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Theory of elastic and phonon softening in ionic molecular solids.
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We have carried out a theoretical study of the effect of coupling between rotational and
translational degrees of freedom first proposed by Michel and Naudts on the elastic con-

stants and phonon frequencies of ionic molecular solids. We have applied our theory to
the high-temperature plastic phase of alkali cyanides NaCN, KCN, and RbCN. We find
that the competition between short-range repulsion and the interaction of the electric
quadrupole moment of the CN ion with the fluctuating electric field gradient strongly
influences the elastic softening and ferroelastic instabilities in these systems. The effect
of direct intermolecular interaction and anharmonicity is found to be significant in some
cases. The ferroelastic transition temperatures for the above three compounds are found
to be 337.5, 190, and 179 K which compare favorably with the experimental values 255.4,
156, and 130 K if we note the mean-field nature of our theory. Within our model we can
understand the qualitative differences between the cyanides and the superoxides, a similar
class of compounds showing drastically different ferroelastic behavior. Our calculations

provide a microscopic justification for the use of certain phenomenological parameters by
Strauch et al. in their calculation of phonon frequencies in NaCN and KCN at 300 K.

I. INTRODUCTION

Ionic molecular solids undergo a series of struc-
tural phase transitions and show anomalous ther-
moelastic properties which are intimately connect-
ed with the orientational, spin, and orbital degrees
of freedom of the ionic molecular species. Typical
examples are alkali cyanides' (MCN), superox-
ides '

(MOq), azides" (MN3), hydroxides'
(MOH), and nitrites' (MNO2) where M is an al-

kali ion. In this class cyanides are the simplest,
the (CN) molecular ion possessing only orienta-
tional degrees of freedom whereas the superoxides
are perhaps the most complex, the 02 ion pos-
sessing all three, i.e., orientational, orbital, and spin
degrees of freedom.

The structure of the highest-temperature solid

phase in almost all these systems is face-centered
pseudocubic, the molecules undergoing hindered
rotations between several equivalent directions of
minimum energy. This high-temperature solid
phase (referred to as phase I in the literature)
shows anomalous thermoelastic properties and the
systems behave like plastic crystals. In the case of
cyanides careful measurements' ' of elastic con-
stants have been made and it is found that C~& and

C44. decrease with temperature and C~ approaches
zero at a temperature T* where one expects a fer-
roelastic instability of the pseudocubic phase.

TABLE I. First-order ferroelastic transition tempera-
ture T, {experimental), extrapolated and theoretical C~
softening temperatures T, and T44.

System T, (K) T* (K) T„(K)

NaCN
KCN
RbCN

283.5
168
133

255.4
156
130

337.5
190
179

However, the transition to the ferroelastic phase is
usually' ' ' first order, the transition tempera-
ture T, being higher than T* (see Table I for
values of T, and T» in cyanides).

The symmetry of the low-temperature phase
(phase II) is different for different classes of these
systems. For example, in cyanides, the orientation
of the (CN) molecular axis is along the original
[110]direction' of the phase I; the structure of
phase II is body-centered orthorhombic. In con-
trast, the average orientation of the superoxide
molecule is parallel to the z axis, and the structure
of phase II is body-centered tetragonal (CaCq
structure). There are, however, significant fluctua-
tions in the molecular orientations about the c axis
due to the Jahn-Teller (JT) splitting of the Oz or-
bital degeneracy. In this work we are primarily
concerned with the cyanides and superoxides al-
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though our results should be applicable to other
ionic molecular solids as well.

In this paper we develop a microscopic theory of
elastic softening and phonon renormalization in
these systems. We analyze the effect of the orien-
tational degrees of freedom on the elastic proper-
ties and phonons by extending the earlier work of
Michel and Naudts' (MN). In the evaluation of
the coupling between the translational and rota-
tional degrees of freedom, we include' the effects
of (i) short-range steric (repulsion) forces, (ii) aniso-

tropic electrostatic forces, ' and (iii) the effects as-
sociated with the splitting of the orbital degeneracy
of the molecular ions. In addition we include the
direct interaction between the molecules. We do
not consider here the coupling between the spin.
and either the translational or the rotational de-

grees of freedom. Alkali superoxides show low-T
structural phase transitions involving large-scale
molecular reorientations (referred to as magneto-

gyric phase transitions) which can be understood in

terms of spin-rotational coupling (see Ref. 19).
This interaction does not appreciably affect the
high-T ferroelastic phase transitions. One possible
exception is the ordered pyrite to marcasite transi-
tion in Na02 (see Ref. 20) which occurs at about
200 K.

For cyanides, (iii) is not present and only (i) was

considered in the earlier work' on elastic soften-
ing. The importance of (ii) for the cubic phase of
cyanides was recently discussed by Bound et al. ,

'

although for the noncubic phase of superoxides it
has been pointed out by Mahanti and Kemeny.
Bound et a/. , in their molecular dynamics calcula-
tion of the rotational-translational dynamics of
KCN, NaCN, and RbCN, have found that the in-

clusion of the electric quadrupole moment Q of the
(CN) ion was essential to understand the experi-
mental orientational probability distribution func-
tions (OPDF) and other low-frequency local
dynamic properties. A careful study of the inter-

play of (i) and (ii) iri the observed' anomalous
elastic softening, ferroelastic phase transitions, and
phonon softening in cyanides is the main subject of
thts paper. In a separate paper we will report the
combined effects of (i), (ii), and (iii) on the ferro-
elastic instabilities and apply our theory to the case
of superoxides.

Our main results can be summarized as follows.
Because of the large electric quadrupole moment
(Q) of the (CN) molecular ion, there is an appre-
ciable contribution to the rotational-translational
coupling (I &) arising from the interaction between

Q and the fluctuating electric field gradient (EFG)
present in the high-T orientationally disordered
pseudocubic phase. Because of the negative sign of
Q, this coupling has opposite sign to that obtained
from considering short-range repulsive forces alone
(to be denoted as I z). We find that when I ~&0
and I ~

——0, C~~ ~0 at a temperature T1 ~
which is

higher than T44 where C44 —+0. On the other
hand, when I ~ ——0 and I ti+0, T44p T», i.e., C4q
softens at a higher temperature than C&1 which is
observed experimentally in NaCN, KCN, and
RbCN. Actually I ~ and I q are nonzero and ap-
preciable, with I ~ dominating the ferroelastic in-
stabilities in cyanides. In contrast, I g is more im-
portant in superoxides because of smaller value of
Q of the 02 ions. A" a result Cii~0 at higher
temperature than C44 and since C~~ couples to the
order parameter ( Fio ), one expects the molecules
to orient parallel to the c axis, giving rise to a
CaC2 structure. This structure is seen experimen-
tally. However, for a quantitative understanding
of the ferroelastic transition temperature in the su-

peroxides one must incorporate the orbital degen-
eracy of the superoxide ion and go beyond simple
molecular field theory. %ithin a molecular field
treatment of translational-rotational coupling and
the intermolecular interaction, our theoretical tran-
sition temperature T~ compares favorably with
the experimental values for the three cyanides (see
Table I).

For a better agreement between theoretical and
experimental C» and C44 values, we find that
anharmonicity effects, particularly for Cii are
very important. As a measure of the anharmonici-
ty we take the values of dC i i /d T (for T=300 K)
appropriate for alkali-halide crystals and find that
the observed peak in C» (T) for the cyanides can
be understood in terms of two cancehng contribu-
tions to dC» IdT; one coming from anharmonicity
effects and the other from the rotational-transla-
tional coupling. The results for NaCN and KCN
are extremely good but for RbCN there are
dlscrepancles.

The outline of the paper is as follows. In Sec. II
we discuss the model and the Hamiltonian that we
have used to study the elastic properties and pho-
nons of ionic molecular solids. In Sec. III, a
Green's-function method is used to calculate pho-
non frequencies and elastic constants which are re-
normalized by the coupling between the transla-
tional and rotational degrees of freedom. Section
IV contains a brief discussion on the isothermal ro-
tational susceptibility which plays an important
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role in the T dependence of elastic softening. In
Sec. V, we discuss the different contributions to
the translational-rotational coupling. Finally in
Sec. VI we discuss our results and make compar-
ison with earlier theories and available experi-
ments.

VSR(~) (C )
~c2~(gp I

&
I (2.1)

where a (or P) stands for any one of the two atoms
of the anion or cation. The constants (CI)~p and

(Cz)~~ represent the strength and the inverse of the
range of the repulsion potential, respectively. The
quantities (CI) and (C2) are available in the
literature, "' and one can use the equations

II. HAMILTONIAN

A. Model

We treat the CN ion as a rigid dumbbell con-
sisting of two identical centers separated by a dis-
tance 2d. Each molecule sits in an octahedral cage
(in the high-T phase) of six nearest-neighbor (NN}
M+ ions, the NN distance being a. The M+ ions
are represented by spherically symmetric charge
dlstflbutlons.

In addition to the electrostatic forces, there are
short-range (SR) repulsive forces between the iona.
This repulsion can be expressed in a Born-Mayer
form,

H„= g p„(~
~
k)p„(z )

k)
k,~,p

f(r)= -g f(k)e'" ' ',
k

(2.6)

where N is the total number of unit cells. We will
use 1/v N in the definition unless otherwise speci-
fied. The rotational part of H is obtained by fix-
ing the c.m. of all the ions at fcc sites (R;) and is
given by

H„,=g g Lx(k)Lx(k)+g Vo(n;)
, 2I i=1

+ —, y Cpp(«'Ik)up(~~ k)up(K'~ k)
k,xa', pp'

(2.5)

represents the translational part of the Hamiltonian
in the harmonic approximation and is obtained by
treating the ions as spherical charge distributions.
For example, this part would be analogous to that
of a KBr crystal. Here m, is the mass of the xth
ion (+ or —) in a unit cell, k is the wave vector,

p is the Cartesian component x,y,z; C&z («'
~
k) is

the dynamical matrix and u, p are the Fourier
transforms of the displacements (from the fcc
structure) and momentum, respectively. Here and
in the following we define Fourier transforms by
the equation

(C, )~&——Q(C, )«(C, )p&

(2.2)
+g Vg(ij) .

&ij&

(2.7)

(Cq) p= —,[(Cg)«+(C2)pp]

—c~ I R,"+st,
I

s=+1
where n; is a unit vector specifying the orientation
of the (CN} ion with respect to the crystal axes.
W'e have also assumed that both C and N atoms
can be replaced by an average atom whose repul-
sion with M+ is characterized by the parameters
C1 and C2. Following MN we discuss the elastic
properties of these systems using a Hamiltonian H
that consists of three parts, i.e.,

(2.3)

~=+tr+~rot+~t -rot

where

(2 4)

to obtain the values of C1 and C2 for appropriate
systems.

The short-range repulsive interaction between a
(CN) ion whose center of mass (c.m. ) is at R; and
a M+ ion at R& is given by a sum of atom-atom
potential,

Here I is the moment of inertia of the dumbell
about each of the two principal axes and L is the
angular momentum. Vo(n;) is the orientation-
dependent single-site potential which is given by

6

Vo(n;)=C) g g e ' " ' . (2.8)
J =1$=+1

Only the repulsion contributes to Vo(n;) because
the electric field and electric field gradient at the
lattice sites vanish because of cubic symmetry. In
Eq. (2.8) only NN contributions are retained be-
cause of the short-range nature of the repulsive
potential. The other contribution to the cubic
single-site potential will come from the anisotropic
dispersion interaction between (CN) molecules.
This contribution was evaluated for sodium su-
peroxide (Na02) and was found to be about 6% of
the short-range repulsion contribution. We expect
a similar behavior for the cyanides.

We have included the term Vd(ij } in Eq. (2.7)
which represents the direct interaction between two
(CN} ions at sites R; and RJ. We write
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2

Vd(ij)= g A~ Y2 (w;)Y2™(wj),
Nl =—2

(2.9)
en as polar axis. The coeffi'cients A~ are exphcit-
ly given as follows;

A(~)~ ——(24m/5)Q /(W2a)
(2.10)

gQQ gQQ 2gQQ (2.11)
Here A~ is a measure of the strength of the direct
interaction which has three main sources
quadrupole-quadrupole interaction, short-range
repulsion, and anisotropic dispersion, the last one
arising from the fluctuating dipole moments of the
(CN} ion. In addition, for cyanides there is a
direct electric dipole-dipole contribution to Vd(ij )
and its effect will be discussed later. The unit vec-
tors w; and wj are the orientations of the molecules
i and j with respect to the intermolecular axis tak-

where Q is the quadrupole moment of the mole-
cule. For the rest of the coefficients we refer the
reader to the literature.

In order to go from a system of reference where
the intermolecular axis is the z axis to the crystal
axis system one makes a transformation involving
the Euler angles (a;j,P;j,y;j) associated with the

0vector R,J to obtain

4 2 2 I 2 2 l
V~(ij )=g &4n(2I +.1) g A

m = —2 m&, m2

i m
&
+m2(Pij ~ Yij ) Y2m

&

(ni ) Y2m2 (nj } i (2.12)

where the quantities in the square brackets are the Clebsch-Gordan (CG) coefficients. Using the properties
of CG coefficients one finds that only even I te~s contribute in Eq. (2.12). Further if one considers only
the quadrupole contribution to A then only the I =4 term survives.

Next we introduce the five symmetry-adapted spherical harmonics Y~ (see Ref. 16} through
5

Y2~(ni)=g c Y (n;),
a=1

where the 5X5 matrix Ic I is given in Table II, and obtain

g V~(ij )= , g g —D~ji(k)Y~(k) Yji(k),
&Ij) k a,P=1

where

(2.13)

(2.14)

2 2 4 2 2 4
D~p(k) = e'" '

V'36m & Ami m2 —(mi+m2) ~ m —m 0R~ Nl l, 752 m

XY4,+,(pR, yR)c, c 2ji (2.15)

Here the sum R is over (CN) ions surrounding
the central (CN) ion at R=O.

Finally the last term in Eq. (2.4) represents a
coupling between the orientational degrees of free-
dom Y'~ of the molecular ion and the translational
degrees of freedom of the anions and cations. %e
write

from the equilibrium position, i.e., R; =R;+u;
and calculating terms in the Hamiltonian which
are linear in the displacements u;. The elements
of the coupling constant matrix v z form a 3)&5
matrix. An explicit form of u~& including dif-
ferent contributions will be given in Sec. V.

H„„,=i Q g Y~(k)u~q(a
~
k)u~(ii

~

k) .
k,a,p &=+

(2.16)

This is obtained by displacing the center of mass

B. Phonon description

If we describe the translational degrees of free-
dom in terms of phonons, then H„and H„„,can
be rewritten in terms of creation (b. k) and destruc-Jk
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TABLE II. Coefficients of expansion of unnormal-
ized real order parameters F in terms of F2 's.

square bracket is the commutator, ( ) stands for
the average over a grand canonical ensemble, and
B(t t') —is the step function. The equation of
motion for G is

V'I /6
0

0

V I/6

i /2

—i/2

0
1

2

0

1

2

i/2

i G—-(t . t'—)j k

=5(t —t')([p, -„(t),p;-„( t')] )

+ B(—t —t'}([[P,.-„(t),H],P,.-„(t')] ) . (3.2)

(2.17)

tion (b. z) operators of phonons of wave vector k
and polarization index j. We have

Ht =X~'r(b rb r, + 2 )jk jk jk
j, k

The bare phonon frequencies co.-„are obtained by

solving the secular equation

For simplicity of notation let ~0
——co .

k and

PJ k =PJ i, (t =0). The Fourier transform of
G i, (t t') is g—iven by the equation

« y, -„;y,'-„)).= ( [y, -„,y,'-„]&

+« [y, -„,H];y,'-„». ,

where

(3.3)

( C„„,(zz'
(
k) a) k5—q„,5„„,[ =0. (2.18) «P, p;P, p»„—=G, -„(a))=I G, -„(t)e'"'d. t .

In terms of phonon creation and destruction opera-
tors, we have

(3.4)

Since b. k and b. k satisfy the usual boson commu-
tation relations, we obtain

H„„,=i g Y~(k)V~J(k)(b q+b p),
k,j,n

(2.19)

V~J(k)=(1/2cu~k )'/2g e&(a
~

kj)u~&(tt.
~

k) .
P, K + K

[Pf i, »t. l =~of, i,

[PJ k,Hrot ]= [PJ k,Htr-rot] =0,

[4,k»t. ]=tuo0, i, ,

where

(3.5)

In Eq. (2.20), e&(a
~
kj) gives the p, th component of

polarization vector for a-type ion for the mode jk.
Vttj(k) is determined from a knowledge of bare
phonon frequencies, the masses, polarization vec-

tors, and the coefficients u~&.

b.~Jk Jk Jk

Using the above equalities it follows that

(~'—~o)((P,P;Pt~g &&

=2, I +g V.*, (& Y.;P,'-„».

(3.6)

(3.7)

III. RENORMALIZATION OF PHONON
FREQUENCIES AND ELASTIC CONSTANTS

and

~(& Y;P,.-„» = &( Yt, ,g,'p » (3.8)

The rotation-phonon coupling [Eq. (2.19)] renor-
malizes the phonon frequencies from their bare
value co. k. We use the Zubarev's Green's-function
inethod o to obtain the renormalized phonon fre-
quencies tu. t, . We define the time- and tempera-j k

ture-dependent retarded Green's function G by

GJ p(t t') = ([$Jp(t—),QJ k
(t—'.)])B(t —t'), (3.1)

l

where QJ k (t)=bj k (t)+b p(t) is the phonon field
operator in the Heisenberg representation. The

where

Yi ~(k)—:[Y~(k),H„,] . (3.9)

It is clear that to obtain the Green's functions on
the right-hand side (RHS) of Eq. (3.7) one needs
the Green's function on the RHS of Eq. (3.8) and
the hierarchy of equations extends to infinity. We
further write

Y„~(k)=[Y„ i ~(k),H„t]
(r =2,3, . . . , oo} . (3 10)
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Note that the operators Fi ~, F2 ~, do not con-
tain the operators b and b and hence commute

with P and H«. Hence one can write, using Eq.
(2.19),

(3.11)~« Y, .;(('-„)&.=« Y,.;y,'-„)&.+g V„(k)& [Y,.{k), Y,(k)] & &(y -„;y'-„)&..
pk

In obtaining Eq. (3.11) we have replaced the commutator [Fi ~, Yp] by its average value. This is equivalent
to a random-phase approximation. We can now generalize Eq. (3.11) to higher-order Green s functions and
obtain

[ '—.'-~, -„( )]&&y,.-„;y,'-„&&„=2 .,

where the phonon self-energy Xjk(co) is given by

(3.12)

Xjk(co)=2coog YJ(k)Vpj(k)g „,([Y„{k),Yp(k)]) .
ap r=1

(3.13)

We will now relate the phonon self-energy to the frequency and wave-vector-dependent rotational suscepti-
bility X p(k, a)).

The rotational susceptibility is defined by a related orientational Green's function,

X.gk, r —r )= ——', &[Y.(k, r), Y',(k, r')]&e(r —r ) .
l

The time Fourier transform of X Ii(k, t t') is give—n by the equation

X p(k, ai)= —((F (k); Yp(k))) =——.f dte' 'e(t —t')([Y (k, t), Yp(k, r')]),

N(( Y,(k); Yp(k))) =«Yi,p(k), Yp(k)))

(3.14)

(3.15)

(3.16)

(3.17)

Generalizing this procedure to higher-order
Green's functions, we obtain

((Y;Yp)) = g ([Y„(k),YIt(k)])
r=1 N

(3.18)

Using Eqs. (3.18) and (3.15) in Eq. (3.13) we get

X.&(co)=—2coog V J{k)Vp~(k)X ~(k, co) .
a,p

(3.19)

Thus from (3.11) and (3.18) and noting that the
renormalized phonon frequencies co-

&
are obtained

from the poles of the Green's function

((PJ k;P,.g)&, we get

I.et us assume that the rotational response is deter-
mined by H„, alone. With this approximation,
which is equivalent to the assumption that rota-
tional dynamics has a faster time scale compared
to translation, ' we obtain

~&(Y,,.;Y,')&.=&[Y,,.Y&]&

+«Y,.; YJ, ». .

co.-„=co.-„—2'. k g V'J(k)X p(k, co)Vpj(k) .
a,p

(3.20)

The above equation ignores vertex corrections
and is not adequate when the time scales of rota-
tional and translational dynamics are comparable.
However, we are primarily interested in the elastic
softening (co k

—+0) at relatively high temperatures
where the rotational motion is rapid and the above
approximation is quite reasonable. For the calcula-
tion of phonon frequencies at finite k particularly
when cojk -co„„where co„, is a characteristic rota-
tional frequency, one has to consider the frequency
dependence ' of X~p(k, co) and also include vertex
corrections.

From Eq. (3.20) one can easily obtain the effect
of rotational-translational coupling on the elastic
constants by choosing k along several symmetry
directions and studying the frequencies of longitu-
dinal and transverse phonons in the limit k, co—+0.
The details of the calculation of X~ti(k,0) are dis-
cussed in Sec. IV and in Sec. V, we will give expli-
cit expressions for the renormalized elastic con-
stants.



THEORY OF ELASTIC AND PHONON SOFTENING IN IONIC. . . 29S7

IV. ROTATIONAL SUSCEPTIBILITY
X p(k, m=0)

HMF = g D p(k) Y (k)m p(k)+ g Vo(n; ),
a,P, k

(4.1)

where

mp(k)=&Yp(k)& .

We apply a staggered external field h p( k ) which
adds a term H,„, to the Hamiltonian HMF,

H,„,= —ghp(k)Yp(k),
P

(4.2)

(4.3)

and calculate the susceptibility 7 in the limit when
the external field vanishes. In the presence of
hp(k}

—(1/AT)(HMF+H~„t) Yt ( k, )
m (k')= —~'~"a ~~ MF+ extTre

(4.4)

The generalized susceptibility matrix X p(k, k'),
defined by the equation

For the calculation of elastic constants and pho-
non frequencies we r~elace X p(k, co) by its static
values X p(k)=X p(k, (o=O). This is adequate for
the elastic constants and the limitations for phonon
frequency calculation will be discussed in Sec.
VIE. X p(k) is the static susceptibility of an iso-
lated system subjected to an adiabatic perturbation.
Following the commonly made approximation for
large systems we r~elace Xap(k ) by the isothermal
susceptibility X p(k), i.e., we assume that

Xap(k) =Xap(k } even though the differences be-

tween the two need not be zero in general. Next
we calculate X p(k } in the presence of only the
direct intermolecular interaction D p(k } using a
molecular field approximation.

The rotational response is determined by H„„
which is replaced by its mean-field value HMF ..

X.'yk, k')= „[&Y+(k') Yp(k) &

—
& Y+(k')&& Yp(k)&], (4.7)

the thermal averages being taken in the absence of
H,„,. For the disordered phase & Ya+(k)& =0 and

HMF g, V——o(n;). and we have

X p(k', k) =X p 5-„k. , (4.8)

where Sap is the k-independent single-site suscepti-
bility. ' In this case Xap(k, k') is diagonal in the k
index and defining Xap(k) =Xap(k, k), we obtain

X p(k)=X,p
—gX D, p (k)Xp p(k) . (4.9)

a'P'

From Eq. (4.9) one obtains, symbolically, the for-
mal solution

X=(1+X'D) 'X . (4.10)

As shown in Ref. 16 because of cubic symmetry X
is a diagonal matrix with

0 0 0 0 0 0
Xaa (Xl 1 ~ 3X11~X33~X33~X33} ~ (4.1 1)

where the first two quantities have es symmetry
and the last three have t2g symmetry. Similarly in
the k~O limit D(k) is diagonal with

Daa(k~0) =(D(1,—,Di(,D33,D33,D33) .

(4.12)

From (4.8)—(4.10) it follows that in the k ~0 lim-
it X is diagonal with

X p(k', k)

=Xap(k', k) — g X (k', k")
IP1 k lt

XD p (k")Xp p(k", k),
(4.6)

where

X p(k', k)—= lim m (k'),
kp o (}hp(k)

is found to satisfy the matrix integral equation,

(4.5) Xaa (Xl l~ 3X)1~X33~X33~X33) ~

The k-independent susceptibility Xap(T) is calcu-
lated from

f e ' Ya(g, p)Yp(g, g)singdgdg
X p(T)=

kpT f ~o ' s gdgdy

V. ROTATIONAL-TRANSLATIONAL COUPLING COEFFICIENTS

(4.13)

As discussed in the Introduction, there are two main physical sources that contribute to the rotational-
translational coupling matrix va&(a

~

k) and we write down this as a sum of two parts,
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u~(~I k)=u~p(s Ik) +u~p (~I k) (~=+),
(5.1)

A. Short-range repulsion contribution
u"„(+

I k)i

where u "&(a.
I

k ) denotes the short-range repulsion
contribution and u z (a

I
k) denotes the contribu-

tion coming from the interaction between electric
quadrupole moment of the (CN) ion and the fluc-
tuating EFG produced at its site by all the other
ions (taken to be point charges). We denote by
1,2,3, . . . the contributions from first, second,
third, etc, neighbors, respectively, which have
charges +, —,+, and so on. Then

u~&(+ I
k)=u'&(+

I k)i+u~&(+ I k)3

Ag —Ag 0 0 0

u~&(+ I ax)i —— 0 0 Bg 0 0

0 0 0 Bg 0

The coefficients U in k space can be obtained
from their r-space values through the relation

~ 0

u~q(+ I
k)i ——gu~q(+ I

R~j)e ', (5.3)
nn

where the sum is to be carried over all the NN
positions RJ given by (+ax, 0,0), (0, +ay, 0),
(0,0, +az). From Ref. 16 we have

+ . (i =R, EFG),

u'„( —
I
k) =u~„(—I k)z+u~„( —

I k)4

(5.2a)
0 0 Bg 0 0

v~&(+ I ay)i ——A~ As 0 0 0

0 0 0 08'
(5.4)

+ . (i=A, EFG). (5.2b) u~~(+ I
az)i =

0 008' 0

0 00 0 Bg
—ZAg 0 0 0 0

Following Michel and Naudts' we will take
u"z(rc

I k)=u~„(+ I k)i because the short-range
repulsion falls off rapidly with distance. In calcu-
lating u~ (a

I
k) we include contributions up to

fourth neighbors only, further neighbors making
insignificant contributions since the interaction
falls off as llr

The quantities Ag and Bs depend on C„C„d,
and a. They are explicitly given in Eqs. (A13) and
(A15) of Ref. 16. The values of Ci, C2, d, and a
for the cyanides are given in Table III and the
values of Az and Bz are given in Table IV. The
Fourier-transformed quantities u "z(+

I
k )i are

then

u~q(+ I
k)i ——2

A„S„-~„S„a„S,a,S, 0

A„S, A, S, a„S. 0 a,S,
—~,S. 0 0 a S„S,S,

(5.5)

where

S;=sink;a, C; =cosk;a (i =x,y,z) .

B. Calculation of u „" (~ I
k )

(5.6)
TABLE III. Repulsion parameters (C~, C2), lattice

constant (a), molecular size (2d), and free-ion quadru-
pole moment value (Qo). See Eq. (2.11) for 2 Pa.

NaCN RbCKCN

I

net rotation translation coupling is either enhanced
or suppressed.

As the lattice vibrates there is deviation from
the local cubic symmetry at the positions of the
molecules and the resulting EFG couples to Q. To
the lowest order in displacement this leads to an
additional coupling between rotation and transla-
tion with strength given by v

&
(a.

I
k). Depend-

ing on the sign of the quadrupole moment Q the

(10 K)
C2 (A ')
a (A)
d (A)

Qo (10 '0 esuAil
~p

1.013
3.3382
2.944
0.615

—4.64
1870

2.347
3.3382
3.250
0.600

—4.64
1143

3.421
3.3382
3.415
0.575

—4.64
892
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TABLE IV. Repulsion (A~, B~) and quadrupolar
(A~, B~) contributions to the translation-rotation cou-
pling.

Q=
Ag (K/A)
Bg (K/A)
Ag (K/A)
Sg (K/A)

Bg/Ag

NaCN

0.6QO

5578
—1390
—3065

2503
—0.249
—0.816

KCN

0.6QO

4379
—988

—2064
1685

—0.226
—0.816

0.6Qp
3323

—713
—1693

1382
—0.215
—0.816

&'=
6 XXQ~.U~. (5.7)

The quadrupole EFG interaction can be written
as33

2 23z —r

MA

Using (5.11) and (5.12) we can write

5

0'=Qg g Y.(n, )V'. ,

where (dropping the superscript i in U~)

Ui ——v'm'/5U

v, =v'~/~5(v„v—),
Us —— v'2n—/15 U„y,

U4 —— v'2'—!15U~,

U5 ———v'2m/15 vs .

(5.13)

(5.14)

(5.15)

Q„'„=I (3x;„x;„—5„~; )p(r; ) d r
(5.8)

where the Cartesian components of the quadrupole
moment and the field gradient tensor at site i are

The components U&, are obtained from Eq. (5.9),
s.e.,

3'Up„—g 4 [( XfjyQJp +XfjpQj„)
J XfJ

(p, v=x,y,z; r; = r —R;), (5KjqX;j—„5„„)X;—U ], (5.16)
8 8

ax„ aX„

BXp BX„j [R,—R
(XER;) .

(5.9)

where X,j Rj R;——, Xj =—X,j /X~j, and X~j„ is the
vth component of Xj. In obtaining Eq. (5.16), be-
cause of inversion symmetry the u; terms drop out
when the sum over j is carried out. Finally one
obtains the coefficients u~„" (a

~
X,j ) and its

Fourier components from the identity

(5.10)

Here p( r;) is the charge density at the site i and

U(R;) is the electrostatic potential at the ith site
due to all other charges qJ- at the RJ. We can ex-
press Q&„as a linear combination of spherical
quadrupole moment tensors of rank 2 defined by

Q2 ——I r; Yi (r; )p(r; ) d r

H'= g Y~(r;)U~

Y (n;)u~ (Xj)uj„
t',J,a,P,

=i g Y (k)u~& (x
~
k)uz(v

~

k) .
k,p, K

(5.17)

so that Eq. (5.7) can be rewritten as

2II'=g g Q', v;-(i.),
m= —2

(5.11)

The quantities u „" (~
~

k) have been explicitly cal-
culated in Appendix A.

Qz
——Y (n;)Q, (5.12)

I

where U2 's are appropriate linear combinations
of U&„'s. Since Q is measured with respect to
molecular axes (MA) one should transform from
the lab axes to the molecular axes, i.e.,

C. Elastic limit

To extract information regarding the elastic con-,

stants C;J, we take the long-wavelength limit
(k~O) and retain the leading terms in sines and
cosines and obtain

~effkx

u~(+
~
k)+u~&( —

~

k)=2a A ffky

~effkz

~effkx jeffky ~effkz

~effky jeffkx 0 jeffkz

0 0 8effkx jeffky

(5.18)
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where wave in the xy plane, using

A,ff ——Ag +aug,
B,ff ——Bg +a8g,

Ag ——v'9m /5 = V3/2—Bg,a4

(5.19a)

(5.19b) and

NTA k (Cll C12)/(2p)

1

e~(» I
k) 1/ Mk/Ill I/v 2 1

0

a = 1+ I /(4V 2) —8/(27% 3)——„+
(5.20)

we obtain

C12=C12+ A ffgll(T) .o 4 2 (5.24)

1. Case 1

For a wave along [001] direction we take k,
=k» =0 and k, =k and consider the frequencies of
LA and TA branches. The longitudinal acoustic
(LA) frequency in the limit k~0 is given by

Equations (5.22) —(5.24) are in agreement with
the results of Ref. 16 when Q=O, although they
have been derived in a completely different way.
These equations will be used in the next section to
study the T dependence of the elastic constants for
the cyanides.

f0LA (Cl1 /p)k (5.2 la) VI. RESULTS AND MSCUSSION

and the polarization of the vibration is

0
e„(»

~
k)=Qm„/m 0

1

(5.21b)

where m„ is the mass of the»-type ion, fn =m+
+m, and p is the mass density (m/2a ). Substi-
tuting (5.18) and (5.21) in (2.20) and using (3.20)
we obtain

o 8
Cl I =C 1 1

— 2 eff~ 1 1(T) '
a

(5.22)

1

e&(»
~
k)=+m„/m 0

0

we obtain

C44 ——C44 — B,ffX44( T) . —o 2 2

Q
(5.23)

2. Case 2

For a wave propagating along the [110]direc-
tion, we take k, =k»=k/W2, k, =O. For a TA

Similarly for the transverse acoustic branch (TA),
using

coTA
—

( C44/p) k

and

The temperature dependence of elastic constants

Cl1, C44, and C12 given in Eqs. (5.22) —(5.24) de-

pend upon (i) the short-range repulsion (As, Bfl )

and quadrupole contributions (A&,B~) to the
translational rotational coupling, and (ii) the rota-
tional susceptibility X~p(k) obtained in the pres-
ence of direct interaction D fl(k). The T depen-

dence of g p( k ) comes from that of J fl, the
single-site susceptibility. From Eq. (4.13) we see

that apart from the I/ks T factor, the T depen-

dence of X~fl( k) is determined by the single-site po-
tential Vo(n;). In the cubic phase, the electric field
and the electric field gradient vanish at the lattice
sites and therefore the only contribution to Vo(n;)
comes from the repulsive (steric) forces and be-

cause of the short-range nature of the latter only
the neighboring cations contribute to Vo(n; ). In
Fig lwe giv. e the (8,$) dependence of Vo(n;) for
KCN which shows the four minima along the
[111]and equivalent body-diagonal directions. The
maxima are along the [+100], [0+10],[00+1],and
the saddle points are along the [110]and its
equivalent directions. The values and the T depen-
dence of the different components of the single-site

susceptibility 7;; are determined by the strength of
the repulsion and will be discussed in detail later.
For the superoxides, there is an additional contri-
bution to Vo(n;) which comes from the splitting of
the orbital degeneracy of the 02 ion as the mole-

cule orients away from the symmetry directions.
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FIG. 1. Single-site potential Vo(0,$}for KCN. Vp(0 0)=9914 K (iilax) Vo(90 7r/4}=8350 K (min), where 80=54';
Vo(ir/2, n'/4)=8387 K (saddle point). 0 is measured from the [001] and P from the [100] axis.

A. Repulsion parameters and quadrupole moment

In the present and all earlier' ' ' calculations, C
and N atoms of the (CN) molecule have been as-

sumed to be equivalent so far as the strength of
atom-atom repulsion is concerned. In other words,
the repulsion parameter between a positive ion M
and any one atom of the CN molecule is given by

1 +(Cl )M-C( 1)M-N ~

C2 2 [(C2)M-C+(C2 }M-Nl '

(6.1)

Using Tosi-Fumi parameters for metal ions and
the parameters of Mirsky et al. ' for CC and NN,
we have calculated C~ and C2 and the values are
given in Table III. Bound et al. ' have used the
same values (excepting for a few minor differences}
in their molecular dynamic (MD) study. Actually
there are two sets of parameters given in the paper
by Tosi and Fumi; our final results are not very
sensitive to the choice of these two different sets.
The value ' of the quadrupole moment (Qo) of the
free (CN} ion is given in Table III. In their MD
study involving KCN molecules confined to a fin-
ite cube, Bound et al. ' found that in order to ex-

plain the orientational probability distribution

function (OPDF) they had to reduce the value of Q
by a factor f=0.5, i.e., Q=fQo. They argued that
such a reduction could arise from the charge redis-
tribution of (CN) ion when it is placed in a solid
environment. %hile this is an important physical
effect, the precise value of f depends on the nature
of the approximations made in obtaining the
OPDF. In particular, Bound et al. considered a
small system and did not allow for volume fluctua-
tions. Instead of using their value of f, we have
used a slightly different value, i.e., f=0.6 to fit the
long-wavelength elastic constant data for the three
compounds NaCN, KCN, and RbCN.

For the superoxides we find that the repulsive
forces are slightly stronger compared to cyanides
whereas the free-ion quadrupole moment is about
a factor of 2 smaller. These differences along with
the orbital degeneracy of the Oz ion are primarily
responsible for the experimentally observed qual-
itative differences between the cyanides and super-
oxides as regards the nature of structural phase
transition in these systems is concerned. In Table
III we also give the values of a quantity
AP=(24m. /5)Qo(v 2a) which measures the
strength of the direct intermolecular quadrupole
interaction. The repulsion and anisotropic disper-
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sion contribution to the direct interaction which
was found to be important for Na02 are not so
important for the cyanides because of large Q and
for the other superoxides because of a large value
of a. In the present calculation, repulsion and an-

isotropic dispersion contributions to the direct in-
termolecular interaction are ignored.

We would like to make a few comments about
the effect of the nonzero electric dipole moment
(& ) of the (CN) ion on the elastic softening at
high temperatures. Taking the calculated value '

of
~

&
~

=0.3D, we find that the strength of the
dipole-dipole interaction measured by the quantity
ed

——N /(av 2) =10 K which is a factor of 10
smaller than the quadrupole-quadrupole interaction
energy measured by e&

——Qo/(ai/2) -=100 K.
Therefore the dipole-dipole interaction can be
neglected while calculating g ~. The coupling be-
tween N and the fluctuating electric field E can
soften the phonons just like the coupling between

Q and the fluctuating EFG. But we have found
that for symmetry reasons the former does not

contribute to the softening of the elastic constants
because in the presence of this coupling only
N —No ~ k for k ~O.2 2 4

B. Rotational-translational couplinl
Ag, Bg, Ag, Bg

Knowing C, and C2 for the various compounds
we have calculated A~ and Bz using the expres-
sions of Michel and Naudts (MN). '6 For the sake
of completeness we have reproduced their expres-
sions for Aii and Bit in Appendix B. Our values
of Aii and Bii (see Table IV) for KCN are about a
factor of 2 larger than that given by MN and this
difference is due to the large value of Ci given by
Tosi-Fumi parameters. An important quantity
that determines the nature of the ferroelastic insta-
bility, i.e., which of the two elastic constants C~~
or C44 softens first, is the ratio Bii/Aii. This ratio
(see Appendix B) is given by

3f2 fo+ —(f)
—3—fi)

d

and depends upon the parameters (d/a) and (C2a).
For the cyanides 5ti- —0.25 (see Table IV) and it
turns out that if one considers repulsion alone, C~~

goes to zero at a higher temperature than C44.
The parameters A~ and 8~ depend on the values

of the quadrupole moment of the (CN) ion in the
solid. As has been pointed out before, there is
some evidence from the molecular dynamic stud-
ies ' of rotational autocorrelation functions in the
cubic phase of KCN that Q„i;d & Qo, the free-ion
value. For the entries in the Table IV, we have
used the value Q=0.6QO,

' this value was obtained

by making a reasonable fit to the experimental
values of elastic constants Cii and C~ over a large
temperature range. With Q=0.5QO (a value sug-
gested by Bound et al.) we were unable to obtain a
decent fit over the entire experimental temperature
range. Of course it is possible to change the value
of repulsion parameters slightly and obtain a dif-
ferent value for Q which gives an equally good fit.
However, our main purpose is to point out the im-
portant role of the quadrupole-fluctuating EFG in-
teraction on the elastic softening rather than to ob-
tain a very good fit to the experiment. It will be
pointed out later that anharmonicity and non-
mean-field effects are important and should be tak-

I

en into account for a better quantitative under-
standing of the experiment.

It turns out that the dominant contribution to
A~ and Bti comes from the nearest-neighbor posi-
tive ion. This is because the second and third
neighbors [see Eqs. (5.19a) and (5.19b)] make con-
tributions of opposite sign and almost equal
(within 0.1%) magnitude to Ag and B&. The
fourth neighbor's contribution is (7% of that of
the nearest neighbor. For the quadrupolar contri-
bution we find that

5g ——Bg(1+ )/Ag(1+ . ) =By/Ag

=—v'2/3 . (6.3)

The large value of ~5& (
compared to ~5it (

causes
C44~0 at a higher temperature than C&& if we
consider the quadrupole contribution to the trans-
lational-rotational coupling alone. The above
analysis concerning the competition between qua-
drupolar and repulsive forces in determining the
effective rotation-translation coupling suggests that
there should be interesting pressure effects because
of the different volume dependences of Aii, Bii and

A~,B~. Such a study is under present investiga-
tion.
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C. Isothermal rotational susceptibility g p

The temperature dependences of C» and C4' are
determined by X p(k). For the symmetry direc-
tion k=[00k] that we are interested in, X~p(k)
=5~t'X«(k) and furthermore in the limit k —+0,
which is relevant for the calculation of elastic con-
stants

X;;(0)=X,';/[1+D;;(k=0)X,';], (6.4)

where X;; is defined in Eq. (4.13). As has been dis-
cussed in the first paragraph of this subsection, the
T dependence of X;; is determined by the single-site
potential Vo(n;) Beca.use of cubic symmetry Xii

0 0 O 0=3722——7, and 733=~44 +55 ~t2 and the
2g

quantities TXii and TX" are given in Figs. 2(a)
and 2(b). Our results differ from that of MN even
if we use their Ci and Cz parameters and this
difference is due to a factor of 2 error in the calcu-
lation of their Vo(n;). In fact, their numerical
values of TXii and TX" given in Figs. 1 and 2 are
appropriate for a system for which Ci-=2Ci, a
value much closer to that obtained from Tosi-Fumi
parameters. However, for this stronger repulsion,

A' and Bz should be increased by a factor of 2.
This will change their results on T dependence of
C~~ and C44 drastically and spoil the agreement
with the experiment that they found.

In Figs. 2(a) and 2(b) we also give Ri ——X»/Xii
and R4 ——X"/X", Xii and X"being the eg and t'g
susceptibilities obtained in the presence of direct
quadrupole-quadrupole interaction. Using the
value of Q=0.6QO, we find that Dii(k=0)
=—704 K and D"(k=0)=235 K. From Eq.
(64}we immediately see that Xii/Xii &land

D. Elastic constants C~~ and C44
and transition temperature

Before presenting the results on the T depen-
dence of C»(T) and C~(T) and the temperature
where they approach zero, we would like to discuss
the importance of anharmonic effects on C» and

C~. It is well known that anharmonic effects
give rise to phonon-phonon interaction and renor-
malize the elastic constants, i.e.,

C;;(T)=C;;+5C;"(T) . (6.5)

At high temperatures 5C;"(T}= y; T For- .
alkali-halide crystals careful elastic constant mea-
surementsis have been made and it is found
that y~ ))y4. In order to incorporate anharmoni-

city effects in our calculation, we assume that

X"/X"&1 which indicates that direct intermolec-
ular interaction enhances Cii softening and
suppresses C44 softening. Over the temperature
range of interest 100 &T&500 K,
1.08&Xii/Xii & 1.13, and 0.6(X"/X"&0.9. Thus
effect of the direct interaction on elastic softening
is quite important for C" and not so for Cii
which is essentially due to the fact that
X"/X» = 10 in the temperature range of interest.
From Eqs. (5.22} and (5.23} we see that the effect
of direct molecular interaction is to decrease T"
and increase Tii, the actual amount of decrease
will depend upon other parameters like C~, C&&

and values of Xii,X". The maximum effect of
direct interaction on T;; in cyanides is found to be
-20%.

Cl

O

(b)

CV—O

~O
Xa=
XI-

Co

O

Co
O

I I

3
T(lO K)

O
O

3 ~ 4
T(~O K)

O

FIG. 2. Single-site susceptibility p»T and enhancement factor R )
——yl)(T)/yl)(T) for g symmetry (KCN) (b)

Single-site susceptibility &44T and enhancement factor R4 ——+44(T)/g~(T) for p2 symmetry (KCN).
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cyanidm are equivalent to bromidm2' excepting for
the nonzero translational-rotation coupling in the
former and therefore use

y;(MCN)=y;(MBr), M=Na, K,Rb . (6.6)

The values of yi and y4 are given in Table V.
In the presence of both translational-rotational

(tr-rot) coupling and anharmonicity effects, we
then have

2-
C44

KGN
1=expt

Q=O.SQ
Q=0.6QO

4 Q—ov5Q

C;, (T)=C;+5C;"(T)+5C ""(T), (6.7)

TABLE V. Anharmonicity parameters (y~, y4) bare
elastic constants {C~~,C44) and temperature Tf;, where
theoretical and experimental values are fitted.

NaCN KCN RbCN

y& (10 dyn/cm K)
y4 (10 dyn/cm K)
C]) (10" dyn/cm )

C~ (10" dyn/cm )

Tf,t (K)

0.26
0.019
5.749
0.752
473

0.27
0.013
5.115
0.470
453

0.28
0.008
4.022
0.411
380

where 5C "'(T) is given by Eqs. (5.22) and (5.23).
To calculate Cii(T) and C~(T) we need to

know the values of bare elastic constants Ci i and

C~. In their calculation' MN obtained C&& and

C44 by fitting to the experimental value of the
transition temperatures T44 and T&i. Since the
present theory is of mean-field nature and there-
fore does not include fluctuation effects, we have
obtained C» and C44 by fitting to the experimental
values of Cii and C44 at temperatures Tr„ far
above the transition temperature T, . The values of
Trt are given in Table V and those of T, in Table
I.

As has been pointed out earlier, the value of the

quadrupole moment that we have used in our cal-
culation is 0.6Qp compared to O.SQp used by
Bound et al. in their MD study. In Fig. 3 we give
C~(T) vs T for three values of Q, i.e., Q=O.SQp,
0.6Qp 0.75Qp in the absence of anharmonicity ef-
fects. We find that the temperature at which

C44~0 are & 100, 200, 300, respectively. In-
clusion of anharmonicity effects reduces the transi-
tion temperatures further although by only a few
percent. Since our theory of phonon softening is
of mean-field nature, we expect that inclusion of
fluctuation effects will reduce the transition tem-

perature still further for Q=O.SQp (away from the
experimental value F"= 156 K). The choice
Q=0.6Qp gives T',~„,& T*,„&, and a reasonable fit
over the entire range of the experiment. For
Q'=0.75Qp the agreement between theory and ex-

2 T('lo K) 5

FIG. 3. T dependence of C44 (in units of 10"
dyn/cm ) for KCN for different values of the (CN )

quadrupole moment Q =fQp, where Qp is the free-ion
value.

periment for T &)T is rather poor. For all the
cyanides, instead of choosing different values of
Q to obtain an optimum fit, we have chosen
Q= 0.6Qp. The overall agreement between theory
and experiment (to be discussed shortly) using this
value is quite good.

Before discussing individual systems separately
we make a few general remarks. If we consider
only the repulsion contribution to the translation-
rotation coupling, i.e., A~ Bg ——0, the——n we find
that Ci&~0 at temperature Ti~ which is higher
than T~ where C44 —+0. Thus the repulsive forces
tend to soften Cii much more than C44. Since Ci~
couples to order parameter Fi, one expects that
C» —+0 will imply a nonzero ( Yi ) in the ferro-
elastic phase. This corresponds to molecules
orienting along the z axis with a concomitant
tetragonal structure. Such a structure is not seen

in the cyanides but in the superoxides. If on the
other hand, we choose As Bit ——0 and Ag——,8~+0,
then we find that T44 p T&~ which is observed in
the cyanides. Of course as can be seen from the
Table IV, Az, 8+, A~, and 8& are all important
for the cyanides. The fact that in these systems

T44 p T&~ is due to the dominance of 8~ over 8&
and a significant reduction in Aq caused by nega-
tive A~. Since the quadrupole moment of the 02
ion is about a factor of 2 smaller than that of
(CN) and since the short-range repulsion is
stronger in the superoxides, we believe that the
qualitative features of the ferroelastic instability in
superoxides is determined by the short-range repul-
sive forces. However, for a quantitative under-
standing of the transition temperatures in superox-
ides, one has to include anisotropic (quadrupolar)
electrostatic forces and the effect of orbital degen-
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2.6-
NaCN KCN

C11
C11

1.8-

I I

2
T(10 K)

FIG. 4. T dependence of C~~ (in units of 10"
dyn/cm ) for NaCN. 1: experiment, 2: theory with
anharmonicity, 3: theory without anharmonicity.

2 3
T(10 K)

FIG. 6. T dependence of C~~ (in units of 10"
dyn/cm ) for KCN. 1: experiment, 2: theory with
anharmonicity, 3: theory without anharmonicity.

cracy of the superoxide ion.
In Figs. 4—9, we give the T dependence of C~~

and C44 with and without the inclusion of anhar-
monicity effect and compare with the experimental
result. For NaCN and KCN, the overall agree-
ment appears to be very good. In particular the
peak in C»(T) is understood in terms of a com-
petition between the two contributions to the re-
normalization of the elastic constants 5C~~ and
5C'~'~'". For a proper understanding of the T
dependence of C» it is important to include the
anharmonicity effect whereas for C44(T) this is not
so. For RbCN, inclusion of anharmonicity effects
in C~] gives a peak but at a much lower tempera-
ture than that seen experimentally. Our feeling is
that although our calculations bring out the impor-
tance of various physical effects it is necessary to
go beyond a simple mean-field theory for a com-
plete understanding of the elastic softening in the
orientationally disordered phases of molecular crys-
tals. In this regard we propose to extend the work
of Naudts and Mahanti on spin-phonon systems

and apply to molecular crystals.
The value of T44 is given in Table I. The effect

of including anharmonicity is to reduce T~ by
-10 K. Comparing the theoretical values of T~
with T~ (see Table I},we see that the agreement is
reasonably good in view of the mean-field nature
of the present theory. Particularly remarkable is
the trend in T44 in going from NaCN to RbCN.
The T dependence of elastic constants in CsCN are
not available but they will provide an additional
test of the present microscopic theory.

E. Softening of phonons over the entire
Brillouin zone

Strauch et al. have used the translation-rota-
tion (tr-rot} coupling model to calculate the pho-
non frequencies of NaCN and KNC at 300 K for
the three symmetry directions [(00], [Og'], and

[gg]. For the bare phonon frequencies which are
determined by the dynamic matrix M, they have
used a 10-parameter shell model. Translation-

NaCN

KCN

0.2- 0.2-

C44

0.1

C44

0-1-

3
T{10 K)

FIG. 5. T dependence of C44 (in units of 10"
dyn/cm ) for NaCN. 1: experiment, 2: theory with
anharmonicity, 3: theory without anharmonicity.

3 g 4
T(10 K)

FIG. 7. T dependence of C44 (in units of 10"
dyn/cm ) for KCN. 1: experiment, 2: theory with
anharmonicity, 3: theory without anharmonicity.
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20-
RbCN

Cg

15-

I

32
T{10 K)

FIG. 8. T dependence of C~~ {in units of 10"
dyn/cm ) for RBCN. 1: experiment, 2: theory with
anharmonicity, 3: theory without anharmonicity.

rotation coupling is incorporated by adding to M
a contribution 5M given by

5M+ 0
5M= (6.8)

where

5M+ ———vX v (6.9)

0.2-

c44

0.1-

32T{10'K)

FIG. 9. T dependence of C44 {in units of 10
dyn/cm ) for RBCN. 1: experiment, 2: theory with
anharmonicity, 3: theory without anharmonicity.

where u and X are the tr-rot coupling and rota-
tional susceptibility matrices discussed in Sec. III
of this paper. Only the nearest-neighbor contribu-
tions to v, i.e., the interaction between a (CN) ion
and its nearest-neighbor M+ ion was considered in
Ref. 39 just as in Ref. 16. Strauch et al. did not
include the direct interaction between the (CN)
molecules and therefore their renormalized phonon
frequencies are the same as those given in Eq.
(3.20) of this paper with X g k, to) replaced by X ti,
the single-site static susceptibility. Thus our re-
sults can be thought of as a generalization of their
work.

Since in the limit k~ 0, 5M+ gives the renor-
malization of elastic constants, the latter complete-
ly determines 5M+ provided only nearest neigh-
bors contribute to v~&(k). Then knowing 5Cii and

5C44 at T=300 K, one can calculate cv. z
—co. k

2 0
jk jk

for all values of jk at this temperature. Strauch
et al. had to use values of 5Cii and 5C44 different
from those obtained by Michel and Naudts' to fit
to the experimental data. In our analysis of the
short-range repulsion and quadrupole contribution
to v-+„(k) we found that because of near perfect
cancellation between second- and third-neighbor
contributions to v~&(k), considering only the
nearest-neighbor contribution to v~&(k), is an ex-
cellent approximation. However, both the above
mechanisms contribute to v~„(k). As we discuss
below our present calculations provide a micro-
scopic justification of the values of 5Cii and 5C44
chosen by Strauch et al. to fit to the experiment.
Since these authors, with their phenomenological
choice of 5C11 and 5C44, found excellent agree-
ment with experiment we wiB use their calculated

2 02
values of to.g —to. z as an experimental measure of
the phonon renormalization.

02
We define a quantity rJ ~ =(NJ'k —mJ'k)i/2/10i3

cps which is a measure of phonon renormalization.
We have calculated I J" for phonons propagating
along the [00k] direction by using Eq. (3.20) and
noting that the tr-rot coupling matrix (including
both short-range and quadrupole contributions) has
typically a form like Eq. (5.5) with k„=k» =0 and
k, =k, In Table VI the results of our calculation
of I J" are given along with those obtained from
the Fig. 1 of Ref. 39 where the phonon frequency
v=tv/2n is given in units of THz. Using the ap-
propriate polarization vectors of phonons given in
Sec. VC it is easy to see that I 1" for the LA and
TA phonons are determined by the rotational sus-
cept1billt1es of e& and t2g symmetries, respect1vely.
These susceptibilities in turn depend on the direct
Q-Q interaction D &(k) through Eq. (4.10). We
find that at T=-300 K inclusion of direct interac-
tion affects LA phonon softening by about 7%
whereas the TA phonons are affected by 5 —25%.
The TA phonons are influenced more strongly by
direct interaction because at this temperature

/g, -10, in spite of the fact that Dii(k) is
&g g—704 K at k =0 and 1955 K at k =knez and that

D~(k) is 235 K at k =0 and —652 K at k =knez.
As can be seen from Table VI, for LA modes our
calculated values of I J" are about 15—30%
higher than experiment. This difference is due to
the fact that for a proper calculation of phonon
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TABLE VI. Renormalization of TA and LA phonons along [00k] direction;
I"[(co') —(ro') ]' /10' cps; i =LA, TA.

k/km, „ I ~ (present) I " {Ref. 39) I "~ {present) I (Ref. 39)

0
0.2
0.4
0.6
0.8
1.0

0
0.24
0.42
0.49
0.35
0

0
0.35(5)
0.52
0.53
0.38(5)
0

0
0.71
1.12
1.11
0.71
0

0
0.61(5)
0.88
0.87
0.56
0

softening one has to include the frequency depen-
dence of X~p(k, ro). If one is far away from the
phase transition temperature, i.e., T & T, (this may
not be true for NaCN) then the frequency depen-
dence of X p(k, co) is determined primarily by that
of X~gco). The rotational dynamics at T=300 K
will be almost diffusive with a frequency scale
I"„,-0.5&10' cps, i.e.,

p2
X(k,ro)-X(k, 0)

I +N

On physical grounds one expects that for high-
frequency phonons (ro & c0„„1„,) the effect of tr-
rot coupling will be reduced from the values given
in Table VI. This will improve agreement between
theoretical and experimental values of roz~(k).

On the other hand, for TA phonons one finds
from Table VI that our calculated values of I J"
are smaller than the experimental values by about
7 —32%, the large discrepancy being in the low-k
region. However, because of the direct interaction,
the agreement with experiment (- Strauch et al. 's
work) is fairly good for large values of k. There-
fore, for the low-frequency TA phonons, if one ap-
proximates the rotational dynamics by a resonant-
type behavior, i.e., by

p2
X( k, a) ) -X(k, 0) I'+(~—~...)'

with I -co„„then one can improve the agreement
between experiment and present theory. There is
some evidence of the behavior of the form given
above from the MD calculation. ' For the high-
frequency TA phonons though, the quantity I J"
may depend sensitively on the values of X, ,

2g

D44( k), and the frequency scales involved and the
above-mentioned quantitative agreement should be
reexamined carefully. A quantitative study of the
phonon softening including. the proper frequency
dependence of X~p(k, co) is beyond the scope of the
present work.

F. Conclusion

In summary, we believe that the anomalous ther-
moelastic properties and softening of phonons in
the orientationally disordered phase of the cyanides
can be adequately described by the tr-rot coupling
model. 's' The physics of these systems depends
sensitively on the competition between the short-
range repulsive and anisotropic electrostatic
(predominantly quadrupole-EFG interaction)
forces. ' Furthermore, anharmonicity effects are
also important for a proper understanding of the T
dependence of C&&. For the phonons in general, it
is necessary to include the retardation effects by
considering the frequency dependence of the rota-
tional susceptibility X p(k, co). Fluctuation effects
not included in the present mean-field theory ap-
proach should be considered for a better quantita-
tive understanding. We propose to extend our
theory to CsCN which has a different high-T cubic
structure and see if we can understand the large
ferroelastic transtition temperature ' Tc,&N-200
K. Finally for the alkali superoxides (which will
be discussed in detail in a separate paper) short-
range repulsion dominates over the quadrupole
coupling and the orbital degeneracy of the superox-
ide ion plays an important role.

ACKNO%'LED GMENTS

We thank Dr. G. Kemeny and Dr. J. Naudts for
helpful discussions. This work was partially sup-
ported by NSF Grant No. DMR 81-17297.

APPENDIX A: ROTATIONAL- TRANSLATIONAL
COUPLING FROM QUADRUPOLE

EFG INTERACTIONS

In this appendix we evaluate the coupling con-
stant matrices arising from the contribution of
various NN's to the electric field gradient. We ex-
plicitly consider the cases u = 1 and a =4, other
terms being readily obtainable from these by sym-
metry considerations.
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1. First NN contribution

From (5.16), choosing the origin at R;

U~(az) = —U~( —az) = — 2uj„. . . .
ZZ 2Z 4

(Al)

S„
u', „"o(+

~
k), =2Ag S,

—2S,

Similarly for +=4,

(A4)

We use (5.6), (5.15), (5.17), and (Al) and express
the displacements uj in terms of their Fourier
components and obtain for a = 1 [see Eq. (5.6) for
the definition of S„,C„, etc.]. We have

U (az)= —U„,( —az)=- uj„, . . . ,a4
(A5)

g QY4(n;)U4 2iBg——g Y4(k)[u„(k)S,+u, (k)S„],

(A6)

g QY&(n;)U'~ 2iAg——g Y~(k)[u(»k)S»+uy(k)Sy
k

—2u, (k)S,],
(A2)

where

Bg ———&2/3Ag,

and therefore,

(A7)

where

Ag ——V'9n /5 Q I
e

I

so that

(A3)

S,
u4„(+

~
k)( ——2Bg 0

S„

Hence we obtain

(A8)

AgS~

u ~ (+
~
k)) ——2 AgSy

—2AgS,

—AgS„BgS~ BgS, 0

AgSy BgS„O BgS,
0 0 BgS„BgSy

(A9)

2. Second NN contribution (A12)

From (5.16) we again obtain

U (ax+ay)= —U ( —ax —ay)

2 Q
st 4("j +"jy)

U~(ax —ay) =—U ( —ax+ay)
(A10)

S„(3C,—2Cy )

u(q ( —
~

k)2 ——2Ag Sy(3C, —2C„)
—S,(C„+Cy)

Similarly with

(A13)

allcl

QQY)(n;) U')

3/e
/

2 asn 4("J» "jy) ~ Bg —— ~Bg,

we obtain

(A14)

where

=i2Ag g Y, (k)[u„(k)S»(3C 2C )
k

+uy(k)Sy(3C, —2C„)

+u, (k)S,(C„+C )],
(Al I)

S»«» —4Cy)

( —
~

k)2 ———,Ag Sy(4C„—C, )

5S,(C„—Cy )

Sy (3C„—2C» )

( —
~
k)2 ——2Bg S„(3Cy—2C»)

0
(A15)
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S,(3C —2Cy )

( —
i

k)q ——28g 0

S» (3C» —2' )

S,C„Cy

u4p (+ I
k)s ——28g ——,S»Si,S,

S„CyCz

and

0

ups ( —
i
k)2 ——28g S,(3'—2C„)

Sy(3C» —2C» )

(+
~
k}i——28g

——,S„SySz

SzCx Cy

SyCzc„

3. Third NN contribution

Defining

8A= — Ag,
27& 3

88=— ~Bg,

we obtain the following terms for the coupling
constant matrix:

S„cycz

u)~ (+
~
k)3 ——2Ag SyC»C,

2SzCx Cy

(A16)

(A17)

APPENDIX B: ROTATIONAL-TRANSLATIONAL
COUPLING PROM SHORT-RANGE REPULSION

Fquations (A13) and (A15) of Ref. 16 are

correct. There is an error of a factor of 1/~2 in

Eq. (A14) where Ba =8 is ex—pressed in terms of
P'"(a, ;Q},but the other equations are correct.
The parameters A and 8 (which are Aa and Ba in

the present paper) are

Aa =A =~5m C, C,(d'+a')

X[a(3'—fo)+d(f i
—3fi)] I)

Ba =—8=—i/30irC, C2(d'+a') ' 'd(fi —fi)
(82)

where

—S„CyC,

uqq (+
~
k)i ——2Ag SyC, C»

0

f g(»+1)J+(1~2)»e—
hPd+v'j —g

a =C (d'+a')'"

g=2da/(d'+a') .

(B3)

(84)

ups (+
~
k)i ——28g

SyCzC„

S„Cycz
5——,S~SyS,

(A18)
In the above equations C~, Cq are the repulsion
parameters discussed in Sec. VIA of the text, 2d
is the internuclear separation, and a is the distance
between the (CN) ion and its nearest M+ ion.
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