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Variable range hopping in one-dimensional metals
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Mott variable range hopping in one dimension is analyzed for a chain with a uniform

distribution of localized states. We calculate the distribution of the largest hopping prob-
abilities from states at the Fermi surface. The activated resistivity of Kurkijirvi is found

to be an asymptotic limit valid for very long chains and low frequencies. An important
anomalous hopping regime is found for intermediate lengths and times which crosses over
into the quantum-mechanical regime. Experimental situations in anisotropic materials
and for long wires and the relationship of the classical and quantum-mechanical frequen-

cy dependence are also discussed briefly.

The purpose of this paper is to study Mott vari-
able range hopping' for a one-dimensional (1D)
metal. The problem is of interest for a number of
reasons. One has to consider a finite-teinperature
variable range hopping regime if one wants to
understand experiments relevant to the quantum-
mechanical zero-temperature anomalies in the
resistance of one-dimensional metals. We are
largely motivated by the feeling that one should
also be able to understand the curious temperature
and frequency dependence observed in anisotropic
quasi-one-dimensional metals ' from this point of
view. The experimental results seem to agree very
well with the predictions of a phenomenological
model with a distribution of activation barriers. '
There is, however, no obvious reason why a model
of this type should be applicable. The problem is
also of interest in its own right.

A random potential is expected to lead to the lo-
calization of all eigenstates in a 1D metal. " As a
result the resistance is expected to increase ex-

ponentially with length and to show large fjluctua-

tions. Thoulless and Abrikosov and Ryzhkin
have considered the finite-temperature effects in

perturbation theory. This represents the onset of
the effect of localization and should be followed by
a hopping regime at lower temperatures. The
standard Mott-type variable range hopping argu-
ments are, however, not applicable in 1D. The
conductance of a long one-dimensional system is
dominated by fluctuations, i.e., by rare high-
resistance regions along the chain. In essence the
reason for this is that the percolation density in 1D
is unity- and critical-path analysis' therefore does
not apply. This was noticed by Kurkijarvi, who

was able to show that the zero-frequency resistivity
of an infinite line should show a simple 1/T ac-
tivated behavior. %e want to calculate the time
(or frequency) dependence and the finite-length ef-

fects in the hopping regime.
We shall follow Kurtdjarvi and assume a uni-

form distribution of localized levels in energy and
along the chain. %e also neglect quantum-
mechanical fluctuations and assume that all eigen-
functions decay exponentially with the same "lo-
calization length" (l). We shall calculate the pro-
bability distribution for the most probable hop
from a localized level at the Fermi surface. We
then use the techniques developed recently to treat
classical transport in 1D in the presence of ran-
domness' ' ' to predict the frequency, length,
and temperature dependence following from this
distribution. An explicit effective medium calcula-
tion is being published elsewhere. ' We emphasize
that this is a purely classical calculation. In par-
ticular the frequency dependence we derive is that
due to the distribution of hopping times as, e.g., in
Ref. 14. Quantum effects for which the energy is
supplied by the radiation field ' are not con-
sidered.

%e assume that the hopping probability from a
state of energy E„centered at n to a state at m (of
energy E ) is given by

=expI —[(
~

n —m
~

—1)/l

(E„E)/T]I, ——

where Boltzman's constant is taken equal to unity
and distances (n, m, l) are measured in units of an
elementary translation distance, and transition rates
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(W) in units of the preexponential factor which
should otherwise show up in Eq. (1). As noted, the
localized eigenstates are all assumed to decay ex-
ponentially with decay constant 1/2l. It is evident
that Eq. (1) implicitly assumes long hops
( [ n —m

~

/l &&1).
We further assume that the localized states are

uniformly distributed in energy and along the
chain and their distribution at different sites is in-

dependent. The probability of finding a level of
energy E centered at n is thus always given by the
density of states N(0). As a result there is a
unique energy scale describing the level spacing,

and p„(W) =(dlnQ)/(d W) is the probability that
one can indeed hop to n with a rate 8'. This im-
mediately implies a cutoff:

p„(W):—0, Q„(W)=l,n/l& ~lnW~ .

For smaller n one finds

p„(W) =TN (0)/W

Q„(W) =expI —[N(0)h(n, W)]J,
where we have defined the level spacing required
to give W for separation n:

8=[N(0)l] (2)
h(n, W)= T[lnW+—(n —1)/l) &0,

which determines the scale for the activation pro-
cesses. We assume low temperatures,

T/8 «1, (3)

(4)

where Q„(W) is the probability that there is no lev-

el at n such that

Wp „&F

and also, implicitly, that the mean free path for in-

elastic scattering ' is large compared to l.
The assumptions for the distribution of levels

are obviously an oversimplification. In particular
the fact that the distance

~
n —m

~

determines a
minimum level separation is neglected. This is not
important for the regime we are considering.

We make two further assumptions:
(a) We consider only activated hops from the

Fermi surface (E E„&0) and—neglect the effect
of the (rapid) downward jumps.

(b) For each site we only consider the largest of
all available W„(to the right and independently
to the left)—for example, W„.

We shall calculate the probability distribution of
the 8'„and shall then consider the transport pro-
cess determined by this distribution using the ideas
and techniques of Ref. 14.

We feel that this is, at least qualitatively,
correct. The one-dimensional conductance is dom-
inated by those hops for which W is very small be-

cause of fluctuations in the distribution of levels.
This is precisely the effect which is emphasized,
and described correctly by our approach.

We first calculate the probability distribution

p( W) that the largest hopping rate from a site (say
the origin) is W. This can be written:

p(W)= m' Q„(W) g p„(W),
n=1

ll =1

remembering that ln8' & 0.
Substituting the expressions (7) and (8) in Eq. (4)

gives

T —ln W+ 1/lpW=

T —
2 in@'

&& exp — (ln W) —2
2e l

lnW&0. (10)

I
i
ln W

i
»1,

so that

p(W)= ——
8'

)&exp — (ln W)28
(12)

This is the expression we shall use in the follow-

ing. One notes that p( W) has a maximum for

W =exp( 8/T) . — (13)

The distribution in Eq. (12) [and Eq. (10)] has
the nice property that the distribution of hopping
times (r= W ') has exactly the same form as the
distribution of rates.

It is fairly straightforward to generalize this cal-
culation to initial states of arbitrary energy (E„)
and including the Fermi distribution of available

We are interested in low temperature, where long
hops dominate and can therefore assume
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empty states. Using the complete results would
considerably complicate our discussion of the
transport process below without changing anything
of substance. The important small 8' are for
jumps from the Fermi surface and are correctly
described by p( W) [Eq. (12)].

We first calculate the resistivity of an infinite
chain with this distribution of (independent) hop-

ping rates. This seems reasonable. Implicitly one
is considering hopping between sites at the Fermi
level and assumes that the nearest-neighbor (NN)

hopping rates are controlled by the activated pro-
cess described. It follows from the definition of
the 8' that one can never "skip" a nearest neigh-

bor. (There are, however, delicate problems with

detailed balance which we shall disregard. ) We as-

sume that a chain with a probability distribution

p( fV) for nearest-neighbor hopping rates will

describe the transport properties correctly. To cal-
culate the transport properties we need averages of
the type':

We have only included the most probable hops
and neglected the contribution to the transport of
downwards jumps. Thus Eq. (19) should be re-

garded as an upper bound on the resistivity. It
should be compared with Kurkijarvi's lower
bound

pz & exp(8/ST) . (20)

One needs more than Ez. steps to have a small
variance for the resistance of a finite chain. Using
Eq. (1S) this can be expressed as a length

While the average resistivity is well defined and
activated one must worry about statistical fluctua-
tions. From the expression for the moments [Eq.
(15)] it is evident that these can be large, and will

only average out for sufficiently long chains. One
can define a step number

X,= ( I /O') /(I/O)'=(2T/~8)'"e'".
(21)

( I/W"), = ——f — (inW/W") L,,=S,X,=2''". (22)

&(exp[ —(T/28)(lnfV) ] .

R ~ (1/8') =(2mB/T)' e (16)

To calculate a resistivity we have to remember
that there is a distribution of hopping distances.
The average distance for a given 8' is

(14)

The integrals are immediate and the result can
be expressed in terms of exponentials and error
functions. To leading order in the assymptotic ex-

pansion of the error function one has

(I/W")z-n(2n8/T)'i exp(n 8/2T) (15)

with corrections of order T/n 8. In the rest of
this paper we will mostly evaluate similar integrals
to this order without stating this explicitly.

Thus the average resistance per step is

One expects to observe the average resistivity
only for chains longer than Lz. For shorter chains
fiuctuations are important and one has to consider
the predictions more carefully. Even the condition
L &Lz is not really sufficient. It assures a small
variance but, because of the factor n in the ex-

ponent of Eq. (15) sufficiently high moments are
always large, for any length. While this is intrigu-

ing and somewhat similar to the problems one has
in the quantum-mechanical problem, one does not
expect important experimental implications. For
chains long enough to assure a small variance the
probability of finding a chain with a resistance de-

viating from the average value (pr) becomes very
sma11. '

Equation (21) also implies that one needs very
long times (or low frequencies) to observe the ac-
tivated average behavior. We can estimate the
time scale by considering the time required to dif-
fuse a distance L&. We write

S( W) =(—I in@'+1)/2, (17)
Dz-~p ~ Nz-,2 (23)

using the fact that all p„(W) are equal [Eq. (7)].
Combining (17) and (12) leads to an average step
length:

DT ~RT ((1/~) T) (24)

where Dz is a diffusion constant and is given by

S7 ——l(2ir8/T)'i

Thus the resistivity becomes

q, =Z, r'S, =l e 6/2T

(1S)

(19)

because for segments of this length the averages
are adequate. Thus using Eqs. (16) and (21) in Eq.
(23)

r&~R&X&-(ST/mB)'~ exp(58/2T) . (25)
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For times shorter than rr the fluctuations be-
come important. The conditions we have found
for observing the average activated Kurkijarvi
behavior:

co '=t &&r&, L ~~L& (26)

ln(R ),=I./1 (27)

for the model we are using, consistent with the
Landauer result. We want to compare this with
the hopping result at finite temperatures. For a
finite chain there is an intrinsic cutoff on W:

W& WI -e-~~', (28)

i.e., one can always hop directly to the end of the
chain with a rate of order WI . Since the probabil-
ity distribution of hopping rates for short hops is
not modified, we can write for such chains

become quite stringent when 8/T becomes
large —i.e., at low temperatures. For shorter chains
(L &Lr) or at higher frequencies (cour & 1) the
averages do not give an adequate description. In
the following we shall try to determine the finite
length and frequency properties under these condi-
tions. We do this using the heuristic scaling argu-
ments suggested in Ref. 13 and discussed in more
detail in Ref. 10 and in Sec. IX of Ref. 14. While
these arguments are certainly not rigorous they
should give a fairly accurate description of the
qualitative properties.

Consider first the zero-frequency conductance of
a one-dimensional system of finite length. At zero
temperature one would have

(1/W)L (Rr, (32)

so that the average resistance is not modified drast-
ically but fluctuations (in an ensemble of chains)
become large.

The results are quite different when WL becomes
smaller than the value of W at the maximum of
p( W) [W,„ in Eq. (13}].This happens when

L/1 &8/T . (33)

T/8 & (1/L) (35)

pL, becomes of order unity [Eq. (30)'l and one finds
the quantum-mechanical "zero-temperature"
behavior [Eq. (27)]. Since quantum-mechanical
fluctuations were not included in the initial model
we find no fluctuations in this limit. There is,
however, an intermediate situation:

The integrals are straightforward and one finds

(1/W")L, -CPL /WI"

=C expI —[(T/28)(L/l)i nL/—l]I

(34)

again to leading order (in [n (8/T) —(L/1)] ') in
the asymptotic expansion of the error functions.
The constant C is of order unity.

This is a somewhat strange result. The averages
(34) are computed with the distribution pL ( W) [Eq.
(29)]. They include the contribution of those
chains for which there is no proper hopping. The
fraction of such chains is PL. At sufficiently low

temperatures

p, (W)=p(W), W& W,

pL ( W) =pL, 5(W —WL ), W( IVY"

where p( W) is given in Eq. (12) and

pI. ——I p(W) dW=exp[ —(T/28)(L/1) ]

(29}
(1/L) &T/8&1/L

for which only the inequality (33) holds. Since pI.
is small, transport for most chains is by hopping.
The average resistance per hop is then given by

RL, ~ (1/W)L, -(I/WL, )exp[ —(T/28)(L/1) ]

(30)

is the total probability of finding W & WI in the
original distribution.

There are three distinct regimes as a function of
L or T. For relatively long chains

Lr &L &18/T, WL, &Rr (31)

where Lr and Rr are given in Eq. (16) and (22),
respectively. Averages of the type (1/W")L com-
puted with the truncated distribution pI ( W) are
then not sensitive to the truncation. They are still,
roughly, represented by Eq. (15). In particular,

N, =(I./S, ) = [(L/1)'(T/8)]'" (38)

and fluctuations are large

(1/W )I /(1/W)z-exp(T/28)(L/1) »NI
(39)

(37)
much smaller than 8'~ '. One thus has, for most
chains, a proper hopping regime with a resistance
decreasing with T.

The average step length is still given by Sr [Eq.
(18)] with exponentially small corrections [in
(T/28)(L/1) ]. Thus the average step number is
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for most of the range (36).
To obtain the distribution of resistances of lines

of length L one would have to supplement these
considerations by the requirement that the sum of
all hopping distances cannot exceed I.. This gets
fairly complicated because there is a wide distribu-
tion in the number of hops required to traverse the
line, which is correlated to the W of the separate
hops. We only note that even the average resis-
tance is not necessarily proportional to
Ni. (1/W)r, . The calculation of the frequency
dependence on the infinite line, which we describe
below, avoids most of these difficulties.

The distribution we have derived [p( W), Eq.
(12)] is similar to that obtained from a truncated
activation barrier distribution' which has been
used successfully in interpreting experimental re-
sults in anisotropic quasi-one-dimensional metals.
We shall use a self-consistent scaling argument to
determine the frequency dependence in the present
case. Similar arguments were presented in Ref. 13,
in Sec. IX of Ref. 14, and in Ref. 10.

We consider a diffusion process on the chain
controHed by the distribution p( W). One notes
that the small W (for example, smaller than 8;)
are rare. They constitute a fraction

p, =I p( W)d W= exp[ —( T/28)(ln W, ) ]

(40)

of all hops. Thus a diffusing particle must, on the
average, transverse

from the truncated distribution

p, (W)=p(W), W& W,

p, (W)—:0, W& 8', .
Thus,

(44)

D, '=(I/W}, =I dW.8' (45)

Explicitly, one can choose a cutoff value W, . Us-

ing (41) and (45) in Eq. (42) then determines a rela-

tionship between t and 8'„
t(W, )=(i(W, )/D, =pi(W, )(1/W), . (46)

Int =(8/2T)+21', (47)

to leading order in the expansion of the logarithms.
This is certainly the case when g & Nz [Eq. (21)]
but qualitatively also as long as g& NT . This is
equivalent to the requirement

This can be used to eliminate 8', and express D,
explicitly in terms of the diffusion time t For .the
distributions of hopping rates considered in Ref. 10
this led to anomalous power-law behavior. In the
present case the explicit expressions are cumber-
some and not very illuminating. We therefore
present the results in a different form.

For sufficiently long t the cutoff (W, ) becomes
small and (1/W}, becomes essentially indepen-
dent of IY, . One then has regular diffusive
behavior

gi(W, )=p, '=exp(T/28)(lnW, ) (41)
ilnW, i

&8/T . (48)
successive steps along the chain before meeting
such a small W ( & W, ). We note that gi is de-

fined as a number of steps and not as a distance.
On the other hand it is evident that a diffusion
process will only spread out over some finite num-

ber of steps (g, ) in time t. If g, is smaller than

gi( W, ) most particles will not encounter any sites
with 8' smaller than O', . One can therefore disre-

gard these small W in describing the diffusion pro-
cess for short times [such that g, (g'i( W, )]. In
general this will imply a time-dependent diffusion
constant. We write

The argument is essentially identical to that we

presented for finite-length chains when the inequal-

ities (31) hold. The range in t can be determined

by substituting NT (or Nz ) for g in Eq. (47):

lnt & , (8/T) (or —,(8/T))—

essentially equivalent to the estimate we had in Eq.
(25).

Consider now the intermediate range of times
given by

2

and try to make the argument self-consistent.
When

(42)
8/T & i

ln W, i & (8/T) '

This is analogous to the intermediate lengths
described by Eq. (36). One finds

(50)

k~ &k(Wc»

we can disregard the small 8' and compute D,

(43)
(I/W" },=CexpI —[(T/28)(lnW, ) +n InW, ]J,

(51)
where
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Tin%,C=i+ i+ n8 =2. (52)

time behavior, i.e.,

8/T & (lnW, ) (64)

Using (51) and (41) in Eq. (42) gives

lnt =(T/28)(ln W, ) —ln W, (53)

and explicitly from the expression for g& [Eq. (41)]

It can be seen from Eq. (40) that this implies p, =l
or [Eq. (41)] gi( W, )=1. The statistical self-
consistent approach becomes meaningless. It can
be seen [e.g., from Eq. (53)] that this corresponds
to

in(=(T/28)(lnW, )i . (54)
(Int) &8/T . (65)

This should be used to eliminate (ln W, } from Eq.
(53). Now, from (50)

~
(T/28}lnW, [ &1, (55}

and the leading term on the right-hand side (rhs)
of (53) is

~
lnW,

~
. To this order:

in)=(T/28)(lnt)z .

This can also be written
I

g{r) rA )

where

v(r) =(T/28)in' & —, .

(56)

(57)

(58)

lnt =[(28/T)in/]'~, in/ &&8/T . (59)

This crosses over smoothly into the long-time dif-
fusion regime (47).

We note that the argument is self-consistent also
with respect to fluctuations. From Eq. (41) and
(51) one finds

[(1/W ),/(1/W), ]/g, ( W, )= 1 . (60)

Thus the number of steps gi( W, ) also assures that
fluctuations in the resistance will not be too large.

An alternative description of the results is in
terms of the time (t} or distance (g} dependence of
the diffusion constant:

lnD =—1n(1/W}, =(T/28)(lnW, ) +lnW, ,

so that using Eq. (53),

The inequality on the rhs of (58) follows from (50).
One thus predicts anomalous diffusive behavior in
this time domain. To match to the long-time dif-
fusion described by Eq. (47) it is convenient to in-
vert Eq. (56)

The dynamics for this short-time regime is con-
trolled by the average hopping rate (( W}).

It would be fairly straightforward to present the
time-dependent regime in more detail. One can,
for example, translate from the number of hops (g)
into real length using the proper averages of the
hopping distances s ( W) [Eq. (17)]. We present
elsewhere' a numerical determination of the
frequency- and temperature-dependent conductivity
using an effective medium approach and the distri-
bution p( W) [Eq. (12)].

Our main results are the following:
We have found that the activated Kurkijarvi

resistivity must be regarded as an asymptotic lim-
it. It is valid only for sufficiently long chains and
long time [Eq. (26)].

One predicts an anomalous intermediate time re-
gime with a time-dependent diffusion constant and
a corresponding intermediate length regime. Both
can still be regarded as proper variable range hop-
ping.

Comparison with experiments requires some fur-
ther comment. For quasi-one-dimensional chain
structures the average spacing 8 is found to be
fairly large and, as noted in the introduction, one
seems to observe an anomalous hopping regime
similar to the one predicted. Detailed comparison
is difficult because of crossover to three-
dimensional behavior and the interference of the
Peierls transition, but also because it is not obvious
that the barriers observed are actually of the type
we discussed and are not, e.g., due to interruptions
in the one-dimensional chain structure.

For long wires the difficulties are of a different
origin. Taking account of the finite cross section
of the wires (S) one must replace Eq. (2) for the
level spacing by

lnD =—lnt[1 —(T/28)(lnt)] &0, (62) 8=[lN(0)S] (66)

or equivalently from Eq. (54),

lnD =in/ —[(28/T) in/] '~ (63)

Finally we want to comment on the very-short-

This tends to make 8 very small. Discussions of
these experiments' usually assume that the Thoul-
less length [L=uy(~;~, }' ] is short compared to
the localization length (l). Implicitly they also as-
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sume that T/8 is large so that localization has no
effect on the inelastic scattering time (r~). Both as-
sumptions seem justified for the actual experimen-
tal situations. To observe variable range hopping
one would presumably need even thinner wires (to
increase g or much lower temperatures.

We have neglected quantum-mechanical effects
in two ways. Near the crossover to the exponential
regime [Eq. (35}]quantum-mechanical fluctuations
must become important. Probably more interesting
is the competition between the quantum-
mechanical frequency dependence (e.g., Refs. 4 and

16}and the classical anomalies we predict. The
latter must dominate at sufficiently low frequencies
but the detailed comparison is model dependent
and involves parameters which we did not specify.

The classical frequency scale was factored out in

Eq. (1). Our model also omitted correlations
which are crucial for the quantum-mechanical
problem. Thus a careful calculation on a more
specific model is required for this comparison.
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