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Theory of ferromagnetic resonance and static magnetization in ultrathin crystals
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A theory of the static magnetization orientations Oo and of the ferromagnetic resonance
fields H, in ultrathin ( & 50 A) monocrystalline films is presented. Both Oo and H„, are
shown to depend crucially on the magnetocrystalline surface anisotropy, and a generaliza-
tion of this anisotropy is proposed. The equation of motion of the magnetization is com-
bined with the general exchange boundary condition, and realistic approximations are in-
troduced in order to obtain closed algebraic expressions for Oo and H„,. The spatial de-
pendence of the oscillations in the presently calculated resonance modes do not represent
spin waves but nondissipative exponential decays perpendicular to the film surfaces. The
film thicknesses 2L are so small that the films are "beyond spin-wave cutoff. " It is shown
that the angular dependence of H, differs strongly from that predicted by the uniform
mode theory and that H, is a linear function of 1/L rather than independent of L. An
extension of the theory to somewhat thicker films is also presented.

I. INTRODUCTION

In this paper we predict the existence and prop-
erties of a certain magnetic resonance mode which
can be induced in an ultrathin ferromagnetic crys-
tal by its surface anisotropy. This mode will
henceforth be referred to as "the" surface-induced
mode even though it is related to surface wave
modes discussed previously. We find that while

the surface-induced mode does involve exchange
interactions, it differs significantly from the spin-
wave resonance modes usually observed in thin
films as well as from all ferromagnetic resonance
modes. An important property of the surface-
induced mode is that in this mode the spatial
dependence of the oscillations represents neither
standing nor propagating waves but solely a non-

dissipative exponential decay. Specifically, we find
the entire spatial dependence of the oscillations to
be proportional to exp(kri), where k is a real num-

ber and g is a distance measured perpendicular to
the crystal surfaces. The basic reason for this type
of spatial dependence is the nature of the surface
anisotropy. As shown by Eqs. (4.30) and (4.31) de-
rived in Sec. IV, we find that for appropriate signs
of the surface-anisotropy constants and appropriate
orientations of the static magnetization, the fer-
romagnetic resonance field is larger than that ob-
tained if the surface-anisotropy constants are zero.
This means, according to Eqs. (4.31) and (4.9), that

k is positive so that k is indeed real rather than
imaginary. It should also be noted that if the crys-
tal thickness is small compared to 1/k, we may re-
gard the crystal as being "beyond cutoff" for spin-
wave resonance. This is somewhat analogous to
calling an electromagnetic waveguide beyond cut-
off if its transverse dimensions are small compared
to the wavelength of interest.

The particular problem posed and solved in this
paper concerns the effects of surface anisotropy on
the static magnetization orientations and on the
ferromagnetic resonance fields in an ultrathin crys-
tal. By ultrathin we mean a thickness which is
typically less than about 50 A. In Sec. II we speci-
fy an appropriate form of the equation of motion
of the magnetization and of the equation express-
ing the exchange boundary condition. Also includ-
ed in Sec. II is a generalization of the phenomeno-
logical representation of surface anisotropy.

Section III contains a static solution of the two
above-mentioned equations. This so&.ution de-
scribes the static orientations of the magnetization
and predicts that these orientations are similar to
those existing in a ferromagnetic domain wall. In
Sec. IV A we present a dynamic solution of the
two equations which describes small-amplitude os-
cillations of the magnetization. This solution
predicts the ferromagnetic resonance field arising
from the surface-induced mode and shows that
along certain principal crystallographic directions
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the resonance field is not constant but a linear
function of the reciprocal of the crystal thickness.
Another qualitatively new prediction contained in
this solution is that the angular dependence of the
resonance field associated with the surface-induced
mode differs strikingly from that associated with
the uniform mode. Specifically, the crystallo-
graphic directions which appear to be magnetically
easy and hard when investigated by means of the
uniform mode may become magnetically hard and

easy, respectively, when investigated by means of
the surface-induced mode. It should also be noted
that by introducing realistic approximations we are
able to express both the dynamic and the static
solution in closed algebraic form.

Section IV B is devoted to generalizations and
discussions of our theoretical results on the reso-
nance field. In particular, we extend our calcula-
tions to situations in which the volume anisotropy
consists of a growth-induced, as well as an intrin-

sic contribution, to crystals which are not ultrathin
but still sufficiently thin to prevent spin-wave reso-

nance, and to cases in which the orientation of the
static magnetization is arbitrary rather than paral-
lel to a principal crystallographic direction.

The present work was motivated by ongoing fer-

romagnetic resonance experiments carried out at
the Naval Research Laboratory' on ultrathin iron
crystals grown by molecular-beam epitaxy on galli-

um arsenide substrates. A comparison between ex-

periment and theory is included in Ref. 1 and aug-

mented in Sec. IV B of the present paper.

II. BASIC EQUATIONS AND GENERALIZED
SURFACE ANISOTROPY

Figure 1 shows the coordinate systems used in

our calculations of the static magnetization orien-

tations and of the ferromagnetic resonance fields.
The axes of the x,y,z system are parallel, respec-

tively, to the [100], [010],and [001] axes of the cu-
bic crystal, and the g and i) axes of the g, i), z sys-

tem are parallel, respectively, to the cubic [110]
and [110]axes. Also shown are the planes il =+I.
which are assumed to bound the crystal along the

rl axis. Along the g and z axes the crystal is as-

sumed to be unbounded. It is further assumed that
the applied static magnetic field H is always paral-
lel to the (110) crystal faces and oriented at an an-

gle 1(t with respect to the [001] axis. These crystal
faces are assumed to be ideally flat and devoid of
"islands. " No time-dependent magnetic field is

x—= [

f = [IIO]

FIG. 1. Orientation of the applied static magnetic

field H, the instantaneous magnetization M, and the
monocrystal of thickness 2L with respect to the coordi-
nate systems used in the calculations.
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where

M
u = = 1 ~Q~+ 1 @gal+ 1 gIMg

M
(2.2)

is a unit vector along M and i „,i z, i, are unit

used because we are concerned with free oscilla-
tions only. The instantaneous orientation of the
(position-dependent) magnetization M is described

by the polar coordinates 8 and P.
Throughout this paper the crystal is assumed to

be bcc iron. For a different crystal or for a config-
uration differing froin that of Fig. 1 the calcula-
tions would differ only in detail. Our assumed
surface-induced mode may still exist, of course, be-

cause such a mode merely requires a nonzero sur-
face anisotropy whose coefficients have appropriate
signs and a crystal thickness 2L which is suffi-
ciently small.

For the equation of motion of M we use the
Landau-Lifshitzz equation and write it in the form
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8 . 8 . 8
8 8 8Q» Qy Qz

Since the dimensions of the crystal in the gz plane
are assumed to be infinite, we may write

(2.3)Hd, ———4n.(M i „)i „,
where i z is a unit vector along the q direction.
We further assume that the orientation of M varies
solely with rl so that V can be replaced by 8 /Bg .
For E,„; we use only the term

2 2 2 2 2 2+i (uzuy +uy uz +uz uz ) (2.4)

where Xi is the first-order cubic anisotropy con-
stant. This restriction is made partly for the sake
of simplicity and partly because in bulk iron, at
least, all uniaxial volume-anisotropy terms are ab-
sent and the magnitude of the second-order cubic
term Kzu„u~u, is presumably small (albeit non-

negligible) compared to that of the Ki term. In
epitaxially grown monocrystalline films, however,
part of the volume anisotropy may consist of a
magnetoelastic term originating in a substrate-film
lattice mismatch or be caused by some other
growth-induced mechanism. These possibilities
and a method for dealing with them are discussed
in Sec. IV B. Also contained in Sec. IV B is a jus-
tification of the fact that throughout this paper we
omit not only the exchange effects induced by the
skin depth but even spin-wave excitation by surface
conditions.

For the exchange boundary condition we use the
equation

aM
Bn

M X +Tsurf=0 (2.5)

which was proposed along with some special forms

vectors along the x, y, z directions, respectively.
Here y=y, g/2 is the magnetomechanical ratio,

y, =2ir (2.80) MHz/Oe is the value of y for a free
electron, and g is the spectroscopic splitting factor.
The first term in the brackets of Eq. (2.1) is the
field H defined above, the second term is the
demagnetizing field Hd, , the third term is an ef-
fective field arising from the volume anisotropy
energy density E,„;,and the fourth term is an ef-
fective field due to the exchange interactions.
Omitted from Eq. (2.1) is a relaxation term because
the effect of such a term on the resonance field is
generally negligible. The parameter 3 is the ex-
change stiffness constant and V'„ is an abbrevia-
tion for the operator

by Rado and Weertman. Here 8/Bn denotes the
partial derivative in the direction of a unit vector,
n, which is normal to, and points outward from,
the thin "pill box" used in the derivation of Eq.
(2.5) by means of Green's theorem. It is important
to realize that, as a consequence, the direction of n
at each surface of a ferromagnetic film is always
toward the film's interior. Thus we have

, q=+Lan'

, q= —L.8
al'

(2.6a)

(2.6b)

BU
u X V uEsuH 2A

n
=0, (2.7)

where E,„~ denotes the surface-anisotropy energy
density. To obtain the lowest-order expression for
E,„~ in terms of powers of the components of u,
we introduce a method which is based solely on
symmetry and is, therefore, more general than the
method of Neel. We note that at the surface of a
crystal the usual point symmetry is broken so that
some of the terms bilinear in the components of u
may not be forbidden by symmetry at the surface
even if all such terms are forbidden by symmetry
in the crystal s interior. Specifically, we find that
at a (1101 surface of bcc iron the rn3m point sym-

metry of the interior is replaced by a point symme-

try characterized solely by three elements, namely,
the twofold axis 2„and the mirror planes 2g and
2, . Thus the lowest-order expression for E,„~
must have the form

2
Esgg =Kg Q» Qy +Kgb Qg (2.8)

where the phenomenological coefficients E, and
E„reasurface-anisotropy constants. Prior to
comparing Eq. (2.8) with the result of Neel, who
originated the concept of surface anisotropy, we re-
call that Neel assumed phenomenological interac-
tions between nearest-neighbor atoms and made ex-
plicit use of the detailed crystallographic structure.
For a t 110I surface of bcc iron, Neel found that
E,„~ is proportional to u„u„, just like the first
term of our Eq. (2.8). But if we use Neel's method

Turning now to T,„~, we note that it was defined
as the sum of all the surface-torque densities aris-
ing from forces other than ferromagnetic exchange.
In the present paper, however, we consider solely
that contribution to T,„~which is due to surface
anisotropy. Accordingly, Eq. (2.5) may be written
as
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and extend it to include next-nearest-neighbor in-
teractions, which are particularly important in bcc
iron, then we obtain Eq. (2.8) in its entirety. The
fact that this equation can be obtained in two dif-
ferent ways is important because we find (see Sec.
IV B) that if E is assumed to be zero then our fi-
nal result for the ferromagnetic resonance field
H„may not be sufficiently general. It should
also be noted that for the sake of simplicity we as-
sume the values of the coefficients E, and E to
be the same at g =+L as at g= —L even though
at some future occasion this simplification may
have to be dropped.

Having obtained the equation of motion (2.1)
and the boundary condition (2.7), we replace each
of these vector equations by three scalar equations
and then express u», u~, u, in terms of 8 and P by
means of the relations

Op ——Opp+50p

and introducing the approximation

(3 3)

metry and the fact (see Sec. II) that H is parallel to
the (110) plane. Equation (3.2) has a solution in
which 80 is independent of q but this solution
must be rejected because for most values of 80 it
violates the boundary condition [see Eq. (3.11)
below] unless the surface anisotropy happens to be
zero. The possibility that the surface anisotropy
may give rise to spatially nonuniform magnetiza-
tion orientations was first suggested by Rado and
Weertman. Although they noted that the result-

ing structure may resemble a domain wall, their
suggestion does not seem to have been followed up
by a detailed calculation until the present paper.

Rather than attempting to solve the nonlinear

Eq. (3.2), we linearize it by putting

u» =sinHcosg, uY =sinHsing, u, =cosH .

(2.9)

2
i
58p

i « 1, (3.4)

The two equations arising from Eq. (2.1) will
henceforth be called the "8,$ form" of the equa-
tion of motion and the two equations arising from
Eq. (2.7) will be called the 8,$ form of the boun-
dary condition. Prior to presenting and solving
these four equations in Secs. III and IV we intro-
duce the decompositions

where Hoo is independent of r) and 580 is dependent
on g. As shown below, moreover, Hpp is the value
of 80 in the absence of surface anisotropy whereas

580 is that contribution to 80 which arises from
surface anisotropy. With the use of Eq. (3.3) and
the approximation (3.4), we now replace Eq. (3.2)
by the equations

MH sin(l( —800)—Ki sinHoocosHoo(3cos Hoo —1)=0,
0=Op+Hi,

0=00+Pi

(2.10a)

(2.10b)
2A (580)"—[MH cos(p 800) +a~ i ]580———0,

(3.5)

where the subscripts zero and one denote the static
and time-dependent components, respectively.
Also to be noted is that the operator 8/Bi) will
henceforth be abbreviated by a prime.

where the abbreviation happ is defined by

u~ ——2—13 sin gpp+12sin Opp .

(3.6)

(3.7)

III. STATIC MAGNETIZATION
ORIENTATIONS

pp n /4, ——
2A 80+MH sin(g —Hp)

(3.1)

—KisinHocos80(3 cos 80—1)=0, (3.2)

By retaining only those terms in the 8,$ form of
the equation of motion which do not contain either
Hi or Pi, we obtain the static magnetization equa-
tions

I 0—800 I
« I, (3.g)

and to ensure that the bracketed expression in Eq.
(3.6) is always positive, then Eq. (3.6) has the solu-
tion

Equation (3.5) expresses the static equilibrium con-
dition in the absence of surface anisotropy and
agrees exactly with Eq. (5) of Artman. ' Equation
(3.6}, on the other hand, is new and remains valid
in the presence of surface anisotropy. If the value
of H is sufficiently large to justify the approxima-
tion

which determine the static orientations of the rnag-
netization. Equation (3.1} is a consequence of sym-

580——c,exp(g/I )+cz exp( —r) /I ),
where l denotes the characteristic length

(3.9)
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1 = [2A /(MH+appK) )]'~ (3.10)

We note that I resembles the wall-thickness param-
eter of ordinary domain theory and that the coeffi-
cients c~ and c2, which are unknown, must be
determined by means of the static boundary condi-
tion. To derive the latter we retain only those
terms in the 8,$ form of the boundary condition
(2.7) which do not contain either 8& or P&. Thus
we obtain

character of the surface anisotropy.
To summarize, our general result for the static

magnetization orientation is that Pp is given by Eq.
(3.1) and that the dependence of Hp on g and q is
contained partly in Eq. (3.5), which is supplement-
ed by the approximation (3.8), and partly in Eqs.
(3.3) and (3.15). For rough numerical estimates,
however, it is useful to add the following special
result. By introducing the further approximation

ae,
4A +(K,—2X„)sin28p ——0 (3.11)

I-!I«1, (3.16)

as the boundary condition for Hp. Equation (3.11)
must be satisfied at the crystal boundaries (rl =+L)
by that value of Hp which results from combining
Eq. (3.3) with Eq. (3.9). This requirement leads to
an expression for c~ and to an identical expression
for c2, as expected from symmetry. Substitution
of this expression into Eq. (3.9) then yields

, r sin28pp[cos—h (L /1 )] 'cosh(rl/1 )
Mo ———

tanh(L/1)+r cos28pp (3 12)

where r is an abbreviation for the ratio

we can replace Eq. (3.15) by the expression

58p= —(&, 2E» )(—l /4AL )sin28pp, (3.17)

IV. FERROMAGNETIC RESONANCE FIELDS

which is independent of q. We postpone the nu-

merical estimates until the end of Sec. IV B be-

cause it is in connection with the dependence of
H, on Hp that the numerical value of

~
58p

~

is of
primary interest.

r = —,(E, 2IC„)l/A —. (3.13) A. Explicit calculation

Although Eq. (3.12) was derived on the basis of
the approximation (3 4), the former does not neces-
sarily satisfy the latter if the parameters r and L /1
are arbitrary and the value of the angle Hpp differs
from zero or m/2. To assure that (3.12) is, in fact,
consistent with (3.4) for all values of Hpp, we now
require that the parameters satisfy the approxima-
tion

~

r/tanh(L/1)
~

&&1 . (3.14)

Combining (3.14) with Eqs. (3.12) and (3.13) gives

58p ———(E,. 2E» )(1/4A)sin—28pp

)& [sinh(L /1 )] 'cosh(rl/1 ), (3.15)

which is our final result for the general (i.e., g-
dependent) form of 58p. Among the predictions of
Eq. (3.15) we note the following: (a) As L ap-
proaches infinity, 50O approaches zero, as expected
for physical reasons; (b) as L approaches zero, the
approximation (3.14) becomes invalid and hence
Eq. (3.15) becomes inapplicable; (c) as H ap-
proaches infinity, both l and 580 approach zero,
again as expected for physical reasons; (d) 58p is
zero when 8OO equals zero or m/2, but not when Ooo

equals cos '( I /W3), as expected from the uniaxial

I 4—Hp
I
«I, (4.1)

we then express 1(t in terms of Hp. Next we assume
that 8~ and P& are each proportional to
exp(icot+krl), where ~ is the circular frequency

By retaining only those terms in the 8,$ form of
the equation of motion which are of first order in

8~ and P~, we obtain three dynamical magnetiza-
tion equations for 8~ and P~. These equations will
not be presented because we modify them in
several respects. After expressing Pp by the static
equilibrium condition (3.1), we assume temporarily
(i.e., until the last paragraph of Sec. IV) that Hp is
zero or n/2 so that. Hp becomes identical with Hpp

and each of the quantities 58p, (58p)', and (58p)"
vanishes. In other words, we temporarily restrict
our calculation to situations in which the equilibri-
um direction of the magnetization is along [001] or
[110]and thus spatially uniform. Later on, how-
ever, we show that our final result for the reso-
nance field H„, [see Eq. (4.30) below] does remain
valid, albeit less accurately, even if the value of Hp

is arbitrary. Accordingly, we retain the symbol Oo

and do not replace it by zero or m. /2. After put-
ting Oo' ——0 into the static equilibrium condition
(3.2) and introducing the approximation
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and k denotes some (as yet unknown) real number.
In this way the three above-mentioned dynamical

equations lead to the two equations

Bi[(iso/y)cos80 H—H—~+2Ak /M] $—i[(iai/y)sin80+ —,(8+Hp —2Ak /M)sin28O]=0,

Bi[(icoly)cos80+H+H 2A—k /M]+pi[(io&ly)sinBu —,—(8+Hp —2Ak /M)sin28o] =0,

(4.2)

(4.3)

where 8 denotes H+4+M and the quantities

H =a%i/M

and

Hp =13%i/M (4.4) (2A /M)k3 4 ——8+ , (H~+H—p)+2@Md,

(4.9)

I

quadratic in k, we can write its roots in the form

(2A /M)k i i H+——, (H~+H—p) 2mMb, ,—

are anisotropy fields defined with the use of the
abbreviations

+=2—13 sin eo+12sin 80,

P=2 —7 sin 80+3 sin480 .

(4.5)

(4.6)

In order that Eqs. (4.2) and (4.3) possess a nonvan-
ishing solution, the secular determinant of their
coefficients must be zero. This requirement yields
the dispersion relation

(co/y) =(H+H~ 2Ak /M)—

X(B+Hp 2Ak /M), — (4.7)

which we now check in two special cases. By put-
ting k=0 into Eq. (4.7) we obtain exactly
Artman's Eq. (15) for the resonance frequency of
the uniform mode, i.e., Kittel mode, in situations
where the static magnetization and H are "quasi-
aligned. " If, on the other hand, we replace k by ik
and assume Ei ——0, then Eq. (4.7) reduces exactly
to the simple spin-wave dispersion relation ex-
pressed by Eq. (10-10.6) of Morrish's7 book. Also
to be noted for later reference is that Eqs. (4.2) and
(4.3) give the amplitude ratio

H+H 2Ak /M-
U=

8+Hp
—28k'/M

(4.8)

(4.10)

where 6 is given by

Hp —H~ N1+ +4aM 2mMy

[/2'2

(4.11)

In the case of experiments on iron at 16.3 GHz,
the value of b, satisfies

~

b,
~

& 1 but does not satis-
fy

~

b,
~

&& 1. We assume k ii z & 0 and k 3 4)0
throughout so that all k values are indeed real and
spin waves are absent. Using kz ———k& and
k4 — k3 we define ki and ki to be the positive
roots of Eqs. (4.9) and (4.10), respectively. The
solutions of Eqs. (4.2) and (4.3) can now be ex-
pressed as

4

Bi ——g C„exp(k„r)),
n=1

4

Pi ——g C„u„exp(k„il),

(4.12)

(4.13)

where u„ is the value of u for k =k„and the C„
are unknown coefficients.

To derive the dynamic boundary conditions we
retain only those terms in the 8,$ form of the
boundary condition (2.7) which are of first order in
Bi and P, . Thus we obtain

Except in the case of the uniform mode, a calcu-
lation of H =H,~ from Eq. (4.7) requires that k be
determined from the boundary conditions. In
some cases, however, we find it more convenient to
solve Eq. (4.7) for k and then use the boundary
conditions for calculating H, . Since Eq. (4.7) is

+8,(X,—2E„)cos280——0,80)
Bn

ay,
A piEg 0, — ——

Bn

(4.14)

(4.15)
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as the boundary conditions for Hi and Pi. Substi-
tution of Eq. (4.12) into Eq. (4.14) and of Eq.
(4.13}into Eq. (4.15) then yields two equations
which must be satisfied at each of the crystal
boundaries (i) =+L). This requirement leads to a
set of four homogeneous linear equations for
C),C2,C3 C4 whose solution gives H =H, . Be-
fore proceeding, however, we demonstrate that our
formalism can indeed produce a solution for H„,.
The dynamical problem involves not only the four
equations that result from Eqs. (4.14) and (4.15)
but also the equations of motion (4.2) and (4.3), or
equivalently, Eqs. (4.7) and (4.8). Altogether,
therefore, there are six independent equations.

D=0, (4.16)

where D is given by

There are also six unknowns, namely, H, k, v, and

the ratios C4/Ci, Cs/Ci, Cz/Ci. Thus the six
equations should indeed be soluble.

Returning to the above-mentioned set of four
homogeneous linear equations for Ci, C2, C&, C4,
we denote the secular determinant of their coeffi-
cients by D and call it the "boundary condition
determinant. " In order that these four equations
possess a nonvanishing solution, we must have

(K,'+Aki )exp(k iL )

(K,' —Aki )exp( —kiL}
(K, —Aki)viexp(kiL)

(K, +Aki }viexp( k,L )—

(K,' —Aki )exp( —k iL )

(K,'+Ak i )exp(k iL)

(K, +Aki)viexp( —kiL)

(K, Aki)viex—p(kiL)

(4.17)

The third and fourth columns of D are each denoted by for brevity. They are identical to the first
and second columns, respectively, except that k~ is replaced by k3 and v~ by v3. The symbol K,* is an ab-
breviation for the quantity

K,*=—,(K, —2K )cos28O . (4.18)

Next we multiply each row of D by L and form suitable linear combinations of rows and of columns. In
this way we manipulate D into a form in which eight of its elements are zero. Noting that neither coshkiL
nor coshk3L can vanish, we then divide two of the columns by coshk iL and the other two columns by
coshksL. Upon suitable interchanges of rows and of columns the matrix of D can be brought into block
form. Specifically, we find that Eq. (4.16}is replaced by the requirement

DiD»=0

where Dq and D» are given by

K,'L'+AkiL tanhkiL K,'L +AkiL tanhksL

(K,L AkiL tanhkiL—)vi (K,L AksL tanhk&L—)v3

K,*L tanhk&L +Ak&L K,*L tanhk3L+k3L

(K,L tanhkiL —AkiL)vi (K,L tanhk3L k3L)v3

(4.19)

(4.20}

(4.21)

4nMb, (Hp H)——
R=

AM (2+6)+(Hp H)—(4.22)

The condition (4.19) can be satisfied only if at least
one of the quantities Di and Dii always vanishes.
Let us first make the assumption Dii ——0. If we
now consider the special case

~
kiL

~
&&1 and

~k3L
~

&& 1, then we easily find that Dii ——0 leads
to v i/vi ——1. But Eqs. (4.8)—(4.10) may be com-
bined to give vi/vs ——R, where R is an abbreviation
for the quantity

I

Thus the assumption D» ——0 leads to the prediction
R =1 in this special case. But Eq. (4.31) (see
below) can easily be combined with Eq. (4.22} to
show that (since M+0) the prediction R =1 is in-
correct. Accordingly, D» is not always zero so
that Eq. (4.19) forces us to conclude that it is Di
which always vanishes. By combining Dq ——0 with

Eq. (4.20) we obtain

(I,+H,*)(I —H, } =R
(1,—H, )(I +H,')
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which contains the abbreviations (i =1,3):

I g. ——(2A /M)k; (tanhk;L)/(k;L),

Hg 2K'——/(ML); H,'=2K,*/(ML) .

(4.24)

(4.2S)

So far we have made only three principal as-
sumptions in our treatinent of ferromagnetic reso-
nance, namely, linearization of the Landau-Lifshitz
equation, quasialignment of the static magnetiza-
tion with H, and predominance of the surface-
induced mode. In addition, we assumed temporari-
ly that 6)0 is zero or n/2. At this point we intro-
duce three further assumptions. Firstly, we assume
that the approximation
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is also satisfied, i.e., that the "surface-anisotropy
field" H, is negligible compared to the product of
the "exchange field" (2A/M)k i and the dimension-
less ratio (tanhk3L)/(k&L). Thirdly, we assume
that IK,'/K,

I
is at most unity so that [because of

Eq. (4.18)] the values of K, and K» satisfy the lim-
itation

I
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On the basis of these three assumptions Eq. (4.23)
leads to the simple relation

(2A /M)k i =H, (R +K,'/Kg ) /(R —1)

(4.29)

which we combine with Eqs. (4.25) and (4.18) and
then substitute into Eq. (4.9}. Thus we obtain our
central result for the resonance field

K,[(1 2K» /K, )co's28o—+2R ]H =Hfcs fcs lBllf LM ( 1 R )

where

(H, )„„g=2rrME i (H~+Hy) (4.31)

is the resonance field of the uniform mode. The
quantities 5 and R depend on 80 and are given by
Eqs. (4.11) and (4.22), respectively.

is satisfied, i.e., that half the crystal thickness is
small compared to the decay distance of the oscil-
lations associated with k& and k2. Secondly, we
assume that the approximation

(4.27)

B. Generalizations and discussions

We note that Eq. (4.30} does not contain the ex-
change stiffness constant A even though it could
not have been derived if A were zero. The absence
of A from Eq. (4.30) turns out to be a consequence
of the approximation (4.26). If we carry the calcu-
lation to second rather than first order in

I
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we find that H„, does indeed contain A even if the
approximation (4.27) remains satisfied.

Among the most interesting aspects of Eq. (4.30)
we discuss the following: (a) Equation (4.30)
predicts that within its range of applicability, i.e.,
for ultrathin crystals, H,» is a linear function of
1/L. (b) Equation (4.30) shows that the slope of
the predicted II„s vs 1/L line associated with the
[001] axis may differ in sign and/or in magnitude
from the slope associated with the [110]axis. One
of our motivations for introducing K„ in addition
to K, was, in fact, to endow Eq. (4.30) with suffi-
cient generality for predicting two different positive
values for the slopes of H„, vs 1/L along [001]
and [110],i.e., for /=0 and f=n/2 (c) E. qu. ation
(4.30) predicts that as a consequence of surface an-

isotropy the easy and hard axes of magnetization
may be interchanged if the crystal thickness is de-
creased sufficiently. (d) Equation (4.30) becomes
invalid for the case I —+0 because then the approx-
imation (4.27) is no longer satisfied. In this case,
moreover, Eq. (4.23) becomes R = 1, a prediction
which we showed to be incorrect, so that for the
case L ~0 even Eq. (4.23) is invalid.

The behavior predicted in (a), (b), and (c) has
been observed experimentally' at room temperature.
As stated previously, ' the values of the surface-
anisotropy constants (K, =—3.0 ergs/cm and
K„=—1.4 ergs/cm ) deduced from the experimen-
tal data of Fig. 7 of Ref. 1 were highly tentative
because with the use of these values the "small
surface-anisotropy approximation" (4.27) of the
present paper is only poorly satisfied. In order to
clarify this situation, we now avoid the use of the
approximation (4.27) by fitting the same experi-
mental data' (for four thicknesses in the range 18
A &2L & SS A) on the basis of Eq. (4.23) rather
than Eq. (4.30). We find that the predicted curves
of H, vs 1/L associated with both the [001] and
[110]axes are almost straight lines and that the de-
duced values of the surface-anisotropy constants
are K, = —(3.2+2) ergs/cm and K„=—(1.5+1)
ergs/cm . Since the predictions of Eq. (4.23) de-

pend on the quantity E,—2E„very sensitively, an
adequate fitting of the experimental data requires
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that the values of K, and K„be specified more
precisely than indicated above. We note that the
data can be fitted within the experimental error of
2L (which is +10%) by using, for example,

K, 2E—„=—0.298 erg/cmi for the [001] axis,
E, 2E»—=0.0545 erg/cm for the [110]axis, and

K, = —3.156 ergs/cm for both axes. When com-
bined with this value of K„both of these values of
E,—2E„ lead to E„values which agree with the
value E» = —( l.5+ 1) ergs/cm specified above. It
should be emphasized that the values of K, and
E deduced from the experiments are effective
values because they do not refer to iron crystals
surrounded by a vacuum but to iron crystals grown
epitaxially on GaAs and covered by an epitaxial
film of Al. This means, in particular, that K, and

E„repres ent some sort of average values and that
a more accurate theoretical description of the data
(which is not warranted at present) would require
the introduction of two sets of surface-anisotropy
constants. Furthermore, the values of E, and E»
may represent, in part, a simulation of the effects
of inhomogeneous strains arising from imperfect
epitaxy. Although homogeneous strains can, of
course, give rise to a uniaxial volume anisotropy
and thus shift the H„, vs 1/L curves for the [001]
and [110]axes in opposite directions along the H,»
coordinate axis, such strains cannot produce any
dependence of K, on 1/L. Still another reason
for labeling E, and E» as "effective" surface an-

isotropies is that they may include effects caused

by gradients of the spontaneous magnetization near
the film surfaces.

Next we illustrate the predictions of Eq. (4.30)
by means of a hypothetical example pertaining to
bcc iron at room temperature. For this example,
in contrast to the experimental example discussed
above, both of the approximations underlying Eq.
(4.30) are satisfied. By adopting the representative
values 4~M=2. 154&10 emu, E~ ——4.5X10'
ergs/cm, 2 =2.0X 10 erg/cm, g=2.09, and
choosing co/(2m) =16.3 GHz, we compute b„R,
and (H„,)„„;tfrom Eqs. (4.11), (4.22), and (4.31),
respectively. Thus we obtain 6=0.126, R =0.0592,
(H„,)„„;t=830Oe for H along [001] and
b, =0.0935, R =0.0632, (H, )„„;t=1138 Oe for H
along [110]. To compute the 1/L-dependent shift
of H,», we use the last term of Eq. (4.30) and arbi-
trarily choose L =2)& 10 cm. Since neither E,
nor K» has been measured reliably so far, we use
Neel's theoretical estimate E,=—0.229 erg/cm
and assume, as in Ref. 1, the value 2E„/E, =0.9.
The shift H, (H, );t computed —in this way is

155 Oe for H along [001] and 19 Oe for H along
[110]. Using for H along [001] the resulting value

H,» =985 Oe, we obtain from Eqs. (4.9) and (4.10)
the values k~ ——2.58&10 cm ' and k& ——3.23&10
cm '. For H along [110]we have H„,=1157 Oe
and obtain k

&
——8.96)& 10 cm ' and kq ——3.18)& 10

cm '. It should be noted that the values of the
parameters used in this example do satisfy the ap-

proximations (4.26) and (4.27) so that the use of
Eq. (4.30) is indeed justified. If we had assumed
E„=O then we would have obtained

H, —(H«, )„„;t&0for H along [110]. Because of
Eq. (4.9), this would have meant k i q &0 which is

contrary to our assumption and leads to spin
waves.

In order to explore a possible generalization of
Eq. (4.30},we now consider an experimental situa-

tion in which the extrapolation to 1/L=O of a
linear plot of H,» vs 1/L fails to yield the calcu-
lated value of (H«, )„„;t. This kind of situation

may well indicate (provided the assumed value of
the magnetization is corrie:t) that the volume an-

isotropy contains some contribution in addition to
Ei. To show by means of an example how such a
contribution can be incorporated into Eq. (4.30),
we assume that (as a result of imperfect epitaxy or
other growth conditions) the iron crystal possesses

a uniaxial volume anisotropy of the form K„sin Oo.

This anisotropy can be included in Eq. (4.30) by
simply adding (2E„/M)cos28O to H and adding

(2E„/M)cos Ho to H~. It should be noted that this
modification of Eq. (4.30) affects not only (H«, )„„;t
but also R. The method described can be used, of
course, for incorporating volume anisotropies addi-

tional to K, into Eq. (4.23) as well as into Eq.
(4.30).

Turning now to cases in which the approxima-
tions (4.26) and (4.27} are not both satisfied, we

find that the calculated H„, are no longer given by
an expression as simple as Eq. (4.30). The method

we suggest for such cases is to substitute Eqs. (4.9)
and (4.10) into Eq. (4.23) and then solve the result-

ing equation for H, numerically. This method

requires, of course, that E, and E„be known or
else determinable by fitting the curves of H„, vs

1/L measured along the [001] and [110]axes. It
should be noted, however, that the usefulness of
the H„, value calculated in this way may well be
questionable if L is too large. The reason is that
the derivation of Eq. (4.23) is based on the
surface-induced mode and ignores spin waves. For
sufficiently large values of L, furthermore, the ex-

change interactions existing in the skin depth
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should also be considered, as discussed in Ref. 3.
Nevertheless, the suggested numerical calculation
of H,~ should still be useful because L values do
exist which are too large to satisfy the approxima-
tion (4.26) but too small to allow skin-depth-
induced exchange effects or even spin-wave reso-
nance excitation by surface conditions.

Up to this point our calculations of H„, have
assumed that Oo is zero or n/2 so that each of the
quantities 58o, (58o)', and (58o)" vanishes, as men-

tioned near the beginning of Sec. IVA. Now we
seek to calculate H, for values of Oo which are ar-

bitrary and thus (see Sec. III) spatially nonuniform.
We find that this task is quite complicated because
if 8& is arbitrary then the equation of motion and
the boundary condition are augmented by new

terms, and because the coefficients of the resulting

differential equations are no longer constant. By
introducing two additional approximations,
however, we are able to show that they cause the
equation of motion, the boundary condition and
the quasialignment correction to be unchanged.
This means that Eq. (4.30), our explicit result for
H, , remains approximately valid even if Oo is not
restricted to zero or n./2. A proof of these asser-
tions is rather lengthy and will be omitted, but a
formulation and discussion of the newly introduced

approximations is clearly necessary. The less
stringent one of these requires that

~(K, 2K—„)/(ML)
~

be negligible compared to
4m.M. Using the values of M, L, and K, adopted
above, we find that this approximation is well sat-
isfied for 2K»/K, =0.9. The more stringent one
of the new approximations requires that ~58O

~

be
negligible compared to unity. To determine wheth-
er this can be achieved we make a numerical esti-
mate based on the value Ooo

——cos '(1/V 3) which
was chosen because it is "far" from the values

800
——0 and 800——ir/2 where 580 vanishes. Using

2K»/K, =0.9 and the parameters adopted above,
we obtain H =H„,= 1765 Oe by assuming the (as

yet unproven) applicability of Eq. (4.30) to arbi-

trary Oo values and find that Eq. (3.10) gives
1=1.28&&10 cm. If we take L =2X10 cm, as
before, then the approximation (3.16) is well sat-
isifed so that Eq. (3.17) is valid. Since the latter
yields 500——0.022, which is negligible compared to
unity, it is clear that Eq. (4.30) is a good approxi-
mation if the parameters have the values chosen
above. It is seen, therefore, that K„as well as K,
must be known (or determined by measurements
involving Oo

——0 and Oo=n. /2) before the applica-
bility of Eq. (4.30) to arbitrary values of Oo can be
ascertained reliably.
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