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Diffusion in a one-dimensional disordered system
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The low-frequency properties of a disordered one-dimensional diffusion model are
determined. Of particular interest is the case where the distribution of hoppirig elements

diverges for small values of the hopping elements. The density of states and the leading
correction terms are calculated at low frequencies and the diffusion constant and correla-
tion length are determined. The scaling assumptions of Alexander et al. are verified.
The model considered is also one for phonons with random force constants and the locali-
zation length for low-frequency phonons is determined. The case where there is both
off-diagonal and diagonal disorder is considered.

I. INTRODUCTION

The properties of a random one-dimensional
chain have been widely studied since Dyson's'
pioneering work. A review of work on this prob-
lem has been given by Alexander et al. This type
of problem arises in a variety of situations of phys-
ical interest: particle diffusion in a random one-
dimensional material, low-temperature properties
of a random Heisenberg magnetic chain, excitation
transfer along a one-dimensional array of traps,
phonons on a random chain, etc. The general type
of problem considered here is described by a dif-
fusion equation of the form

+ W;.+i(p.+i —p.»

where r denotes the lattice sites and p„(t) the prob-
ability of finding a particle at site r at time t The.
hopping rates (or bonds) W, „+i——W„+i, may be
independent random variables distributed according
to a probability density p( W}. In addition, the C„
(the sites) may be random variables.

This is exactly the problem considered by Alex-
ander et al. They were concerned with the low-

frequency or long-time behavior. In the case of
the random-bond problem they considered three
different types of distributions.

Case (a}: p(W) is such that

dS'p 8'8' & ao .

Case (b): p(W) is such that p(W)~1 as

Case (c):
r

(1—a)W, 0(W(1
p(W)='0

1 W
I

(1.4)

with 0&a& l.
An exact asymptotic solution for the single-site

Green's function in these three cases was achieved

by Bernasconi et al. From this the low-energy
density of states can be obtained. With the as-
sumption of a single characteristic length, Alex-
ander et al. were able to obtain expressions for the
transport properties.

The reason for reconsidering this problem here is
that using the replica procedure we are able to
solve the resulting integral equations in a straight-
forward manner at low frequencies. In this way
we obtain not only the leading terms in the density
of states, but also the leading correction terms. In
addition, the diffusion constant and correlation
length are determined explicitly without any scal-
ing assumptions. Where they overlap, our results
are in agreement with those of Alexander et al.
Furthermore, our results verify that the scaling as-
sumption made by them is valid. We do not be-
lieve there are any difficulties associated with the
replica method and the n ~0 limit in this problem.
It is a way of generalizing the problem which leads
to useful simplifications.

In Scc. II we summarize some necessary results
and introduce the replica procedure and generating
function. This is based on previous work. In Sec.
III the integral equation for random bonds is de-
rived and solved in the asymptotic limit in the
above three cases. In Secs. IV and V the diffusion
constant and correlation length are calculated. In
Sec. VI we discuss phonons and the phonon locali-
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zation length. In Sec. VII the random-site problem
and case where both sites and bonds are random
variables are considered. Finally in Sec. VIII the
results are discussed.

H(V)= —,g V„G~ 'Vg+ gU, .V,

60~2 1—V, + —,8'„„+)(V„—V„+,)
2

II. GENERATING FUNCTION +U, .V„ (2.10)

P, (~)= f e 'p„( t)dt . (2.2)

We have included an external potential U, on the
right-hand side of (2.1) for convenience. The solu-
tion of (2.1) up to terms of order U can be written
P„=P„"'+5P, where

P,' '=G„(co), (2.3)

5Po= g Go.(~)U. (2.4)

where G~ is the Green's function. The average
density of states is given by

We begin by summarizing some useful formulas.

The Laplace transform of the rate Eq. (1.1) with
the initial condition p„( t) =5„o is

Pr ~r, r i(P. i Pr) ~;—r+i(P. +i Pr)—
=5,o+ U„, (2.1)

where

In what follows it is understood that the n~0 lim-

it is to be taken. To determine the average Green's
functions we introduce a generating function5

so(p, m)=( J (dV)e 'e «), (2.11)

(2.12)

The average Green's function and response func-
tion are then given by

a'
(~) ) = — &o(p)

Bp
(2.13)

.p=U=O

where p is an n component vector. The integral in
(2.11) is easily evaluated and in the n =0 limit
(omitting terms of order U2)

2

s p(p) = (exp — 6m+ i p g Go,o,
)

.
r

I

N(co) =——Im(Goo( —co+i5)),1
(2.5)

(5Po ) = i 5s—o(p)
~Pa

, @=0
(2.14)

where ( ) indicates an average over the random
elements 8'.

With the introduction of the Fourier transforms

where 5so is the part of so linear in U.
It is convenient to introduce the Fourier

transform on p of (2.11)

(G~(co)) =—ge'"'" 'G(k, co),
k

(2.6)

so(V,a))= f e'~ s(p, cg) .
(2n. )"

(2.15)

In terms of this function the density of states is

N

where N is the number of sites, the Fourier
transform of the average response is

(5P(k, co)) =G(k, co)U . (2.7)

N(co)= ——Im f VQVso(V, co+i5)—

and the response function (2.7)

(2.16)

The diffusion constant D (co) can be obtained by
expansion of G(k, co) in powers of k:

G(k, co)= ——f V~dV5sk(V, co), (2.17)

G(k, co) —— k +1 D (co)

N
(2.8)

where 5sk is the spatial Fourier transform of 5s, .

We now introduce a "partition function"

Z d —H(v)

where the V are n component variables and

(2.9)

111. INTEGRAL EQUATION AND DENSITY
OF STATES

An integral equation which determines so( V) is
easily written down. We focus attention on site 0
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and in the generating function (2.11}(for U=O)
represent everything on the left and right of this
site by Q(V). Thus,

the same form as for the pure system (3.4}

Q, =e-'"'", a=&~W. . (3.9)

( y) e —(m/2) V2Q2( y) (3.1)
The higher terms in this solution are easily ob-
tained:

From translational invariance Q( V) satisfies the in-

tegral equation

Q ( V} f dV i ( —( Iv/2)( v —v ')2
) (ci)—/2) v '2Q

( pv)

(3.2}
+—Dna V+2 2 8

4!
(3.10)

Q=Qo I+Acov + , Bcoa—v +—Cco aV
3t

When the external field U=O, Q ( V) only depends
on V and then it is possible to carry out the angu-
lar integral in (3.2} and take the n=0 limit with
the result

Q( V} (e
—( Iv/2) v2

)

dV'(WVI, (WVV')e-' ""'+' ')
p

After some algebra we find

A =Ap+ —Ai,
a

NB=Bp+—B) .
a

Introducing the moments

(3.11)

Xe
—(a&/2) v'2Q

( Vi
) (3.3)

m, =l —W. ( , ),2 1

where Ii is the Bessel function. However, the
solution of the integral equation is much simplified
if we keep it in the form (3.2). We now consider
the solution of (3.2) in the various cases of interest.

(A) Pure system. When there is no disorder

mi ——1 —W, ( ),1

We have
1 3

A() ———,(1+—,m2),

(3.12)

Q ( ~ —(ao/2)V
(3A)

and substitution in (3.2) requires that ao satisfy

W(co+ ao }
ap ——

8'+co+ap
(3.5)

1

Bp —
16 m

61 2 5
Bi ———„(1——,m2+ —„m2+ —,mi),

4C= ~(m2 ——,m2 ——,ms},

(3.13)

The appropriate solution of this equation is

o = —,t —~+(~'+4W~}'"]

From (3.1) and (2.16) the density of states is

N(co) = 1

mco' (4W—co)'

(3.6)

(3.7)

1 ()'Qo

coW ()(V')'
(3.8)

and 1/W, = (1/W). The solution is of exactly

This result is of course well known. One impor-
tant feature is that ao-co'/ for small co so that Q
is slowly varying for small co.

(B) Case (a). When the distribution p( W) is such
that at least the low moments ( W ") exist
(n = 1,2,3, . ..} then (3.2) can be solved by the
steepest-descent method. The slowly varying fac-
tors e '"/ '" Q( V) are expanded around V'= V.
To leading order in co/W, Q =Qo where Qo satis-
fies the equation

1 3 15 2 1

X 1+ ( I
——,m2+, 2I m2+ I ms)

a

(3.14)

(C) Case (c). In this case the distribution p(W}
is singular and the steepest-descent method fails.
However, for small co we can reduce (3.2} to a dif-
ferential equation. Introduce

U=co~V, x=W/co ~, (3.15)

where P is to be determined. After subtracting
e (~/2)v Q(V) from both sides of (3.2) we get

= 3 2D=—„,/712 ~

As V —1/co'/ we have kept terms in (3.10) up to
order co. This is sufficient to give us the leading
correction in the density of states which from
(2.16) and (3.10) is

N(co) = 1

2n(coW, )'
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Q(U)[1 f(—U)]=(1—a)co P" ' I dU' I x dxe '"/ " ' [f(U')Q(U') —f(U)Q(U)],
0

(3.16)

—(a) &/2) Uwhere f(U)=e ' /2'U . To leading order in co

we set Q=Qp, and keeping only leading terms in
(3.16) we find

—,U'Qo( U) =(1—a)

X JdU' x dxe
0

X [Qo( U') —Qp( U)]

t

and substituting (3.23),

C(0)
Np(cp) = P

N

Cp ——(o) 1 —2P
2 PPI (2P)A4P

(3.25)

(3.26)

(3.17)

and

2(2 —a)
(3.18)

(3.19)

(3.20)

(3.21)

The change of variables

The kernel in this integral equation is a difference
kernel, and (3.17) is reduced to a differential equa-

tion by taking its Fourier transform with respect to
U,

Qp(q)= f e 'q' Qo(U)dU.

Then Qp(q) satisfies

V'»Qp(q)=2 1(a)q Qp(q) .

As Qp(q) depends only on q we may take the
n=0 limit of this equation:

e) 18
Qo(q) =2 1(a)q Qo(q) .

Qq g Bg

The co dependence in (3.25) agrees with the result
of Bernasconi et al. Cp

' has recently been ob-
tained by Bernasconi' in agreement with (3.26).

It is possible to calculate the leading corrections
to (3.25). We go back to (3.16) and let

Q=Qp + Qi and retain the leading corrections in
co in the equation. It turns out that there are two
types of correction terms which vary as co /2 ~

1
and co" ' ' '. The first dominates when a ~ —,

alid Qi sat,lsfles

L(q)Qi(q)= — ~ "' 'q'Qo(q»
(3.27)

1

and when ap —,

q Qi q =—~" '"' "Li(q)'()'»'Qo(q)

(3.28)

where

L(q)=V» —2 I (a)q2

2P 2—Q
q=(Aaz) ~ Aa= a/2 i/22 I (a)

(3.22)
L i(q) = , V» —2 'I (a—)q

(3.29)

Qo(q) =
p

z PE2p(z),
2 PI (2P)

(3.23)

where E is a Bessel function of the second kind.
The normalization condition Qp(q=O) =1 corre-
sponds to Q(V=O)=1, the required condition.
This relation is an artifact of the n=0 limit.

The leading term in the density of states is now
from (2.16), (3.1), and (3.19),

reduces (3.21) to Bessel's equation. The solution
that vanishes as q~ Oo and is normalized such that

Q(q =0)=1 is

Ni(co) =

c(i)
P

1—2P '

C(2)
P

~4&-' '

(3.30)

Equations (3.27) and (3.28) can be solved by intro-
ducing the change of variables (3.22) and then by
making use of the Green's function for Bessel's
equation. We will omit the details and quote the
results for the leading corrections to the density of
states N(to) =No(co) + Ni(co) where

Np(co) = q 'dq
Ba

(3.24)
The constants C are given by
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24" P)P(2P+1)A P

sin2sP
n.(4P 1)—I (2P)

x&(gp+1,P),

sin4~P

m(4P —3)2 PI (2P)A P

x&(5 4p, P—),

where

I(y,P)= , J d—zz [2K2pKzp zI2p

KzpKz—p ((I2pKzp

(3.31)

IV. THE DIFFUSION CONSTANT

In this section we consider the response of the
generating function (2.11) to a slowly varying po-
tential. Again focusing attention on site 0 we can
write

—{co/2)V2 Uo V
~o( V) =e Qr, os o (4.1)

where Qr, and Qs represent the effect of all sites
to the left and right of 0, respectively. Qs satisfies
the integral equation

Q ( V) f dP I( —()v/2)( v —v ')~)

—(m/2)v'i —U ( v 'Q (Vf)

1
1

lnLq, 1 q, (3.34)

where L=
(
ln(0'

(
. Then

Kzp—Izp i }]

(3.32)

In the case u= —, (P= —,) both the terms (3.30)
contribute in leading order to the density of states.

(D) Case (b). This is the marginal case. We can
proceed as in (C) above, setting P= —,, except that
in the second integral in (3.16) it is not possible to
set the upper limit to infinity. The differential
equation replacing (3.21) is now

8 1 8
a, ——

5 Qoq
q

=q [1—y —ln( —,q co'/ }]Q()(q}, (3.33)

where y is Euler's constant. The ln terms may be
removed by the substitution

(4.2)

Qr satisfies a similar equation with U i replacing
U~. We only require the linear response to the po-
tential U so that we can set

Qs, =Q+5Qa, , (4.3)

1
Qr(r = e'""5Q«

E (4.4b)

in (4.4a) gives

—(~'/2){ V —V ') & —(+)/2) V'

x[5Q«(V') —U V'Q, (V')] .

where Q satisfies (3.2} and 5Q is proportional to U;
Substituting (4.3) in (4.2) and keeping terms of or-
der U only gives

5Q d V / —()v/&)( v —v')' i (~/z)v'—
VZO=

X[5Q (V') —U, V'Q (V')] .

(4.4a)

Introducing the Fourier transform (2.6) and

8 1 8
, Qo(q'}=q'Qo(q'}

()q'2 q' Bq'
(3.35) (4.5)

Qo(q') =
I(-, )

(3.36)

which can be reduced to Bessel's equation by sub-
stituting q =V 2z. The solution in normalized
form is

There is a corresponding equation for 5Qr and this
is obtained by replacing k by —k. When (4.3) and
(4.4b) are substituted in (4.1) we find 5s«, the
Fourier transform of the part of s() linear in U is
given by

5s, =e '" '[ -U& Q+—Q(Q5«+5Q«}].
The density of states is then found to be

' 1/2
1 L lnL

N(co) = — 1+2' N 4L

up to terms of order (lnL)/L.

(3.37)

(4.6)

We now require the solution of the integral equa-
tion (4.5) and again we consider the different cases.

(A) Case (a}.For a uniform field (k =0) the
transformation V~ V—U/(0 in (2.10) served to re-
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move terms linear in U. When this transformation
is applied to (2.15) it shows that the solution of
(4.5) for k=O must be

&Qk =o=—U
1- ag

BV

Terms of order k have been omitted on the right-
hand side of (4.14) as they do not contribute in
leading order to the diffusion constant D(co).
With the introduction of the change of variables
(3.22), Eq. (4.14) takes the form

This suggests that we try a solution of (4.5):

~gk = Ak- ag
BV

(4.8)

a' a
z + —z M

az2 az

8ik—ei p 'pA~pz p '(Q()+M) . (4. 16)

This can be shown to be correct for small co when

Q can be replaced by Qo [Eq. (3.9)] and

~k-
a (e ' —I )+co

(4.9)

Then substituting (4.8) in (4.6) and using (2.17) we
find for small co and k that

G(k, (o)= 1

co+ W, k
(4.10)

This result is of the same form as in the pure sys-
tem and the diffusion constant is 8;.

(8) Case (c). We can again reduce (4.5) to a dif-
ferential equation when (o is small. We briefly out-
line the steps. The inhomogeneous term in (4.5) is
—U Vgo( V) as co~0, and then (4.5) becomes

5gke ' = —U Vgp(V)

+ J dVi( —(w/2)( v —v )i)

Xe —(m/2)v' gg ( y ~)

The Green's function for this equation satisfies

() ()
z + —z S(z,z') =5(z —z')

Bz~ Bz

and is

E(o)zIp—( z) z )z'
—Eo(z')Io(z), z&z'. (4.17)

This enables us to rewrite (4.16) as an integral
equation

M(z)= 8ikco P—'PA P

X J dz'9'(z, z')z' P

X [Q()(z')+M(z')] . (4.18)

This equation can now be solved as a power series
in k by iteration. From the terms of order k we
determine the diffusion constant using (4.6), (2.17),
and (2.8) with the result

(4.11) D( ) 4P—)C( ) (4.19)

Then proceeding as in case (C) of Sec. III we find
the differential equation satisfied by the Fourier
transform 5Qk(q),

L(q+Qk(q) =2&~ 'U ~,QO(q)

+2co2P '(e ' 1)5Qk(q) . —

where

27—4PP3A 8P
C(3)

r'(2P)

x J dz dz'(zz') p 'E2p(z)E2p(z')

(4.12) X &(z,z') . (4.20)

(4.13)

where L (q) is given in (3.29). We were not able to
find a closed-form solution to this equation. In or-
der to calculate the diffusion constant from (2.8)
we expanded the solution of (4.12) in powers of k
up to terms of order k . Substitute

5gk io)p 'U——q(Q()+M. )

in (4.12), and it is found that M satisfies

In case (b) a very similar calculation gives

C(3)
D=

L(co) ' (4.21)

where L (co)=
~

1n(o'
~

and CP)4 is obtained from
Cp by replacing P= —, (a=0) and Ao~2 (this is
necessary because A is not defined for a=0).

L2(a,q )M =—2ik(o '(Qo+M ),
where

(4.14)
V. CORRELATION FUNCTIONS

1 8L2(a,q) =
2 +— I (a)2~q —~ . (4.15)

Qq g elf
In this section we consider the long-distance

behavior of the Green's function or correlation
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function (G„o(co)) and define a correlation length
through

&G„o(co))-e '~~"), r~m . (5 1)

In terms of the partition function (2.9) we can
write the correlation function as

(G,e(~))={J(d(e)V„Ve,e H'~), (5.2)

where, as usual, the limit n ~0 is understood.
This correlation function can be expressed in terms
of the eigenvalues and eigenvectors of the integral
equation with the same kernel as (3.2):

g)p(y) f dy e(e —()v/2)(V —V ')2)~ —(m/2) 'vs)(y e)

(5.3)

The solution with the largest eigenvalue A, = I is
%o——Q. To determine the correlation function (5.2)
we require the next eigenvalue and eigenvector,
which we call A, , and ql), respectively. From (5.2)
)I/) must have p-type symmetry, i.e., it is of the
form V ()) )(V ). In terms of these eigenvalues and
eigenvectors

'(co) =Cpco' (5.12)

We were not able to determine Cp in closed form.
If necessary, a variational method can be used.

In case (b) a similar calculation gives

(—1 C 1/2L 1/2( ) (5.13)

The correlation length is finite for all co & 0.
This is characteristic of diffusive processes in gen-
eral. In cases (b) and (e) the small hopping rates
occurring in the distribution have the effect of
reducing the correlation length. It should be noted
that the eigenvalues Cp of (5.11) are discrete and
thus the form of (5.1) is verified.

ing as in case (C) Sec. III we can obtain a differen-
tial equation for the Fourier transform ()I))(q) of
(I))( V ). This equation can be set in the form

L2(q)f i+2Cpf 1
——0, (5.11)

where f) ——( I/q)P) (q) and 1.2 is given in (4.15).
The frequency dependence of the correlation length
follows from (5.10):

(G„o(co)}=I(. I,),
where

(5.4)
VI. PHONON LOCALIZATION LENGTH

I(:=f dVe ' '"4 V)p (5.5)

It is assumed that both Po and 0 ) are normalized:

f d ye ((0/2) v—2t(I)2 (5.6)

(A) Pure system. In this case it is easily shown
that

(o/2) v2 g
(5.7)

where ao is given in (3.6). From (5.4) and (5.1) at
low frequencies we find

' 1/2

g '(co)= (5.8)

(B) Case (a). For low frequencies we can use the
steepest-descent method to reduce (5.3) to a dif-
ferential equation. It is found that

—(a/2) V2+,—V.e-""",X)= I-(~/IV. )'"- ~ ~,
(5.9)

where a is given in (3.9). The correlation length is
given by (S.8) with W, replacing W.

(C) Case (c). For small co we assume a solution
to (S.3) of the form

+)——V Q)( V ), )(,) =1 Cpco' P, (5.—10)

where Cp is a constant to be determined. Proceed-

The model considered in Sec. III is also a model
for phonons in one dimension with random force
constants. In Eq. (2.1) co should be replaced by
—co in this case. It is generally accepted that all
eigenstates in one-dimensional disordered systems
are localized. In this section we calculate the aver-
age rate of exponential growth y(co ) of particular
phonon states of frequency co. This is given by
(see Ishii )

y(co }=f dA, X(A, )in ~co —A, ~, (6.1}

where X(A, ) is the average density of states. It has
been argued by Thouless that y(co ) is the inverse
localization length. A more convenient formula
than (6.1) is

2

y(co ) =Re f dk, (Goo(A, ) } . (6.2)

case (b)
4

/
lnco

/

'/

C(0) 1Teot2irp 2(1 2p)

1 —Z

(6.3)

The average Green's function has been determined
in Sec. III and we will quote the results

r

Pl 2
co, case (a}

a
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where CI)
' is given in (3.26). As expected the aver-

age exponential growth rate is greater in case (c),
i.e., the localization length is shorter than in case
(a). In each case y(co )~0 as co~0, indicating a
diverging localization length. Note that case (c)
does not go smoothly into case (a), but the coeffi-
cient of the leading term vanishes when a=0.

VII. RANDOM SITE AND BOND PROBLEMS

{f( ))={ ' " )

In the low-frequency limit

1 —{f(U)&=(—,
'U' ' '~)' I'(y),

and substituting this in (3.16) we find

(7.6)

{7.7)

when 0~a &1 and 0&y&1. The integral equa-
tion satisfied by Q is given by (3.16) with f(U) re-

placed by

In this section we consider the random-site prob-
lem [random C, in Eq. (1.1)]. We first consider
the case where the bonds are not random, i.e.,
W„+1——W for all r. Dyson' showed that the
random-site and bond problems reduce to the same

type of integral equation. The generating function

(3.1) is now of the form

p 2(2—a —y)

Introducing the Fourier transform (3.19) the
equation satisfied by Qo(q) is now

, +— Q()(q)
q q ()q

(7.8)

(7.1)

where Q( V) satisfies the integral equation analo-

gous to (3.2):

Q(y) J dydee(w/2)(v —v')2(e (c/2)v—'
)Q2(y~)

(7 2)
We introduce a new function

2a y — 2—2aQ ( ) (7 9}0

This (xluation is not easy to solve. The frequency
dependence of the quantities of interest follow
from (7.8). In order to preserve the symmetry be-
tween the bond and site problems we define the
density of states by

R(V)=(e ' '" )Q(l/) (7.3)
N(co) =——Im {COGoo( co+i—5))'1

Then it is easily shown that the Fourier transform

R(q) of R( V) satisfies

—(1—ay)/(2 —a—y)N (7.10)

R(q)= J dq'{e (1/2mc)(q q') )e —q' /2wR(—q. )

(7.4)

It is also easily shown that the diffusion constant
and correlation length have the following frequen-

cy dependence:

The transformation q =i/~q then shows that R
satisfies an integral equation identical to that of
the bond case (3.2) with W~ 1/C. The cases (a),
(b), and (c) in Eqs. (1.2) —(1A) then correspond to
distributions of C for which

D() (a+y —2ay)/(2 —a —y)

—1( ) ~[(1—a)(1—y) 1/(2 —a—y)

VIII. DISCUSSION

(7.1 1)

{a) {C) finite;
{b) p(C}-C, C~oo,'
(C) p(C)-C2 a, 1&C& oo.

p(W)=, 0& W&18'

p(C)= 2, 1&C& oo
1 —y

(7.5}

The density of states, diffusion constant, and corre-
lation length then have the same behavior as in the
random-bond case discussed in Secs. III—V.

Finally we consider the case where both 8' and
C have singular distributions

The low-frequency behavior of a one-dimension-
al diffusion model with random hopping elements
has been determine@i. The use of the replica pro-
cedure leads to a considerable simplification in the
solution of the resulting integral equations. Exact
asymptotic results have been obtained for the den-

sity of states, diffusion constant, and correlation
length. These results extend those obtained by
Alexander et al. In particular, we are able to veri-
fy their assumption of a single correlation length
and determine the length.

The assumption of a correlation length allows us
to relate the exponents determining the frequency
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6 '(k, a)) =cof(kg(co)),

where for small k

(8.1)

f(kg)=1+ck g + (8 2)

where c is a constant. The diffusion constant is
thus

dependence of the correlation length, the diffusion
constant, and the density of states. In the present
context the scaling assumption can be expressed as
follows: The inverse Green's function (2.6) has the
scaling form

(4.19},and (5.11},and also by (7.10) and (7.11).
There is thus one exponent in the model, that of
the correlation length. Arguments for this ex-
ponent leading to (5.12) have been put forward by
Alexander and Bernasconi and Alexander et al.

The correlation length is finite for all co & 0.
This is characteristic of diffusion processes. The
effect of distributions of type (c) is to reduce the
correlation length for a given value of co. In this
paper we have calculated average quantities. For
finite co as the correlation length is finite, these
average quantities should be well defined.

&(co)-~g'(~) .

The density of states is

(8.3)

ACKNOWLEDGMENT

N(co)= I G(k, co)-dk 1

2m
'

cog(co)
(8.4)

The relations (83) and (8.4) are satisfied by (3.25),

This work was supported in part by the National
Science Foundation under Grant No. DMR-81-
06151.

F. J. Dyson, Phys. Rev. 92, 1331 (1953).
~S. Alexander, J. Bernasconi, W. R. Schneider, and R.

Orbach„Rev. Mod. Phys. 53, 175 (1981).
3J. Bernasconi, W. R. Schneider, and W. Wyss, Z. Phys.

B 37, 175 (1980).
4The form of the correction terms are discussed in Ref.

2 and have been considered in some unpublished work

by Bernasconi and Schneider referred to in Ref. 2.

5M. J. Stephen, Phys. Rev, B 17, ~~"."-. (1978).
6R. Kariotis (unpublished).
7K. Ishii, Prog. Theor. Phys. Suppl. 53, 77 (1973).
D. J. Thouless, J. Phys. C 5, 77 (1972).
S. Alexander and J. Bernasconi, J. Phys. C 12, L1

(1979).
' J. Bernasconi (private communication).


