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All the irreducible band representations of a space group are shown to be induced from

a set of inequivalent relevant symmetry centers in the %igner-Seitz cell. A connection is

established between representations and band representations of space groups by using the
Born —von Karman boundary conditions. Continuity chords are used for proving the

equivalency theorem which enables one to distinguish between equivalent and inequivalent

band representations. As examples we consider a one-dimensional crystal and the D6q

space group for a hexagonal close-packed structure.

I. INTRODUCTION

In solids one interchangeably uses extended and
localized functions. The extended or the Bloch
functions were first introduced in the classical pa-

per by Bloch' and they have been since widely used
in solid-state physics. In the same paper Bloch
discussed also the localized functions (atomic orbi-

tals) but their use during the years has been much
less widespread. The localized orbitals when
orthonormalizixl on different sites of the Bravais
lattice are known in solids as Wannier functions.

Conventionally, band-structure calculations have
been carried out by using Bloch functions ll „k(r).
They are specified by a band index n and the
quasimomentum k. In the symmetry specification
of Bloch functions an important role is played by
the irreducible representations of spacegroups. '

Each g„k(r) is assigned a wave vector k which de-

fines the behavior of the Bloch function under

translations. The additional symmetry is defined

by all those point-group elements that commute
with the translations on the space of functions fk
for the given wave vector k. In this symmetry
specification the translations play a primary role
and they define the extended nature of the Bloch
functions.

An alternative approach to band calculations is
based on localized orbitals. In this approach
one specifies the symmetry of the localized orbitals

by means of the point symmetry of the space
group. Such a specification assigns a symmetry la-
bel to the localized orbitals and correspondingly to
the band of the solid as a whole entity. Unlike the
Bloch functions' approach where the symmetry is
specified at each point k in the Brillouin zone the
approach by localized functions leads to a global

symmetry label for a band in a solid. In a funda-
mental paper by Des Cloizeaux it was shown how
Bloch functions belonging to a given band can be
expanded in symmetry-adapted Wannier functions
corresponding to the same band. More recently,
the symmetry type of a band via localized orbitals
has been used in a number of band-calculation
schemes in solids. '

Despite the fact that Bloch and Wannier func-
tions can interchangeably be used for spanning a
given band of a solid there is nevertheless a funda-
mental difference between them: The 81och func-

tions are eigenfunctions of the Schrodinger equa-
tion for an electron in a periodic potential while

the Wannier functions are not. One of the conse-
quences of this difference is in the level of the ap-
plication of group theory to these two kinds of
functions. The Bloch functions being eigenfunc-
tions of the Schrodinger equation fit well into the
general framework of representation theory. '

This is not the case with the Wannier functions
or the localized orbitals to which the usual repre-
sentation theory is not applicable. In a recent
series of papers' ' it was shown that the symme-

try of localized orbitals can be described by band
representations of space groups. Unlike usual rep-
resentations that correspond to a single energy of
the eigenvalue equation, band representations
correspond to bands of energy. This makes the
band representations suitable for specifying sym-
metry types of localized orbitals and correspond-
ingly of bands as whole entities in solids.

In this paper the band-space concept, is used for
defining bases of band representations. A band
space is a set of f-localized orbitals which define at
each point in the Brillouin-zone f-independent
Bloch functions. Each band representation is
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shown to be equivalent to its canonical form. The
latter is used in order to prove that all the irreduci-
ble band representations of a space group are in-
duced from a set of inequivalent relevant-

symmetry centers in the %igner-Seitz cell. In gen-
eral, not all such irreducible band representations
are inequivalent. A connection is established be-

tween representations and band representations of a
space group by using the Born —von Karman
boundary conditions. Continuity chords are used
for proving the equivalency theorem, which serves

as a criterion for distinguishing between equivalent
and inequivalent band representations. As exam-

ples we consider a one-dimensional crystal and the
hexagonal close-packed structure (D6i, ).

II. BAND SPACE

One of the most striking features of the energy
spectrum in solids is its band structure. The con-

cept of a band was first introduced by Bloch' and

has since been widely used in solids. In describing
physical phenomena one usually focuses attention
on an isolated band which can be either simple or
composite. 9'0 A band is simple if there is one
Bloch state corresponding to each quasimomen-
trum k in the Brillouin zone. If there is a number

of Bloch states, say f, for each point k, then the
band is called composite. Correspondingly, the
space spanned by all the Bloch functions when k
varies in the whole Brillouin zone is called the f-
branch band space. '6 There is much freedom in
choosing the functions that span the band space.
The Bloch functions g„i,(r) constitute only one
possible choice. Alternatively, one can choose
another set of functions y,k(r ) defined by the fol-
lowing transformation:

s'=1

These functions will also span the same band space
if T(k) is a nonsingular matrix at each k in the
Brillouin zone. Clearly, the new functions y,k(r )

preserve the index k, meaning that they are eigen-
functions of the translation operators on the Bra-
vais lattice. This also means that like the Bloch
functions, the functions y,k(r ) are of extended na-

ture.
An alternative definition of a band space can be

given by using localized orbitals. I.et a;( r ),
i = 1, . . . ,f be f-square-integrable linearly in-

dependent functions and let us build out of them
f-Bloch-type functions q;k( r }:

yk(r)=Q ' +exp(ik R )a(r —R ) . (2)

, 0 is the reciprocal-lattice unit cell volume. The
fa; (r ) .orbitals form an f-branch band space if at
no point k in the Brillouin zone can one construct
a vanishing linear combination

f
g a;(k)y;k(r)=0. (3)

'Here a;(k) are arbitrary k-dependent functions.
The condition expressing the impossibility of build-

ing relation (3} insures that there are f-independent
Bloch functions (2} at each point k in the Brillouin

:zone. The fa;(r), i =1, . . . ,f orbitals span there-
fore an f-branch band space in very much the

: same way as the Bloch functions P„k(r) in the pre-
"vious definition. There is, however, a significant
I difference between the two definitions of a band

I
space. The one based on the extended (Bloch)
functions P„k(r) is local in k space. In this defini-
tion we assign f Bloch functions to each point k in
the Brillouin zone. A connection between the
functions P„k(r) at different points k is achieved

by demanding that they belong to a given energy
range via the Schrodinger equation that they satis-
fy. The continuity of the energy range introduces

, some continuity on the wave functions g„k( r ) as
functions of k. On the other hand, the band-space
definition based on the localized orbitals a;( r ) is
local in r space. Each such orbital leads directly,
according to relation (2), to Bloch-type functions

p;k(r) in the whole Brillouin zone. This means
that the connection between the functions p;k(r )

for different k's follows from the fact that all of
them are built~from the same orbital a;(r). The
continuity properties of y;k( r ) as a function of k
is fully defined by the orbital a;(r ). In this defini-
tion of the band space the energy spectrum of the
solid doesn't appear at all. This might seem as a
disadvantage. However, since one is free to choose
the a;(r ) completely arbitrarily this approach en-

ables one to find all those band spaces that can, in

principle, be built from localized orbitals. For this
reason, the band-space definition based on localized
orbitals turns out to be useful in the construction
of band representations of space groups.

III. BAND REPRESENTATIONS
OF SPACE GROUPS

According to the definition, a band space con-
tains an infinite set of functions (for an infinite
crystal). This is seen either from the fact that the
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number of Bloch states in the Brillouin zone is in-

finite or from the fact that there is an infinite set
of localized orbitals corresponding to different sites

R~ in the Bravais lattice. It turns out that by us-

ing the concept of band representations' it be-

comes possible to list the symmetries of all those
band spaces that can, in principle, span actual
bands in solids. Let us review the main concepts
of Ref. 15 in the framework of band spaces.

The definition of a band representation can con-
veniently be given in the kq representation. ' Let
6 be a space group with elements (a

~

t ), a being
~ 4.a point-group element and t a translation. Al-

though G is assumed to be a space group the re-
sults in this paper can straightforwardly be extend-

ed to double-' and magnetic-space groups. ' By
definition the functions a;( k, q), i =1, . . . ,f of a
band space form a basis for a band representation
1

(a~ t)a;( k, q)= g D;;[(u~ t),k]a;(k, q) .

(4)
The matrix D in (4) is k dependent and nonsingu-
lar at each k in the Brillouin zone. In the kq rep-
resentation the band representation in relation (4)
appears with an f-dimensional matrix D(k).
However, since k is a variable the band representa-
tion is actually infinite dimensional.

If the functions a,
' (k, q) form a new basis of the

band space then the equivalent band representation
D' will be given by the matrices

D'[(ui t),k]=T '(k)D[(ai t), k]T(a 'k) . (5)

In the matrix on the right the vector' k is r~elaced
by o. 'k. The band representation D[(a

~

t ), k] is
reducible if a matrix T(k) exists for which all the
matrices in (5) assume a quasidiagonal form. If
such a matrix T does not exist then D [(a

~

t ), k]
is called an irreducible band representation.

In general, the matrices of the band representa-
tions are nonunitary. However, if the basis is
chosen to be orthonormal,

0 f a,*(k,q)a, (k, q)dq=5„,
then, as can be checked, the band representation
satisfies a unitarity condition

0 ' I dkDt[(~r
~

t ), k]D[(~
~

t ),k]=E

In (7) E is a unit matrix. The basis functions
cz, (k, q) satisfying relation (6) are the Wannier
functions of the problem.

In the construction of band representations of

space groups it is convenient to work with the con-
cepts of a symmetry center q in the Wigner-Seitz
cell and the corresponding symmetry group Gq.
For each quasicoordinate q in the Wigner-Seitz
cell we define a symmetry group Gq with the ele-
ment (y

~

c ) that leave q invariant:

(y i
c )q = q +R»r i

' ' . (g)

Here Rq~
' is a Bravais-lattice vector depending

on both the center q and the group element (y
~

c ).
In relation (8) the point-group element y is as-

sumed to be written with respect to the origin of
the crystal. %hen written with respect to the sym-
metry center q, the same element will become yq
[page 15, Ref. (21)]:

r» =«
I q)1 « I q) =(1

I
c —R," ' » (9)

=exp( —ik R' ~
~
' )D"'(y) (12)

defines a band representation of the~sace group
Gq. The Bravais-lattice vector Rq~

' ' is given in
relation (8).

The dependence on the symmetry center q
' in

where E is the unit element of the point group.
What relation (9) shows is that around the symme-
try center q the point-group elements of Gq appear
with primitive translations. Together with a sym-
metry center q we define its star. This can be
done as follows. The space group 6 can be decom-
posed into cosets with respect to its subgroup Gq'.

6=6»+(~i~ a2)6»+ . +(~,
~
a, )6», (10)

where (a;
~
a;) are elements not belonging to 6»

and representing different cosets. With the decom-
position (10) in mind the star of q is defined as
containing the following vectors:

q qz=(u2
I a2)q q =(a

I
a )q .

The construction of band representations of a
space group 6 can be carried out in the following
way. ' Let 6» by a subgroup of 6 corresponding
to the symmetry center q

' (we use the prime in
order to distinguish the symmetry center q

' from
the quasicoordinate q of the kq representation).
As was already mentioned above, the point group
elements of Gq appear with primitive translations
when written with respect to the center q

' itself
[relation (9)]. We denote by g» the point group of
6» and let D' '(y), I = 1, . . . , m be the irreducible
representations of g» . One can check (see Appen-
dix) that the correspondence
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the band representation (12) appear in the exponen-
tial factor exp( —ik R»r

' ). In Table I we list
these factors for the symmetry centers q„qb,
q„and qd of the space group D6), . We shall call
(12) the canonical form of a band representation.
It is clear that if we apply the transformation (5)
to the canonical form (12) we will obtain a band
representation which will no longer have the form
of a k-dependent exponent multiplied by a k-
independent matrix. We shall return to this prob-
lem later.

Having a band representation of 6» it is a sim-

ple matter to induce a band representation of the
full space group G. Thus, if the functions
C»'( k, q ) with i = 1, . . . , r form a basis for a
band representation of G» then it is clear that the
set of rxs functions

(13)
form a basis for a band representation of G. This
band representation can be written down in very
much the same way as in the induction process of
usual representations of space groups. The follow-
ing relation holds for an arbitrary element (a

~

a)
of 6'.

(a
~

a)((z
~

a )=(~„~a„)(y'~ c '), (14)

where (a
~

a ) are the elements in the decomposi-
tion (10) and (y'

~

c ') belongs to 6». With the no-
tation in (13) the induced band representation of
the space group 6 assumes the form

~

~)C(l) g D(»', ))[( i
~

~ i) —ik]C(()
j=l

This relation defines the matrix D'» ""[(n
~
a), k]

of the induced band representation corresponding
to the element (a

~

a). In correspondence with for-
mula (12), formula (15) will be called the canonical
form of a band representation of the whole space
group. Band representations in their canonical
form are of much importance because as is shown
below any band representation of a space group
can be brought to the canonical form by the trans-
formation (5).

Having established a process for constructing
band representations the next question to ask is
how to construct all of them. This question can be
solved by introducing the concept of relevant sym-
metry centers. We shall do it by first defining the
equivalency of symmetry centers. Two symmetry
centers q i and qz are called equivalent if their

groups coincide, G», =6», , and if their factor sys-

tems exp( —ik R»r '
) and exp( —ik R»r

'
) are

equivalent, meaning that

exp( i—k R.»"
' )=exp( —ik R)

Xexp( i k—R»r,
( )

&&exp(iy 'k.R),
where R is a Bravais-lattice vector, and (y

~

c ) are
the elements of 6», [see relation (5) with

T(k) =exp(ik R)]. The simplest case of
equivalency is when q~ differs from q& by a
Bravais-lattice vector R, q2

——q ~+R. In this case,
6» ——6» and relation (16) can be easily checked to

hold. However, we can have symmetry centers q &

and qz that are equivalent [6» =6» and relation

(16) is satisfied], but the centers themselves do not
differ by a Bravais-lattice vector. An example are
the symmetry centers q, =(0,0,z) and q, 2(0,0,z) of
D6), (see R. ef. 22) with the same symmetry group
C» and identical factor systems exp( i k—R(".(

' ')
(they equal 1 for both centers). These two symme-
try centers are therefore equivalent according to
the above definition despite the fact that they
differ by the vector (0,0,2z). In constructing band
representations, equivalent symmetry centers will,
clearly, lead to equivalent band representations.

Next, let us define the concept of subequivalen-

cy. q2 with the symmetry G~ is subequivalent to

q(, with the symmetry G» if 6» is a subgroup of

6», and if on all elements (y
~

c ) of G» the phase

factors satisfy the equivalency condition (16).
Thus, q, =(0,0,z) with the symmetry group C», is
subequivalent to q, =(0,0,0) with the symmetry

D&d, because C» is a subgroup of Did (see Ref. 22)
and on C3„ these two centers have identical factor
systems. In general, a given symmetry center q
can be subequivalent to a number of symmetry
centers q~, q2, . . . , q„. Thus, it can be checked
that the above considered symmetry center

q, =(0,0,z) of D6), is subequivalent to all the fol-
lowing centers: q, =(0,0,0), q, 2

——(0,0,c/2),
q(, ——(0,0,c/4), q(, q ——(0,0,c/4). In particular, a
general symmetry center q with translational sym-
metry only is clearly subequivalent to all the other
symmetry centers in the Wigner-Seitz cell. If in
constructing band representations of a given space
group one considers all the symmetry centers

q~, q~. . . , q„ to which q
' is subequivalent, then

there should be no need to consider also q '. The
reason for this is as follows. 6» is a subgroup of
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all the groups Gq, ,Gq, , . . . , G .
The induction of band representations from 6»

for the whole group 6 can therefore be carried out

by first constructing from 6» band representations
for the set of the groups Gq, ,Gq, , . . . , Gq . How-

ever, since any of the groups of this set and Gq
have identical factor systems [up to equivalency,
see relation (16)] this means that the irreducible
band representations that can be induced from Gq
are all contained among the irreducible band repre-
sentations (12) of G», ,G», . . . , G» for the symme-

try centers q~, q2, . . . , q„correspondingly. As a
consequence of this the subequivalent center q

'

can be discarded in the construction process of the
irreducible band representations for a given space
group. A center q, that is not subequivalent to
any other center will be called a relevant symmetry
center. An important property of a relevant sym-

metry center q, is that any band representation in-
duced from it by formulas (12) and (15) is irreduci-
ble. This can be seen in the following way.

(q, l)
We denote by D " [see formula (12)] an ir-

reducible band representation of 6, (the symmetry
(q+, l)

group of q, ) and correspondingly by D ' '
the

band representation of the whole space group G
which is induced from the center q, according to
relation (15). We show that if q, is a relevant

(q~, l) .
symmetry center then D ' '

is irreducible. As-
(q+, l)

sume the opposite and let D ' '
be reducible into,

say, two band representations of G. When con-
sidered on the subgroup G, only, each of these two
band representations have to contain, by the re-

ciprocity theorem of Frobenius23 the band repre-
(q, l)

sentation D " . One should therefore be able to
distinguish between different sets of functions that
on G, behave in the same way. This can only be
done if the basis functions for the representation

(q~, l)
D ' '

can be labeled with respect to a symmetry
center q,

' to which q, is subequivalent. We arrive
at a contradiction because by the assumption q, is
a relevant symmetry center. This proves that each
relevant symmetry center q, induces, by formulas
(12) and (15), an irreducible band representation of
the space group.

Let us denote by qi, q2, . . . , qz all the ine-

quivalent relevant symmetry centers of the space
group. This is usually a small number of symme-

try centers. Thus, for the group D6~ there are four
such centers q„qb, q„and q~ (see Table I).
From what was said above it is clear that for con-
structing all the irreducible band representations of

a space group it is sufficient to consider in the in-

duction process only the relevant symmetry
centers.

Because of the space-group symmetry of a solid,
each symmetry center q appears actually as an in-
finite lattice of centers. ' One can say that the
symmetry of the basis functions for a band repre-
sentation is specified with respect to a whole lattice
of symmetry centers. q gives the origin of this lat-
tice and the star of q gives the type of the lattice.
We can call it the q lattice of symmetry centers. If
q is a relevant symmetry center then it induces ir-
reducible band representations. Since each irredu-
cible band representation defines the symmetry

type of a band one should expect a q lattice of a
relevant symmetry center to be an invariant prop-
erty of the band. ' Such a q lattice should, in prin-
cipal, be possible to determine if the information
about the band becomes accessible.

We have shown that all the irreducible band rep-
resentations of a space group in their canonical
form can be induced from the full set of inequi-
valent relevant symmetry centers. In order to
prove that this exhausts all the irreducible band
representations one still has to prove that any ir-
reducible band representation of a space group can
be written in the canonical form. This can be
proven in the following way. Let Ci(k, q),
Ci(k, q), . . . , Cf(k, q) be a basis for an irreduci-
ble representation D [(a

~

a), k] of G. In general,
these functions will have some symmetry. What
this means is that it is possible to choose a center

q, with highest possible symmetry G, (q, is a
relevant symmetry center) around which a subset
of the functions, say, Ci» ( k, q ),

Cz» (k, q), . . . , C'» (k, q) with m (f form a

basis for a representation of the point group g,
(the point group of 6,). These primed functions
will, obviously, lead to an irreducible band repre-
sentation of 6, [see relation (12)]. They can then
be used for constructing the functions (13) and cor-
respondingly for inducing the band representation
in the form (15). Clearly, when the functions in

Ci(k, q), C2(k, q), . . . , Cf(k, q) have no symme-

try, this is a particular case of G, (when there is
no symmetry, 6, is the translation group itself).
The conclusion is, that any irreducible band repre-
sentation D [(a

~
a), k] of a space group 6 can be

written in the canonical form (15). This completes
the proof that the induction process [formulas (12)
and (15)] from all the inequivalent relevant symme-

try centers leads to all the irreducible band repre-

sentations of a space group. It may, however,
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happen that some of these irreducible band repre-
sentations will be equivalent. In Sec. V an

equivalency criterion is proven which enables one
to distinguish between equivalent and inequivalent

band representations.
In conclusion of this section we point out that

the construction of band representations of a space
group 6 are significantly simplified when 6» is an

invariant subgroup of G. In this case, relation (14)
for the elements of 6» assumes the forin

(y~ c)(a )
a )=(a

~

a )(y'~ c '), (17)

IV. EXAMPLE

As an example we consider the construction of
irreducible band representations for the space
group D6I, of the hexagonal close-packed structure.4

%e have already mentioned that this group has
four inequivalent relevant symmetry centers q„
qs, q„and q~ (Table I). The symmetry of q, is

where (y
~

c ) and (y'
~

c ') are elements of 6» .
From (17) it follows that G» is also the symmetry

group of any of the vectors of the star of q '. This
can be seen in the following way. Let

q~ =(a
~

a )q
' be the mth vector of the star of

q '. Then the symmetry elements of the group of
q' are

(18)

From relation (17) it follows that all the elements

of relation (18) belong to 6». The latter is there-

fore the symmetry group of all the vectors of the
star of q '. Having this in mind we can look at re-

lation (12}as defining irreducible band representa-
tions of the group 6» for different vectors q~ in
the star. If all q' are inequivalent then they will,

in general, define different irreducible band repre-
sentations of 6». From relation (17) it also fol-
lows that the matrices D'» '" for any band repre-
sentation that is induced according to formula (15}
will have a quasidiagonal form for the elements of
6». Formula (15) for the elements of 6» will be

(y~ c)C, , =exp( —ik.Rr, ) pe, "(y')CI ', , (19)
J

where y' is defined by relation (17). Formula (19)
turns out to be very useful for constructing irredu-

cible band representations because very often the
symmetry groups of relevant symmetry centers are
invariant subgroups of the space group. Thus, this
is the case for the relevant symmetry centers of
D6

Diq (the space group with the point-group symme-

D3g), while the remaining three centers have
the symmetry D3/g We can first use formula (12)
for constructing the irreducible band representa-
tions of the subgroups Di~ and D&i, Si.nce each of
the point groups D3d and D3I, has six irreducible
representations (we shall label them from 1 to 6 as
in Ref. 21), formula (12) will give six irreducible
band representations for each of the mentioned

relevant symmetry centers. %ith their aid and by
using formulas (14) and (15) we can find the ir-
reducible band representations of the space group
D6~. %e obtain altogether 24 irreducible band rep-
resentations of D6i, . Each of the point groups D3gf

and Dsi, has four one-dimensional representations
and two two-dimensional ones; the induction
method [formula (15)] will lead to 16 two-
dimensional band representations and eight four-
dimensional ones. For the explicit construction of
the band representations one can use the simplified
formula (19) because both DM and Di~ are invari-
ant subgroups of Dsi, . Let us demonstrate the con-4

struction process on the example of the symmetry
center q, =(0,0,0). For this center the decomposi-
tion (15) will be

D6h D3d+ ~2 O~o~ D3d .4 c
' '2 (20)

For being able to use formula (19) we need the
multiplication table for the point-group elements of
relation (17). In this case the table is very simple
because Ci commutes with all the elements of D&~

(the same is also correct with respect to the group
D&q of the other relevant symmetry centers in

Table I). What this means is that for all the ele-

ments of Di~ (or equally for Diq) y'=y in formula
(19). Having the irreducible representations of the
point groups Di~ (and Dii, ) and the information of

Table I we find the matrices D ' '
(also for the

(q~, I)

other invariant symmetry centers) for the elements
of Di~ (or D3i, ). For the elements not belonging to

(q~, I)
D3g (or D3~) the diagonal elements of D ' '

are
zero. This follows from the multiplication rule

(14) for an invariant subgroup. We shall label the
irreducible band representations of D&i, by (a, l),
(b, l), (c,l), and (d, l) with l =1,2, . . . , 6. The la-

bels a, b, c, and d replace the star labels q*„q~,
etc. The induction process leads therefore to 24 ir-
reducible band representations. The question that
remains to be answered is whether or not all these
band representations are inequivalent. This is
answered affirmatively in the next section.



BAND REPRESENTATIONS OF SPACE GROUPS 3017

V. CONNECTION WITH USUAL
REPRESENTATIONS AND CONTINUITY

CHORDS

Up to now the band representations were written
as finite-dimensional k-dependent matrices in the

kq representation. It was pointed out that because
of k being a variable the representations are actu-
ally infinite dimensional in the sense of usual rep-
resentations. %'e show in this section that they can
be made finite dimensional by using the Born —von
Karman cyclic boundary conditions as is usually
done ig the representation theory of space
groups. ' This can be achieved by putting period-
ic conditions on the wave function f(r ):

g(r+2Na;)=P(r), (21)

where a; are the unit vectors of the Bravais lattice
(i =1,2, 3) and N is any large integer. The factor 2
is used for convenience so that the lattice can be
considered in a symmetric way around the origin.
With the condition (21), the translation group will

have (2N) elements and correspondingly the band
representations will become finite dimensional in
the sense of usual representations.

As an example let us consider a one-dimensional
crystal with inversion symmetry. The space group
C; of this crystal contains the unit element E, the
inversion I and 2S translations ma,
m =0,+1, . . . , +(N —1), N, where a is the lattice
constant. As was shown in Ref. 9 this group has
N+3 classes: N+1 classes of pure translations
(ma, —ma) m =0, 1, . . . , N, one class for each m

and two classes containing the inversion (I
~
2ma),

(I
~

(2m +1)a) with m assuming any possible
value. There are two relevant symmetry centers

q, =0 and qb
——a/2, both with the symmetry C;.

The band representations corresponding to these
symmetry centers are given according to formula
(12) with the phase factors in Table II. There are
four irrixlucible band representations, two for each
symmetry center. In the second half of Table II
we list the irreducible representations of C;. Hav-

ing applied condition (21), these band representa-
tions will be 2X dimensional when considered as
usual representations. The basis functions of these
representations can be labeled in the following way:

TABLE II. The upper part gives the phase factors
for the relevant symmetry centers q, and q~ for the
one-dimensional crystal. The lower part gives the ir-
reducible representations of C;{E,I). I is the inversion
(=exp(ika)

q, =0
qb ——a /2

discrete values k =m/(Na)r where
r =0, + 1, . . . , +(N —1), N. Among t'he functions
(22) there are two (m =0, N) that go into them-
selves (up to + ) under inversion.

Having this in mind it is a simple matter to
write the characters of the band representations for
the relevant centers q, and qb (see Table III).
These band representations are clearly reducible
and they can be reduced into the irreducible repre-
sentations of C;. The latter are well known.
They are specified by a k vector and a representa-
tion index of the point-group symmetry. For the
group C;, k =0 {I point) and k =n /a (X point),
possess the fully symmetry C; and the correspond-
ing one-dimensional representations are given in
Table II. For k =0 we denote them by I ~, I z, and
for k =ir/a by Xi, X2 (in Table II they are labeled
by 1 and 2). For a general point k, the irreducible
representations of C; are two dimensional (they are
denoted by D' '). Table IV shows how the band
representations of C~ for q, and qb which are
denoted by (a, l) and (b, i), I =1,2, reduce into the
irreducible representations of C;. Thus, (a, 1) con-

TABLE III. Band representations as finite-

dimensional representations of the space group C; for a
one-dimensional crystal. 2N is the number of unit cells,
m =0,+1, . . . , +(N —1), N. E is the unit element and

I is the inversion. (a, l) and (b, l) with l =1,2 denote the
irreducible band representations. q is a center without

symmetry.

E (I ~2ma) (I
~

(2m+1)a) {E
~

ma), m+0
C~z (k,q) =exp( ikma)Cq —(k,q), (22)

where m labels the site, and it can assume the
values m =0,+1, . . . , +(N —1), N, q' the symme-
try center, and l the irreducible representations of
the point group C; (see Table II). When the boun-

dary condition (21) is applied, k in (22) assumes 2N

(a, 1) 2N
(a,2) 2N
(b, 1) 2N
(b, 2) 2N

(q, 1) 4N

2
—2

0
0
0

0
0
2

—2
0
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TABLE IV. Continuity chords for the band representations of C; for a one-dimensional
crystal. k is a general point in the Brillouin zone and D' ' is the two-dimensional representa-
tion for this point. All the other notations are like in Fig. 1 and Table III.

(2,a) (b, 1) (&,2)

I

k

I)
X(

{N—1)D' '

r,
Xg

{Ã 1)D(»

Il
Xg

(X—1)D'»
Xi

{ZV —1)D&»
X)Xp

2(X —1)D' '

tains once I'~, once Xt, and (N —1) times the rep-
resentation O'"'. The dimensionality of all of them
together is 2N which is the same as of (a, 1). It is
seen for Table IV that each irreducible band repre-
sentation contains Bloch states with well-defined
symmetries, e.g., I';, Xi, at different symmetry
points in the Brillouin zone. For different irredu-
cible band representations the sets I;, XJ are dif-
ferent. What this means is that each irreducible
band representation leads to Bloch states with
well-specified symmetries at different k points.
The set I';, XJ of Bloch states at different points in
the Brillouin zone corresponding to a given band
representation is called the continuity chord. In
Fig. 1 we plot the possible four bands with their
continuity chords for the four different band repre-
sentations (a, i), (b, i), i =1,2. The conclusion is
that a one-dimensional crystal with the symmetry
C; can have bands belonging to one of the four
symmetry types as given in Table IV or Fig. 1.

g(kj

(b, 2)

(b, &)

(o,2)

(o, 1)

FIG. 1. Symmetry types of bands for a one-
dimensional crystal with an inversion symmetry. I ~ and
I'2 are even and odd Bloch states correspondingly at
k =0; X~, X2 are the same at k =m/a. (a, I) and (b, l)
with l =1,2 labels the band representations.

This is in full agreement with previous work.
It is possible to construct other band representa-

tions of C;. However, they will necessarily be
reducible. Thus, consider a general point q, differ-
ing from q, and qb. For such a symmetry center,
q and Iq = —q belong to the same star. The band
representation induced from q has a character X'& "
given in the last line of Table III. It is easy to see
that 7'~'" can be written either as a sum
X'~"=~""+q""o ~' "=~""+q""This
might look strange that a given reducible band rep-
resentation can be split into irreducible band repre-
sentations in different ways. However, as represen-
ations goy"" y" ' y'~'" andy' ' 'are by

themselves reducible (they are irreducible only as
band representations on a basis of localized orbi-
tals). Having this in mind, the above reduction of
7' "will no longer be surprising because as a rep-
resentation X'~'" contains all the irreducible repre-
sentations that are contained in both g" and g' '

(see Table IV).
In a similar way one could apply the boundary

conditions (21) to the hexagonal close-packed
structure (Dg, ) and find the finite-dimensional ir-
reducible band representations. For large X this
may become rather tedious. However, since we are
interested in finding the continuity chords of a
band corresponding to a given band representation,
this can directly be obtained from the information
about the band representation in the kq representa-
tion and there is no need to construct explicitly the
finite-dimensional band representations. I.et us
consider the question of finding the continuity
chords in more detail. They not only define the
symmetry of the band but they are also important
in the equivalency criterion which is derived below.

Having the irreducible band representations of a
space group one can determine the symmetries of a
band at different points in the Brillouin zone. This
is what we call the continuity chord of a band and
it is given by a set I;, I.z, XkX, . . . , of irreduci-
ble representations for symmetry groups Gk at dif-
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ferent points k in the Brillouin zone. By defini-

tion all those elements (P
~
b) of the space group

G belong to Gi, for which

Pk=k+K, (23)

where K is a vector of the reciprocal lattice. For
finding the continuity chord of a band we shall use
the fact that any band representation of G when

considered for a fixed k becomes a representation
of Gk. This can be shown in the following way.
Let D'» ' '[(a

~

t ), k] be a band representation of
G. Then, by definition the matrix corresponding
to (t 21 t 2)(~i

I
t i) is

[(+21 t2}«i I
t i} k]

=D'»'"[(~,
~
t, ), k]D(»' "[(a,

~
t, ),~ k],

(24)

where in the last matrix aq 'k appears, showing
that k is a variable. For the elements of Gi„rela-
tion (24) will assume the usual form of a multipli-
cation rule for a representation. This follows from
relation (23) for the elements of Gk and the fact
that the band-representation matrices D [(a

~

t ), k]
are periodic in k with the periodicity of the
reciprocal-lattice vectors. It therefore follows that
each band representation of a space group G when
considered for a fixed k becomes a representation
of Gk. The latter is, in general, reducible. In ord-
er to find the continuity chord of a band we start
with an irreducible band representation (1,I) of the
space group [relation (15)] and for each k we find
the representation D'"' of Gi, that is given by the

same formula (15). Having found D' ' we reduce
it and this gives us the set of the irreducible repre-
sentations of Gk at the point k in the Brillouin
zone. By going through with this process over all
the symmetry points in the Brillouin zone we find
the continuity chord of the band (q, l). The con-
nection of the band-representation matrices
D [(a

~

a },k] and the corresponding matrices D' '

of the usual representations is a simple conse-
quence of the connection between the localized
a (k, q ) and the extended functions.

VA'th the above remarks in mind it becomes a
simple matter to use the information of Table I in
order to find the continuity chords for the irredu-
cible band representations of Dsi, . As an example
let us consider the point H = (4n/3a, O,

.c) in the
Brillouin zone. ' The symmetry group Gk of this
point is D&i, The i. rreducible representations of Gk
are given in Table V (upper part}. In the same
table we list also the characters of the representa-
tions Xg'" of Gk that are obtained from the band
representations of D6~ at the point II. At this
point /=exp[i (4')/3], g = 1, g= —1 (see Table I).
In obtaining the characters X~ we just have to add
the two lines for each symmetry center in Table I
and to multiply the result by the corresponding
character of the irreducible representation of D3gf
(for the symmetry center q, ) or of Dsi, (for the
symmetry centers q&, q„qq}. Each of the groups
D3d and D3~ have six irreducible representations
which we label from 1 to 6 according to Ref. 21.
Correspondingly the band representations of Dsi,
are labeled by (a, l), (b, l), (c,l), and (d, l),
l =1, . . . , 6.

TABLE V. The upper part gives the irreducible representations for the symmetry point in
the Brillouin zone H =(4m/3a, O, m/c) (Ref. 21). The lower part gives the characters gP~" of
the representations of Gk (the symmetry group of H) that are obtained from the band repre-
sentations (a, l), (b, l), (c,l), and (d, l), l =1,2, . . . , 6. a, b, c, and d denote the symmetry
centers q„qb, q„and qd. l denotes the irreducible representations of the groups D3d and

D3$ The symmetry elements are like in Table I.

H E 2C3 g 2z
3 Other elements

(a, 1) (a,2) (a,4) (a, 5)
XH —XH —XH —XH

(b, 1) (b, 2) (b, 3) (b, 4)—XH —XH —XH —XH
(a,3) (a,6) (b, 3) (b, 6)

XH —XH —XH —XH
(c,1) (c,2) (d, 4) (d, 5)

XH XH XH XH.,(d, 6)

(c,4) (c,5) (d, 1) (d, 2)
XH XH XH XH
g~(c,6) ~,(d, 3)

H1
H2
H3

2
—1
—1

2
—2
—1

1
—1

1

0
iv3iv3—

0
0

iv'3
—iv3
—iv3
iv3

0
—iv3
i'v 3

0
0
i v3—

iv3
iv3iv3—
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In Table V the characters Xg' ' are given only
for those elements for which the characters of the
representations of G~ do not vanish. From Table
V it is easy to find how the irreducible band repre-
sentations of D&s split at the point H of the Bril-

louin zone Thus I~'"——X ' Also
X~' ——X +X, and so on. We have carried(a3) ~~2]

out this process for all the symmetry points in the
Brillouin zone. In Tables VI and VII, a list is
given of the continuity chords for all the irreduci-
ble band representations of D6s. As is seen from
the tables, the continuity chords for all 24 irreduci-
ble band representations of the space group D6s
are different. What this means is that all the ir-
reducible band representations that are induced
from the relevant symmetry centers of D6I, lead to
different continuity chords. This is, in general, not
true for other space groups. Thus, it might hap-

pen that some of the irreducible band representa-
tions that are induced by formula (15) from ine-

quivalent relevant symmetry centers will lead to
identical continuity chords. An example, are the

(a, 3) and (b, 3) band representations for the dia-

mond structure. In solids with the D6I, symme-

try this does not happen and as Tables VI and VII
show all the irreducible band representations corre-

sponding to the relevant symmetry centers lead to
different continuity chords.

An important connection exists between band

representations and their continuity chords. We
have already shown that each band representation
defines a continuity chord. One can actually prove
the following statement: (1) two equivalent band

representations lead to identical continuity chords,
and (2) two band representations leading to identi-

cal continuity chords are equivalent. The first part
of this statement follows directly from the defini-

ton of equivalent band representations [relation

(15)]. In finding continuity chords for a particular
k vector we employ elements (P

~

b) which belong

to the group of k, Gk. But for these elements rela-

tion (37) holds, and the matrix in relation (5) will

become

D'[(Pi b), k]=T (k)D[(Pi b), k]T(k), (25)

where D' is equivalent to the representation D. We
see therefore that the band representation
D [(a

~
a), k] and the equivalent band representa-

tion of relation (5) lead to equivalent representa-
tions [relation (25)] of Gk at each point in the Bril-
louin zone. This also means that equivalent band
representations lead to identical continuity chords,
because from relation (25) it follows that

D[(13~ b), k] and D'[(P
~

b), k] have the same
characters.

Let us now prove the second part of the state-
ment: if two band representations D[(a

~
a), k]

and D'[(a
~
a), k] lead to identical continuity

TABLE VI. Continuity chords for the band representations (a, l), I =1,2, . . . , 6. a and I are as in Table V. The
notations for the symmetry points in the Brillouin zone follow Ref. 21.

(a, 1) (a,2) (a, 3) (a,4) (a, 5) (a, 6)

r

X
T
N

A

K
H
M
L
P
U
Tt
S'
C
S
R
8

l ]I 2

hjh3
X]X2
T]T3
N]N2

1 2

A]
K]K4
H]
M]M3
L]
P]P2
U] U2

T]T3
S]
C]C2
S]
R]R2
8]82

I 2I 4

A2h4

X3X4
T2 T4
N]N2
~]~2
A2

K2Ks
Hj
M2M4
L2
P]P2
U3 U4

T2 T4
S]

S]
R3R4
8]82

r, r6

X]X2X3X4
Tj T2 T3T4
2N]2N2
2~ 12 la+el 2

A3

K3K6
H2H3
M]M2M3M4
L]L2
P3
U] U2U3U4

Tl T2T3T4
2S]
2C]2C2
2S]
R]R2R3R4
28]282

rsr]o

X]X2
T2 T4

N] N2

~] 2

K2Ks
H]
M6MS
L]
P]P2
U] U2

T2 T4
S]
Cj C2

S]
R]R2
8]$2

r7r9
h2A4

X3X4

T]T3
N]N2
~]~2
A2

K]K4
H1
MsM7
L2
P]P2
U3 U4

T] T3
Sj

S]
R3R4

r1]r]2
~S~6
X]X2X3X4
T]T2 T3T4
2N]2N2
2~ ]2~2
A3

K3K6
H2H3
MsM6M7M8
L]L
P3
U] U2U3U4
T] T2 T3 T4
2S]
2C]2C2
2S]
R]R2R3R4
28]282



26 BAND REPRESENTATIONS OF SPACE GROUPS 3021

TABLE VII. Continuity chords for the band representations (b, l), (c,l), and (d, l), l =1,2, . . . , 6. b, c, d, and l are
as in Table V. The notations for the symmetry points in the Brillouin zone follow Ref. 21.

(b, 1)
(c, l)
(d, 1)

(b, 2)
{c,2)
(d 2)

(b, 3)
(c,3)
(d 3)

(b, 4)
(c,4)
(d, 4)

(b, 5)
(c,5)
(d, 5)

(b, 6)
(c,6)
(d, 6)

I

X
T
N

A

E{b)
E(c,d)
H(b)
H(c)
H(d)
M
L
P(b)
P(c,d)
U
T'
S'
C
S
R
8

1 il'io

2X]
T]T4
N]N2
2~]
A]
IC]E2
K3
H]
H2
H3

M, M6
L]
P]P2
P3
U] U2

Tl T4
S]
C]C2
S]
2R]
28]

I 2I 9

h2h4
2X4

T]T4
N]N2
2~]
A2

K]E2
E3
H]
H2
H3

M4Mp

L2
P]P2
P3
U3 U4

T] T4
S]
C]C2

S]
2R4
28]

2X]2X4
2T]2T4
2N]2N2
4w]

A3
2IC3

K]E2E3
H2H3
H]H3
H]H2

M]M4M6M,
L]L2
2P3
P]P2P3
U] U2U3U4
2T] 2T4
2S]
2C]2C2
2S]
2R]2R4
48]

I 4I 7

~2~4
2X3
T2T3
N]N2
2 leal 2

A2

E4IC5

E6
H]
H3
H2

M,M,
L2
P]P2
P3
U3 U4

T2T3

C]C2

S]
2R3
282

I 3I"g

2X2

T2T3
N]N2
2hsasl 2

A]
E4Eg
K,
H]
H3
H2

M3Mg
L]
P]P2
P3
U] U2

T2T3
S]
C]C2
S]
2R2
282

r,r„
~5~6
2X22X3
2T22T3
2N]2N2
4
A3

2E6
K4E5E6
H2H3
H]H2
H]H3

M2M3M5Mg
L]L2
2P3
P]P2P3
U] U2U3U4
2T22T3
2S]
2C]2C2
2S]
2R22R3
482

chords then it follows that they are equivalent:

D'[(a
)
a), k]= T '(k)D[(a

/
a},k]

XT(a 'k}. (26)

Since D' and D have identical continuity chords
this means that at each point k in the Brillouin
zone we have to have the equivalency given by re-
lation (25) for (p

~

b) satisfying relation (23) (for
the representations D'[(P

~
b), k] and D[(P

~
b), k]

to contain the same irreducible representations of
Gk, they have to be equivalent). Relation (25) de-

fines the matrix T(k) at each point in the Brillouin
zone. This matrix can be used for transforming
the basis of the band representation D [(a

~
a), k]

to a primed basis. The latter will be the basis for
the band representation D'[(a

~
a), k] and we ob-

tain therefore relation (26). This completes the
proof of the statement that two equivalent band
representations have identical continuity chords
and, vice versa, two band representations that have
identical continuity chords are equivalent. A
corollary of this statement is that if two band rep-
resentations have different continuity chords then

they are inequivalent. The statement together with
the corollary can serve as a criterion for distin-
guishing between equivalent and inequivalent band
representations. We can formulate the following
equivalency theorem: Two equivalent band repre-
sentations have identical continuity chords, two
band representations with identical continuity
chords are equivalent, and finally, two band repre-
sentations with different continuity. chords (for
continuity chords to be different it is enough for
them to differ at one point in the Brillouin zone)
are inequivalent.

Having the equivalency theorem one can sum-
marize the method for constructing all the irredu-
cible and inequivalent band representations of a
space group. One first constructs the band repre-
sentations [according to formula (12)] for all the
inequivalent relevant symmetry centers. For this
one needs the phase factors (see Table I). Then by
using formula (15) one induces the irreducible band
representations of the space group. In general, not
all of them will be inequivalent. The equivalency
theorem can be used for finding out which of
them, if any, are equivalerit. For this one uses the
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knowledge about the continuity chords. Among
the constructed band representations only those are
equivalent whose continuity chords are identical.
Thus, for the hexagonal close-packed structure

(Dss) all the continuity chords are different (see
Tables VI and VII), and therefore for this space
group all the inequivalent principal symmetry
centers (see Table I) lead to inequivalent irreducible
band representations.

VI. CONCLUSIONS

Irreducible representations of space groups label
the symmetry of Bloch states by means of a quasi-
momentum k and a representation index n of the
point symmetry of Gk. Irreducible band represen-
tations label the symmetry of localized states by

means of the quasicoordinate q and a representa-
tion index I of the point-group symmetry of Gs.
Being labeled by k a Bloch state is local in k space
and therefore extensive in r space. On the other
hand, the localized state in r space are labeled by

q and they correspond to a whole band of states
in k space. An irreducible representation of a
space group corresponds to a single energy level.
An irreducible band representation corresponds to
a band of energies. It may happen that more than
one irreducible representation corresponds to a sin-
gle energy level without being a consequence of
symmetry. This is called accidental degeneracy.
The same may happen with band representations,
and more than one irreducible band representation
may correspond to a given band. In analogy with
usual representations this can be called accidental
degeneracy in band representations.

APPENDIX

(A 1)

Let us check that the definition (12) in the text gives a band representation of G». For this we assume a
similar relation for the dement (y'

I
c '). For the product we shall have

()'I c)()"
I

c ')=(rr'I)'c '+ c '):exp( —ik.R&
""'»'"(rr')

On the other hand, from relation (17), it follows that

(yI c)(y'
I
c '):exp( it R~r —' i. y 'k R—~r '

' ')D'"(y)D'"(y') . (A2)

(A3)

We have to show therefore that the exponents on the right-hand sides of (Al) and (A2) are identical [by de-
finition, D' '(yy') =—D' '(y)D' '(y')]. Let us take the exponent of (A2):

(
' — ' ' '+ ' — ')=k R

This coincides with the exponent in (Al). It therefore follows that relation (12) in the text defines a band
representation.
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