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We show that for dielectric or metallic gratings with square-wave geometry the photon
eigenfunctions in the grating region can be expressed in analytical form. The knowledge

of these eigenfunctions makes the diffraction calculation not only simple and direct, but

also devoid of the many limitations encountered in other solution techniques. In particu-
lar, diffraction from deep gratings and the calculation of surface-plasmon excitations
present no difficulties. Numerical results on diffraction efficiency are in good agreement

with our experimental data. The near-field electromagnetic properties of Ag gratings are
examined in detail. These results are of particular importance in understanding the opti-

cal behavior of molecules near a rough metal surface (for example, in surface-enhanced

Raman scattering). It is shown that coincident with the excitation of surface plasmon,

there is an enhancement of the local- (surface-) field intensity by a factor of 100—500.
For molecules on a grating surface, such increase in local fields can imply an amplifica-

tion of 10 —3 X 10' for the Raman scattering signal.

I. INTRODUCTION

Diffraction'of light by periodically corrugated
surfaces has been a subject of continuing interest
since the early days of the electromagnetic theory.
Mathematical treatment of the problem started
with Kirchhoff's scalar-diffraction theory. The
scalar theory ignores the vector nature of light and
treats the interaction of light with the scattering
object only in an approximate manner. Although
satisfactory for diffraction problems where the
scattering objects are much larger than the wave-

length of light A, , the approximations involved in

the scalar theory are known to break down' when

the size or periodicity of the diffracting object be-

comes comparable to or smaller than A, . Subse-

quent to Kirchhoff's theory, an alternative ap-
proach to diffraction calculation was advanced by
Lord Rayleigh in his solution to the problem of
wave scattering from a reflecting grating. By ex-

pressing the wave field everywhere in space as su-

perpositions of plane-wave harmonics, Rayleigh
obtained the diffraction amplitudes through
boundary-condition fitting at the grating surface.
Rayleigh's method yields reasonable results for
shallow gratings even when the periodicity is
smaller than I,. However, when the ratio of grat-
ing depth to periodicity exceeds a small critical
value, the method fails to converge. This severe
constraint naturally limits the applicability of
Rayleigh's method to problems involving only
weak scatterings. In recent years, the increasing
availability of digital computers has brought along
a host of numerical techniques for the solution of
diffraction problems. Although most of the
methods are rigorous in formulation, they
nevertheless exhibit different effectiveness in actual
execution. For example, direct numerical solution
of the wave equation in differential form is report-
ed to show instabilities for gratings made of good
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conductors, such as aluminum or silver. The
integral-equation approach, on the other hand, is
numerically more stable than the differential
method but can display matrix ill-conditioning
problems when grating depth becomes too large.

It is the purpose of this paper to point out that
for the class of dielectric or metallic gratings with
rectangular (square-wave) geometries, eigenfunc-
tions of Maxwell's equations (in the region of cor-
rugations) can be expressed in analytical form.
With the knowledge of these eigenfunctions, the
diffraction calculation is shown to be not only sim-

ple and direct, but also devoid of the many limita-
tions encountered in other solution techniques. In
particular, diffraction by deep gratings and the cal-
culation of surface-plasmon excitations are noted
to present no difficulties. As an application of our
method, we examine the near-field electromagnetic
properties of metallic gratings. It is shown that
the excitation of surface plasmons on Ag gratings
causes the local surface field to increase by a factor
of 100—500. For molecules adsorbed on the grat-
ing surface, such local-field enhancement may ac-
count for a large part of the observed Raman-
signal amplification.

In what ensues, the eigenvalues and eigenfunc-
tions of Maxwell's equations for square-wave grat-
ings are considered in Sec. II. The formalism for
the solution of the diffraction problem is delineat-

ed in Sec. III. In Sec. IV we present theoretical re-
sults and compare experimental data with some of
the predictions. Good agreements are obtained in
all cases.

II. EIGENFUNCTIONS OF SQUARE-WAVE
GRATINGS

Figure 1 gives the coordinate system to be used
in the calculation. The top of the grating is at the
plane z =0. The periodicity of the grating is
denoted by d, the depth by h, and the ratio of the
grating linewidth to periodicity by r. We identify
two polarizations for the plane wave incident at
the angle 8;: E (H) polarization is defined as the
configuration in which the electric (magnetic) vec-
tor of the light is parallel to the y axis. To obtain

E polarization E

H polarization

-X ( rd~)
h

FIG. 1. Geometry of the rectangular grating used in
the calculation.

R„exPIik p[y„x+ (1—y„)'~zz] j,

T„expI ikp [y„x—(e—y„)'~zz]
I .

(2)

Here 4' is the y component of the magnetic (elec-
tric) vector for the H (E)-polarized wave,
kp =277/k, is the free-space wave vector of light, e
is the complex dielectric constant of the grating,
R„and T„arethe amplitudes of the nth reflected
and trasmitted diffraction orders, respectively, and

y„is defined as

71K,y„=sin8;+
d

In Eqs. (1) and (2), and in the rest of this paper,
the square root with the positive imaginary part
will always be chosen.

In region II the space is no longer homogeneous,
and the solution of the wave equation generally re-
quires more effort. However, in the particular in-
stance where the grating is perfectly conducting,
the field can again be written down simply. Not-
ing the requirement that the tangential component
of the electric field must vanish on the grating sur-
face, we have, for the E polarization,

the solution of the diffraction problem, let us con-
sider the form of the wave field in each of the
three regions separated by the planes z =0 and
z =h as shown in Fig. 1. In regions I and III, the
electromagnetic field can be expressed as superposi-
tion of plane and evanascent waves:

4'=—exp[ —ikp(sin8;x+cos8;z }]

g A~sin
, m=1

II

0, —& fx/& —.Q

2 2

mm ax+— sin ko
Q 2

' 2 1/2

(z+h), ~x
~

&—

(4a)
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Here a =(1—r)d is the width of the rectangular channel. Similarly, for the H polarization, Hrn is given by

0, —&fxf& —.a d
2 2

'

m+ a
B~cos x+

, m=0 a
II

Hy ——

cos 'ko 1—
'2 1/2

2a
(z+h), fx f

&—
2

(4b)

BHy
'=k, e(x) ax

aE,
H =

kO BX

(5b)

(5c)

where e(x}=e for
f
x nd

f
&—

f
rd I2 f, and 1 oth-

erwise. Substitution of Eqs. (5a) and (5b) into Eq.
(Sc) yields

r +e(x}kzoHr —— [lne(x)] .
BZ BX Bx dx

Equations (4a) and (4b), plus the condition igni=0,
have been the basis of much of the theoretical
work involving perfectly conducting rex:tangular
gratings. The diffraction calculation in those cases
involves just the solution of a set of linear simul-

taneous equations obtained from fitting the proper
boundary conditions at z =0, and the solutions are
known to be numerically stable. For dielectric and
metallic gratings, we show below that although the
eigenfunctions in region II are more complicated
than those of the perfectly conducting grating, they
nevertheless can be expressed in closed form.

Consider Maxwell's equations for the H polari-
zation:

HyE
k,~(x) az

'

By writing Hr(x, z) =X(x}Z(z),Eq. (6) can be
separated into two equations for X and Z. If we
denote the separation variable as A, then

Z +2Z
dZ

(7a)

dX d dX
[In@(x)] +[@(x)ko—A ]X=0 .

(7b)

Equation (7a) can be directly solved:

Z(z) cc exp(iAz) .

However, to get X, we will turn to Eqs. (5b) and
(5c) instead of to Eq. (7b). That is,

dX
ikon(x) V, —

dx

dV A= —ikO 1—
tfx e(x)ko

(9a)

(9b)

where we have expressed E, as V(x)exp(i Az), and
H as X(x)exp(iAz) At this. stage our problem
becomes identical to that of a periodically strati-
fied medium with a piecewise constant e(x). This
exact correspondence enables us to utilize the well-

known fact that the values of X and V at any two
values of x can be related by a 2X2 transmission
matrix. In our case,

X cos(Prd )

i sin(P—rd }
ekO

ekO
i sin(P—rd )

cos(Prd )
(10)

where P=(eko —A )'/ . Now since X(rd I2), V(rd I2) represent the tangential H and E fields at the
grating-air interface, by the electromagnetic boundary conditions they must exhibit continuity. Therefore,
we can further relate X((1—rl2)d ), V((1 r l2)d ) to X(rd—12),V(rd l2), by
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I'8

2 cos[a(1 r)—d ]
ko r

i— sin[a(1 r)—d ]
CK

. a
i —sin[a(1 r)d]—

kp
cos[a(1 r)d—] V 1 ——d

r
2

where a=(ko —A )'~ . Substituting Eq. (11) into Eq. (10) and observing that
r

X 1 ——d
2

V 1 ——d
r
2

=exp(ikod sin8;)

6
2

(12)

we obtain an eigenvalue equation for A (A is contained in the definition of a and p):

0=cos(ked sin8; )—cos(prd )cos[a(1 r)d]+ ——r +———sin(prd )sin[a(1 r)d],—1 a 1 P
2 P r a (13)

where r=e. For the E polarization, if we write E~ =X(x)exp(iAz), then similar considerations yield exactly
the same eigenvalue equation with ~=1. To complete the solution, we write down the expression for X:

rd
cos p x+

rd
U~cos a x—

2

rkp
+iVo sin p x+

2

ko rd
+iV~ sin a x—

Q 2

/x/(

&/xi& 1 ——d

(14)

where X( —rd/2) is normalized to 1, with

Vo ——[exp(ikod sin8; ) M]/N, —

V, = —sin(Prd)+ Vocos(Prd ),
ko ~

(15)

(16)

l

pressed in general as

+n= +XI(x)[A)exp(i Aiz)+Biexp( i Aiz)]—,
I

(21)

rkp
Ui cos(Prd ) +i V——o sin(Prd ),

M =cos(Prd )cos[a(1 r)d ]—
sin[a(1 —r)d ]sin(Prd ),

wa

N =iko —cos(Prd )sin[a(1 r)d]—1

+ —sin(prd )cos[a(1 r)d]—
(19)

and
r

e for the H polarization

1 for the E polarization . (20)

The wave field in region II can therefore be ex-

where l is the label for the eigenvalues, Xi(x) is the
eigenfunction associated with the eigenvalue AI,
and 9' has the same meaning as defined in Eqs. (1)
and (2).

To gain a better grasp of the eigenvalue equa-
tion, we plot in Fig. 2 the right-hand side of Eq.
(13), denoted by F, as a function of Az for a silver
grating with d =1050 nm, r =0.5. The wavelength
of the normally incident light is taken to be 700
nm, and the dielectric constant of the silver at this
wavelength is given by' e= —23.4 (for the sake of
illustration, the small imaginary part is omitted to
make the eigenvalue equation real). Three features
of the figure should be noted. First, there is al-
ways a maximum value of A (or a real part of A
for complex eigenvalues) that corresponds to the
lowest eigenmode of the grating. Therefore, we
can always order the eigenvalues according to the
size of Re(A ). Second, as A decreases, there is
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eigenfunctions Xi(x) are plotted in Figs. 3 and 4.
It is seen that whereas the lower-order eigenfunc-
tions show very little penetration into Ag and are
therefore similar to those of the perfectly conduct-
ing grating (shown in dashed lines), the higher ex-
cited states exhibit significant amplitudes inside the
metal.

E polarization

F 0

III. DIFFRACTION CALCULATION
FORMALISM

The analytic solution of Maxwell's equations in
each of the three spatial regions has enabled us to
expand arbitrary wave field 4 as a superposition of
the eigenfunctions. The task of the diffraction cal-
culation now is to explicitly determine the expan-

5 ~

-25 -10
A (10 )

-20 -15

20
H polarization

10

A = 50.16+ i (0.039)
I I

AgAg
F 0

E polarization
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I l I I

0.2 0.3 0.4 0.5

FIG. 2. Right-hand side of the eigenvalue equation,
Eq. (13), plotted as a function of A . Each zero crossing
denotes an eigenvalue. (a) E polarization, (b) H polari-
zation.

J 1

0 0.1

X/d

A = 89.18 + i (0.088)
I I

Ag—
I—Agan abrupt change in the character of F from being

exponentially large in amplitude to being relatively
small in amplitude. This is due to the fact that
a=(ko —A )'~, P=(eko —A )'~ switches from
imaginary in value to real in value as A decreases,
thereby changing the nature of sine and cosine
functions. Third, in the case of the H polarization,
the function F is seen to cross zero on a regular
basis only down to a certain value of A . Since
zero crossings represent eigenvalues, at first sight it
might seem that there is a gap in the eigenvalue
spectrum at large negative values of Re(A ). How-

ever, a closer examination shows that the eigen-
values just appear in complex conjugate pairs for
those sections of Re(A ) where F does not cross 0.
[This can be understood by direct analogy with the
quadratic equation where the parabola y =f(x)
does not cross the x axis.]

For the same grating parameters and light wave-

length as those in Fig. 2, the behavior of four

1.2
1.0
0.8
0.6
OA

0.2
0

-0.2
-0.4
-0.6
-0.8
-1.0
-1.2 fb)

0.4 0.5
I I I I

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3

X/d

FIG. 3. Ground-state eigenfunctions X(x) plotted as
a function of x/d. The solid lines denote the real part
of the eigenfunction. The dashed lines denote the corre-
sponding eigenfunctions in the perfect conductor case.
The imaginary parts of the ground-state eigenfunctions
are small compared to the real parts and are now shown

in the graph. {a)E polarization, {b) H polarization.
8;=0'.
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1.4 I I

1.2 —H polarization —Ag
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04
-0.6
-0.8
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= 2208.28+ i (48.01)2=
I I

Ag—

with

(27)

1
X(x), H polarization

W(x) =
X(x), E polarization .

Since Eqs. (22)—(25—,) are valid for all values f
we can multi l'p y each equation by exp( ik0—x

lies 0 x,

and integrate over one period. This ro . is results in the
se o matrix equations:

-1.2
t

-0.5 -0.4

8.0

6.0

4.0

2.0

I I

-0.3 -0.2- .2 .0.1 0 0.1 0.2

~Ag

taj—
I

0.4 0.5 X(A+B)—R=D

x(ZA+X-'B) —b T=O,

Q(A —B)—IIR= —IID,

Q(XA —X-'B)+(AT=0,

where

(X)ms= l(x)exp( keymx )d—x,

(28)

(29)

(30)

(31)

-2.0—

-4.0—

(32)

(0) l
——Al WI(x)exp( ik0y x—)dx,

(33)
-6.0—

-8.0

tb)

s s

-0 4 -0 3 -0 2 -0 1 0 00.1 0,2 0.3 0.4 0.5

X/d

(X) I=exp( iAIh)5 l, —

4)m. =exp[ik0« r' )'"—h l5

(II) „=k0(1—y )' 5

(34)

(35)

(36)
FIG.IG. 4, Higher excited-state eigenfunction

Note the amplitude of the ei f ' ' ' e-o e e&genfunction inside the met-
a. im r e &g er excited E-a . imilar behavior holds for th h' h

polarization eigenfunctions. 0;="'

and

(g) „=ko
p )1/25 (37)

IP (z =O,x)=%" (z =0 x )
I

t

IPn(z= —h, x)=IIln'(z= —h x'

g@ II
(z=O,x)= (z=Ox)

z az

(22)

(23)

(24)

sion coefficients through th b d
~ ~

e oun ary conditions

and z= —h

continuity of tangential E and H f'an lelds) at z=O

R=(8—II) '(8+II}D, (38)

with

are the matrices, and (A) =A (BI I ~ I 1 ~

t e unknown vectors.m
—

m, (T)m =T are
ls e med as D =5D m =5mo. Equations (28)—(31)

can easily be solved for R and T. The r
matrix formorm, are

n . e results, in

5qPI 1 5IIIIII
(z= —h,x)=— (z= —h xre. '

Here 4' is defined as

(25)
and

x [o—Lx(X-' —X)(X-'+X)-']-'

x(n —Lx)X-'x-I (39)

T=A 'x(I+4)X(I+rex) 'x '(D R+R),
l(x)[AIexP(i AIz)+BIexP( —iAlz)'

I

—l Iz

(26) where
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(41)

and I is the identity matrix. It should be noted
that in the composition of 8, the only matrix
which depends on h is X. For h =0, X=I and 8
matrix reduces to the simple form

(42)

0.5

0.4

O.3

0.2

0.1

E polarization
AQ

which directly implies

(43)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

8(s „———~Q (45)

(44)

In the other limit of deep gratings, h ~ 00, we see

that if Ai has an imaginary part of any size, then
X~ ooI which means 8 can again be reduced to a
simple farm:

0.25—

e 0.20—
0

0.15—

0.'ID—

AI

and T =0. The fact that the 8 matrix, Eq. (38),
interpolates between these two simple limits means

that the deep gratings are just as easy to handle as
fiat surfaces in terms of numerical computation.

IV. NUMERICAL RESULTS
AND COMPARISON WITH EXPERIMENTS

0.05—

5 I I I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

FIG. 5. First-order diffraction efficiency and total
absorption plotted as a function of grating depth for
normally incident E-polarized light with A, =700 nm.

Numerical calculations have been performed for
both dielectric and metallic gratings. For the pur-

pose of illustration, we will focus mainly on metal-

lic gratings since traditionally they present more
difficulties for numerical treatment. To carry out
the computation, we first have to form the X and

the 0 matrices. Explicit expressions for the ele-

ments (X)~i and (0) i are given in the Appendix.
Since truncation of the matrices is inevitable, care
must be taken that the eigenfunctions whose eigen-

values form complex conjugate pairs do not get
separated. The two eigenfunctions in the pair pas-
sess the same symmetry, and therefore should be
considered as a single unit. To ensure the accuracy
and reliability of the final solution, we have per-
formed checks on the convergence of the ampli-

tudes and energy conservation (the imaginary part
of e is set equal to zero for this check) by varying
the rank of the 8 matrix.

In Figs. 5 and 6, we plot the (first-order) diffrac-
tion efficiency and absorption of Ag and Al grat-
ings as a function of h for both polarizations. The
normally incident light is assumed to be at A, =700
nm, and the gratings have the parameters d =1050
nm, r =0.5, eAI ———23.4+0.387i, and

eA~ ———42.6+17.02i. It is seen that whereas the

H polarization

0.5

OA

I
O.3

0.2

0.1

0 0.1 0 2 0-3 0.4 0.5 0-6 0.7 0.8 0.9 1.0

0.25

0.20a

015-

Al

0.05- Ag

i i i i i i i i I s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

h/g

FIG. 6. First-order diffraction efficiency and total
absorption plotted as a function of grating depth for
normally incident H-polarized light with A, =700 nm.
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koc=co(
l
kos'n8 +(2m'"/d)

I
) (46)

Ag grating acts as a nearly perfectly conducting
grating, with little absorption at all values of h,
the Al grating shows significant absorption with
increasing depth. It should be remarked that the
deep gratings presented no numerical difficulties.

A stringent test of the theory is the predictions
of surface-plasmon excitations. Figure 7 shows the
electron microscope picture of a square-wave Ag
grating with r =0.34, d =1 pm, and h =0.06 pm.
Using 6471-A wavelength radiation from a krypton
laser, we have measured the reflectivity as a func-
tion of 0;. The results are plotted in Fig. 8. For
the 8 polarization, the dips in the zeroth-order re-
fiectivity correspond to the excitation of surface
plasmon at the matching condition"

H polarization

1.0 =
Ii( ~1

Ii
I0.8—

~ ~

u 06-
4l

HALI

0.4-

0.2-
~ 0

Calculated 0th order ref lectivity
Measured 0th order ref lectivity

'l0 20 30 40 50 60 70

8; (DEGREES)

FIG. S. Relectivity as a function of incident angle for
the H polarization. The dips are caused by the excita-
tion of surface plasmons. Parameter values of the Ag
grating are given in the text.

where c is the speed of light and co(k) is the
surface-plasmon dispersion relation. The reflectivi-

ty minima at 0; =14', 25', and 60' correspond to
n =—1, 1, and —2, respectively. It is seen that
the theoretical curve, calculated by using

ez~ ———17.42+0.58i, agrees very well with the ex-

perimental data. In contrast to the H-polarization
result, the E-polarization reflectivity shows a
monotone behavior as shown in Fig. 9. Here the
theoretical result again shows good agreement with
experiment, even correctly predicting the small

cusplike behavior at 0; =20'.

In Fig. 10, the electric field intensity at the sur-

face of the grating is plotted for various incident
angles. It is clear that as 8; nears the excitation
condition of the surface plasmon, the surface field
intensity is increased by roughly a factor of 100.
Since local-field enhancement is believed to be re-

sponsible for a dominant part of the surface-
enhanced Raman scattering, our calculation indi-
cates that the classical electromagnetic component
of the enhancement factor can amount to
-(100) =10 . It must be emphasized, however,
that we have only considered the bare grating
without any molecular adsorbates. Therefore, the
calculated surface field is just an order-of-
magnitude estimate of the actual local field seen by
the absorbate molecules. Figure 11 illustrates the
decay of the field intensity as a function of dis-
tance away from the grating surface. We can
deduce from the graph that the characteristic de-

E polarization

Imlll! IH

I8 llli
I 5g

~ Hllgli& ~ALII:. %~%~NMM~

1.0

0.8

5 0.6

0.4

0.2-

~ ~ ~ ~ ~ ~ ~

~ ~ ~

----- Total ref lectivity
Calculated 0th order ref lectivity
Measured 0th order ref lectivity

~ I I I s i . I s I ~ I a I

0 10 20 30 40 60 50 70

e, ~DEGREES)

FIG. 7. Electron micrograph picture of a rectangular
Ag grating. The parameters of the grating are given in
the text.

FIG. 9. ReQectivity as a function of incident angle
for the E polarization. The grating is the same as that
of Fig. S.
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Z=0 Z = -0.06pwi

03 I I I I I I I I I 1 I I I

102

1.0-
0.9-
0.8-

0 07-
0.6-

U

0.5-
Ii~ 0.4-

[EJ»0
2

3 4 5 6 7 8 9 10 11

8; {degrees)

0.1
-0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.6

X/d

FIG. 12. H-polarization reflectivity as a function of
incident angle 8;: for a symmetric Ag grating with

d =0.6 pm and h =0.0105 pm.

FIG. 10. Normalized electric field intensity at the

grating surface. The grating parameters are the same as
in Figs. 8 and 9. The edges of the Ag line- are marked
in the figure. The sharp corners cause the

~

E
~

i to in-

crease toward the edges. Top of the grating corrugation
is shown to the left; trough is shown to the right.

cay length of the resonance field is on the order of
1000 A.

Another interesting phenomenon associated with
the excitation of surface plasmons is the total ab-

sorption of H-polarized light by metallic gratings. '

A necessary condition for this occurrence is d & A,

so that the grating supports only the zeroth reflec-

tion order at normal incidence. Figure 12 shows

that for an Ag grating with parameters d =0.6
pm, h =0.0105 pm, r =0.5, and

eA~
———23.4+0.387i, an H-polarized incident wave

with A, =0.7 pm is totally absorbed at 8; =8.213'.
It should be noted that the angular width of this
total-absorption peak is extremely narrow, and a Z=0

10
Z = —0.0105@m

—0.005 or a + 0.005 pm deviation in h from the
value of 0.0105 pm can raise the reflectivity dip
from 0 to 0.2 or 0.7, respectively. Such sensitivity
to the 0;,h parameters means that the phenomenon
can be observed only under carefully controlled ex-

periments. However, provided one can achieve
these parameter values accurately, the field
enhancement at the grating surface can be substan-

tially larger than those shown in Fig. 9. In Fig.
13, we plot the grating surface-field intensity at
various 8;. It is seen that an increase of

~
E,

~
/

~
E; ( by a factor of )500 is achieved, im-

plying a Raman-enhancement factor of -3X10 .
In summary, explicit photon eigenfunctions of

the general square-wave grating have been derived.
The use of these eigenfunctions in the diffraction
calculation is shown to yield accurate predictions
for the various types of grating phenomena. We
have investigated the near-field electromagnetic

properties of finite amplitude gratings in detail.
The results indicate that the excitation of surface
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FIG. 11. Decay of the resonance-field intensity away
from the surface of the grating. The grating parameters
are the same as in Figs. 8 and 9.

FIG. 13. Normalized electric field intensity at the
grating surface. The grating parameters are the same as
in Fig. 12. Top of the grating corrugation is shown to
the left; trough is shown to the right.
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plasmon on Ag gratings coincides with a large
enhancement of the near-surface-field intensity.
Studies of coated gratings, as well as the calcula-
tion of emission pattern for an adsorbed dipole, are
presently under way.
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APPENDIX

Matrix elements {X)~t and (Q)~l can be ob-
tained by direct integration of Eqs. (32) and (33).
Dividing each of the integrals into two sections,
one extending from dr/2—to dr/2 and the other
extending from dr/2 to (1 r/—2)d, we immediately
get

(X) i =exP(ikoy dr/2) [S+(P)—T+(P)]+ Vo—[S+(P)+T+(P)]

k
+exp( ikey d—r/2) Ul[S (a)—T (a)]+Vi [S (a)+T (a)]

J

(Al)

(Q)~t =AtexP(ikoy dr/2) [S+(P) T+(P)]+—Vo [S+(P)+T+(P)]

ko
+Aiexp[ ikoy~d—r/2] Ui [S' (a)—T~ (a)]+V| [S (a)+ T~ (a)]a

+ 1 exPI i(P k—oy~)—d[1+(1—2r)]/2} —1

2'd P—k y

+ I exPI i {P+key—~ )d[1+(1—2r)]/2} —1
'='P'= 2d P+k,y.

The quantities Vo, V„U„andr are, respectively, defined by Eqs. (15), (16},(17},and (20) in the text.
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