sinf„+ i~E
+2g cos2m(a nH}—

sin „E
sinf„+iv E

sinf„v E
0 Dn. (28)

This formula corresponds to a (gauge) modified
Aubry model. Other generalizations can be de-
rived in the same way and we plan to discuss these
cases in a forthcoming paper. '
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