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The effective-medium-theory estimate of the binding energy of an atom to a host
{another atom, molecule, or solid) from the host electron density, and the binding energy
of the atom in a homogeneous electron gas has been extended to include covalent effects.
The covalent term involves the difference in the one-electron energies between the atom in

the host and the atom in homogeneous electron-gas systems. The scheme is tested for
helium impurities in several transition metals and for hydrogen impurities in all the met-

als from potassium to copper. For helium all available binding energies are well repro-

duced and all the observed trends in the hydrogen heat of solution can be accounted for.

I. INTRODUCTION

Along with the increasing ability to successfully
predict or confirm the binding properties of mole-
cules and solids from first-principles. calculations, '

there is a search for simpler methods. There are
two main motivations. First, the first-principles
calculations are so time consuming, in particular
when the symmetry is low, that there is little hope
at present that the great number of different sys-
tems of interest in, for instance, surface physics
can be treated. A scheme that makes predictions
possible on the basis of a knowledge of the proper-
ties of only the constituent atoms, molecules, and
solids is needed. In conjunction with this, the
second motivation is that simple schemes, by defin-

ition, must single out the essential parameters of
the problem. Finding a simple scheme, therefore,
often reveals some of the underlying physics of the
problem. Examples include the work of Pettifor
and that of Williams, Gelatt, and Moruzzi ex-

plaining the trends in the transition-metal alloy
heats of formation, and the efforts of Varma and
Wilson and Muscat and Newns to explain the
trends in chemisorption energies.

Another simple approach is the effective-
medium theory proposed by Stott and Zaremba
and N@rskov and Lang for calculating the embed-

ding energy of an atom in a host system (a bulk
solid, a surface or another atom or molecule). The
basic idea is to replace the (low-symmetry) host by
an effective (high-symmetry) host consisting of a
homogeneous electron gas of a density equal to
that seen by the atom. The embedding energy hE,

defined as the energy difference between the com-
bined atom and host system minus that of the
separated atom and host, is thus given by

bE(F)=BE"' (no(r)),

where b,E"' (no) is the energy of the atom in a
homogeneous electron gas (jellium) of density no,
and no(r ) is the host electron density at the site r
of the atom. The only parameter characterizing
the host is no(r ), and the properties of the atom
are given by the function b,E"' (no), which can be
calculated once and for all for each atom. This
has now been done within the local density approx-
imation for all the atoms from H to Ar by Puska
et al. A number of these results are shown in
Fig. 1.

Two classes of b,E"' curves are seen: the rare
gases and all the others. For the former, b,Eh'
rises monotonically (linearly) with no, indicating
the well-known fact that these atoms will interact
repulsively with any host. The rise in energy is
simply due to the kinetic energy repulsion between
the host and atomic electrons. This repulsion is
stronger the more atomic states the host states
must orthogonalize to. For the other atoms, a
minimum is seen in hE"' signifying the reactivity
of these open-shell atoms. As for the rare gases
the repulsive part of AE"' is governed by the ki-
netic energy repulsion. The attraction is given by
the gain in energy when electrons are transferred
from the electron gas to the affinity level of the
atom [hE"' (0)=—A, where A is the atomic af-
finity] and by the subsequent screening of the extra
atomic electrons. As shown, for instance, by Pus-
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is the atom-induced electrostatic potential in the
homogeneous electron gas, then Eq. (1.2) can be
written as follows ':
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FIG. 1. Embedding energies of He, H, Li, B, N, C,
0, aud Ne in a homogeneous electron gas (jellium} as a
function of electron-gas density (from Ref. 8).

ka et al. , the depth of the minimum in b.F."0 (no}
correlates very well with typical bond strengths of
the atom in question.

In some of the few cases where first-principles
calculations of binding energies exist, the simple
estimate of Eq. (1.1) has been tested. This is the
case for the chemisorption energies of both hydro-

gen and oxygen outside jellium surfaces and for the
helium trapping energies in jellium vacancies.
Good agreement is found for both the size of the
binding energies and the bond lengths, considering
the simplicity of the approach. '

The simple picture behind Eq. (1.1) can be im-

proved by considering the deviation of the host
density no( r ) from homogeneity in perturbation
theory. 6 The first-order correction to Eq. (1.1) is

AE"'( )=J hp( )
r ' —r

~

)5U'"'(r ')dr '

(1.2)

where bp(r)=En(r) —Z5(0) is the atom-induced
charge density (including the nuclear charge Z) in
the homogeneous electron gas, and 5U'"' is the
difference in external potential between the real
host and the effective medium. If, instead of using
no( r } in Eq. (1.1), we use an average density no( r )

defined by '

is the host electrostatic potential. Including the
first-order correction for, e.g., the chemisorption
energies of hydrogen and oxygen outside jellium
surfaces, makes the difference between the
effective-medium estimate and the first-principles
calculations even smaller.

The basis for the perturbation theory is that, due
to screening, the atomic charge density hp is so lo-
calized that even though, e.g., $0 in Eq. (1.4) may
change strongly far from the atom, it only varies
little over the region where dy is appreciable. This
does present a problem though. It is true that the
main part of hp is localized in the close vicinity of
the nucleus, but the Friedel oscillations in the elec-
tron density only decay slowly with distance. The
oscillations are only a small part of hp and, if no
strong scattering centers exist in the host, there
will be no problem, as indicated by the success of
the simple form Eq. (1.4) outside and in jellium.
In general, however, the core regions of the host
atoms have very large variations in the electrostatic
potential $0 and even though bp is sinall the first-
order term is bound to give an unrealistically large
contribution.

It is the purpose of this paper to treat this prob-
lem. It is solved by restricting the region in space
where the deviations of the host from homogeneity
are assumed small to the close vicinity of the atom.
Outside this region, the host potential is treated to
infinite order. Here, on the other hand, the atom
can be regarded as the small perturbation. With
such a mixed perturbation theory, the first-order
term, Eq. (1.4), is refound with all integrals over
the atomic region only. The outside region gives
rise to a new term in addition to Eq. (1.4}. This
term can be considered as representing the covalent
interactions between the atom and the host. The
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Following Hohenberg and Kohn, the total ener-

gy of a system with electron density n (r ) can be
written

E [n]=T[n]+G [n]+En~, (2.1)

where T[n] is the kinetic energy of a noninteract-
ing electron system of density n (r },E&& is the in-

ternuclear interaction, and

t

y y
n(r)n(r')d

+ U'"'r n r r+E„, n (2.2)

is the sum of the average Coulomb interaction be-
tween the electrons, the interaction with the exter-
nal potential (the nuclei), and the exchange and
correlation energy. In the local density approxima-
tion the latter is given by'

E„,[n]=I n(r)e"„,' (n(r))dr, (2.3)

where e"„,' (n) is the exchange-correlation energy
density in a homogeneous electron gas of density n

In this approximation, a local, effective potential
v (r ) can be defined as follows:

5G [n]
5n(r)

(2.4)

new version of the effective-medium theory is
presented in Sec. II. Then, in Sec. III, the scheme
is applied to a number of systems. The main ex-

ample is the evaluation of the hydrogen heats of
solution in all the metals from K to Cu. It is
shown that the most important factor responsible
for the observed large variations in the heats of
solution along the row is the variations in the in-

terstitial electron density through the zeroth-order
term, Eq. (1.1). Finally, in Sec. IV, the prospects
for and some of the problems with the method are
discussed.

II. THEORY

T[n]=pe; —f n(r)u(r)dr .
l

OCC

(2.7)

=5E —5E (2.g)

Here and throughout, a tilde denotes a quantity in
system 8, whereas a superscript 0 denotes the sys-
tem without the atom (the bare host). Further-
more, a 5 denotes a difference between B and B,
and a b indicates a difference between the system
with and without the atom.

The usual situation is that we know hE and
want b,E. The effective medium B is then chosen
to resemble 8 as much as possible in the region
close to the atom. %e can then hope to be able to
treat 5b,E in perturbation theory. To do this we
divide space up into a region a close to the atom,
and a region 5 outside. Owing to the choice of B,
the potential v, in region a will not be very dif-
ferent in B and B To first o.rder in the density
change 5n„when A is moved from 8 to 8, we can
simply assume U, =U, and v, =U, . In region b, on
the other hand, the potential is dominated by the
host. Here it is the influence of the atom which is
small. In insulators this is due to the localized na-
ture of the atomic states and in metallic hosts it is
due to screening. To first order in the atom-
induced density hnb in region b we can thus as-
sume vb ——vb and vb ——vb. If 55E is calculated us-
ing the following assumptions:

Slightly generalizing the problem stated in the
Introduction, the main purpose of the effective-
medium theory is to calculate the change in energy
of an atom A, when it is moved from one host B to
another B Th.e embedding energy of the atom in
B, b,E =E E,—is the difference between the total
energy E of the combined system A in B, and the
energy E of the separated atom and host.
larly, ~=E—E is the embedding energy in 8
and the embedding energy change is

5bE =b E bE =—(E E) (E— —E)—

so that the ground-state density n (r) can be found
by solving a set of one-electron Schrodinger equa-
tions self-consistently:

0
Vg —Ug~ Ug Ug

0
b =Vb~ Ub =Vb ~

(2.9)

(2.5)

(2.6)

The eigenvalues e; in Eq. (2.5) do not have any a
priori physical meaning, but we note that the kinet-
ic energy term T [n] can be expressed through
them as

it will be good to first order in the difference be-
tween 8 and 8 in region a, where the atom dom-
inates, and to first order in the influence of the
atom in region b, where the host dominates.

In the following we consider contributions of the
two terms T and G in Eqs. (2.7) and (2.2) to 5E
and 5E, and to 5bE [Eq. (2.8)] separately. From
Eq. (2.7} it is seen that
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5T=5 ge; —f u, (r)n, (r)dr —f vb(r)nq(r)dr+ f v, (r)n, (r)dr +f vb(r)nb(r)dr .

Similarly, we have

5T =5 ge, —f v, (r)n, (r)dr —f vb(r)n~(r)dr+ f u, (r)n, (r)dr+ t ub(r)nb(r)dr .

With the use of the approximations in Eq. (2.9) this gives

t

55T=5T 5TO—5b, ——ge; —f u, (r)5n, (r)dr+ f u, (r)5n, (r)dr —t ub(r)bn&(r)dr

+f ub(r)&nb(r)dr (2.10)

In order to evaluate 5b 6+55E~~, we note that in the local density approximation, Eq. (2.2) can be written
as follows:

p, (r)pb(r )
6[n]+E+N (6[n,——]+Eg,~)+(6[nb]+Ebi~)+ f f dr dr'.

b [r —r'[ (2.11)

Here G [n, ] stems from the electrons in region a only, Ez~ is the internuclear interaction within a, and

p, (r)=n, (r)—Q„Z„5(r—R„) is the total charge density within region a. The change in 6+Ezz is

56 +5EEN 6 [v ] 6 [~]+EN'' ENN

= 6[lta j 6[&a]+—6[nb] 6[nb j+—Ex~ E~bI+E—~x Enw—
p~ pg pg pb r'

d d

and it is similar for 56 . To first order in 5n, and hnb this gives

pb(r ')
5&6+5&E~N 6[n——,]—6[n, j+f f 5n, (r)dr dr '

b /r —r'/

+ 6 [ny] 6[ng]+—f f dna'(r )d r d r 'p, (r ')

b g
/

~ ~i

6[nb] —6[nb]+ f f Anb(r)drdr'0 p, (r ')

Ap, (r)5pb(r)
b /r —r'/

Now, from Eqs. (2.4) and (2.11) we can write

(2.12)

(2.13)

This means that if the external potential from region a is the same in 8 and 8, Eq. (2.12) can be written as
follows:

5bG+55EN~ f v, (r)5n, (r)dr ———f v, (r)5n, (r)dr+ f ub(r)hn&(r)dr
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If the external potential from region a is different
in B and B, as for instance when the effective
medium is jelliuin (where the positive background
extends over all space), a term

566,„,=f 5u,'"'(r)b,pa(r)dr (2.15)

must be included.
Adding Eqs. (2.15), (2.14), and (2.10) we get

(2.17)

With this choice of no we have

f ap. (r)5pob(r)hE= hE+
a b

~ f 5u,'"'(r)hp, (r)dr+56. ge; . (2.16)
a

The approach adopted here is very similar in
spirit to Andersen's proof" of the force formula
used in calculating the electronic pressure in bulk
materials. Also, the form of the result is similar.
The force is also given by a purely electrostatic
term and the change in the sum of the one-electron
energies. Equation (2.16) can be considered as a
generalization of the force formula to situations
where the atoms are not just translated a small
amount but moved to a completely new environ-
ment.

The simplest effective medium is a homogeneous
electron gas. This leaves an ambiguity with regard
to the choice of the electron-gas density. Here the
guideline must be to make a choice as close to the
real host as possible, that is, to make the correction
terms in Eq. (2.16) small and to put as much as
possible into the zeroth-order term hE. By analo-

gy to the simple version of the theory reviewed in
the Introduction, the effective-medium density can
be chosen as the average of the real host density
no(r ) over the atom-induced electrostatic potential

hPa in region a:

f np(r)bP, (r)dr

f bPa(r)dr

used so that Po is zero in the effective medium.
The particular choice of no, Eq. (2.17), thus re-
places the unscreened external potential in Eq.
(2.15) by the screened host potential. By analogy
to the simple version of the theory, this averaging
procedure also has the property that the result, Eq.
(2.18), is equivalent to a gradient expansion of the
embedding energy in the limit of sloe-density vari-
ations.

It is seen that, written in the form of Eq. (2.18),
the new version of the theory looks very much like
Eqs. (1.1) and (1 4) except for the fact that the
electrostatic energy integral is restricted to the re-
gion close to the atom, and except for the extra
term M,(g e;). This term describes the effects of
the region outside the close vicinity of the atom on
the embedding energy. If there are strong scatter-
ing centers (large phase shifts) in this region, the
one-electron energies will change considerably. If,
on the hand, there are no such strong scatterers, as
for instance on a jellium surface, this term will be
small and the simple version of the theory should
be applicable. The term 55(g e; ) =LE""de-

scribes the covalent aspects of the binding since it
will be governed mainly by the possibility of find-
ing a resonance between the atomic- and host-
derived one-electron levels.

The result, Eq. (2.18), is exact to first order in
5n, and 5n~, though usually, approximations must
be introduced in order to evaluate it. The zeroth-
order term &R =LE" (no) and the electrostatic
correction are easily calculated as in the simple
version of the theory. In evaluating the electrostat-
ic integral it is usually assumed that the atom is
neutral inside region a. This is consistent with the
assumption, Eq. (2.9), that the atom-induced poten-
tial is zero outside a. In practice this means renor-
malizing hn slightly. The electrostatic term can
then be simplified even further, since the second
term in Eq. (2.16) is zero and the third term can be
written

a a

no
Ap, (2.19)

Here
(2.18)

$0(r)= f dr' po(r)

is the host electrostatic potential, and it has been

This term can then be added to the right-hand side
of Eq. (2.16) to give

bF. =DE+f $0(r)gapa(r)dr+56 ge;

The total embedding energy is then

hE =b,E"' (no) a„no+6,E"". — (2.20)

The treatment of the covalent term is more diffi-
cult. In principle, it requires a calculation of the
one-electron spectrum for the atom in the real
host, that is, for the low-symmetry system. The
procedure is simplified by the fact that only one
calculation is needed since 5b (g e;) must be cal-
culated for fixed potentials and not the self-
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consistent ones. The real advantage of the scheme
is, however, that in many cases the bulk of the in-

teraction energy is provided by the other two terms
in Eq. (2.20). In such cases hE"" can be treated
more approximately than the rest. This does not
mean that the term is not important in, e.g., ex-

plaining the (small) differences between different
geometries, but just that a larger relative error can
be accepted on a small-correction term. In the
next section a number of such examples will be
treated.

Ul
l
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0 X
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III. APPLICATIONS

A. Helium

The covalent term is simplest for the rare gases
where it is basically zero. This is because the
rare-gas core levels are so far away in energy from
any of the host levels that there is only a very
small covalent interaction. Another simplification
for the rare gases is the (almost) linearity of hE"'
with no (Fig. 1). If we write hE"' (no) =ano then

Eq. (2.20) takes the particularly simple form

EE(r)=a,ff1TQ(1), (3.1)

B. Hydrogen in transition metals

As an example, where the covalent term cannot
be neglected we shall treat hydrogen as an intersti-

where a,ran=a —a„with a„defined in Eq. (2.19).
For He, a=275 eV a 0 (Ref. 12) (at metallic densi-

ties) in the local density approximation. Choosing
a radius 8,« ——2.5ao of region a, we find that
a„=126eVao at all densities and thereby
a g= 149 eV ao. The scheme has been applied to
calculations of helium trapping energies in bulk-
metal vacancies' and to the calculation of the
repulsive part of the helium-surface scattering po-
tential. ' ' In the latter case the simplicity of the
form, Eq. (3.1), is particularly valuable when the
scattering potential, determined experimentally by
helium diffraction, is to be transferred into infor-
mation about the surface electronic and geometri-
cal structure.

The reliability of the simple theory in the case of
helium-trapping energies in vacancies is illustrated
in Fig. 2. In Fig. 3 the insensitivity of the calcu-
lated energies with respect to variations in E.,„, is
shown. The results are seen to depend on R,„,
only when region a becomes too small to contain
the atom or when it overlaps too much with the
host cores.

I I I I

Ni Mo UV Ni Mo N
Vacancy He —vacancy

FIG. 2. Calculated vacancy-trapping energies {inter-
stitial binding energy minus binding energy in a vacan-

cy) for helium in the metals where experimental num-

bers exist for comparison (Ref. 26). Both trapping in an
empty vacancy and in a vacancy preoccupied with one
helium atom are considered. The input host densities no
stem from overlapping atomic densities (from Ref. 13).

tial impurity in the metals from K to Cu. The hy-
drogen 1s level wi11 interact strongly with the
valence bands of these hosts. Often, all or most of
the binding of hydrogen to the transition metals is
ascribed to such a hybridization, in particular with
the d bands. ' In the present approach, the co-
valent term hE"" measures the difference in the
hybridization of the hydrogen level when going
from the homogeneous effective medium to the
transition-metal host. We first note that even in
the transition metals the s and p phase shifts are
rather free-electron-like. This means that the
difference between the s, p-is hybridization in the

WJ=2
UJ

Hs. Cu, d=6 Q,x'00 ~

H-Cu, d=340,

I

3

Rujt (o, )

FIG. 3. Dependence of the calculated embedding en-
ergies on the radius 8,„, of region a for interstitial He in
Cu, He outside Cu surface at typical He energy in dif-
fraction experiment, and interstitial H in Cu.
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Here the first term giving the first-order contribu-
tion includes all the host ele:trons, not just the d
electrons. The first-order term involving the over-

lap of the atomic electrons with the potential out-
side region a has been neglected, as discussed in

Local density af states

J

P
Cl

sp

cu

Tf'GAS thOn

metal
H ill el l&f'tve

medlim

FIG. 4. Schematic picture of the hydrogen 1s —metal
3d hybridization in the effective-medium theory. The
picture is basically that of two levels (the d bond and
the 1s level) interacting to form bonding and antibond-
ing levels. The interaction with the s-p electrons, on the
other hand, is basically the same in the effective medi-
um and in the real solid.

homogeneous electron gas and the real host is
small. We thus only consider the effects of the
host d electrons.

When hydrogen is embedded in a homogeneous
electron gas, the 1s level is shifted down just below
the bottom of the band and doubly occupied for all

electron-gas densities in the metallic range. '

When the potential inside the atomic sphere u, is
shifted rigidly into the 3d host the common-energy
zero is the "local bottom of the band" or the local
value of the host effective potential. This ensures
the smoothest transition between u, and u~. The
1s-d interaction is thus between a 3d band around
the Fermi level eq, and a hydrogen-derived level si-
tuated around the effective potential V in the in-

terstitial region. ' In Fig. 4 this is shown schemat-
ically. The hydrogen level is pushed down (bond-

ing) whereas the d levels are pushed up (antibond-
ing). Because e~ and V are always well separated
in energy we can treat the d-1s hybridization in
perturbation theory. To second order in the 1s-d

hopping integral V,d, the covalent term is

bE""=I [no(r) no]bV, (r—)dr

the beginning of this paragraph. The first term
can be evaluated directly from a knowledge of the
host density no(r) and the hydrogen-induced po-
tential b,u in a homogeneous electron gas. By
coinparing the first term to Eq. (2.17) it is seen
that this term must scale roughly with the average
density no. It is found that a proportionality con-
stant of —a„=—31 eVao describes the term well
for all densities except the lowest (K and Ca),
where the absolute size of the error is very small.
The next two terms represent antibonding and
bonding contributions to the d-1s hybridization in
the real host.

Equation (3.2) can be simplified by noting that
e~ —e, is much larger than the d-band width so
that eq e, =—C& e, =—Cd —V, where Cd is the
center of the d band and V is the value of the
metal effective potential at the hydrogen site. We
further assume V,~ to be independent of ed. Equa-
tion (3.2) can then be written

b,E""= a„no—2(1 —f)—
Cd —V

(3.3)

where f is the degree of filling of the part of the d
bands with the right symmetry, to give a nonzero
V,~, and the factor of 2 comes from summing over
spin (magnetic effects are neglected). The hopping
integral is conveniently estimated in the atomic
sphere approximation (ASA) formalism of Ander-
sen et a/. ' In the ASA, the potential is assumed
spherically symmetric around each atom. The or-
bitals (here metal 3d and hydrogen ls) are approxi-
mated by muffin-tin orbitals decaying like an in-
verse power of distance from the atom. This
makes the hopping integrals very simple. For the
s-d interaction considered here we have

I
V.d I'=b. bd 2 1

R
(3.4)

bEcrr (rTo)=bE (bio) —aioino (3.5)

b,E"" = —2(1 f)—
Cg —V R

R6

where 6 and A~ are functions of the potential and
atomic radii of the individual atomic spheres only,
and where R runs over all lattice sites (the hydro-
gen atom is at the origin). Note that in the ASA
the assumption of an energy independent V,~ is
justified.

Combining all of this, the total hydrogen bind-
ing energy can be written in the following closed
form:

bE bpllom( —)+ bEhyb
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In Eq. (3.5) the properties of the host and the atom
(hydrogen) are completely separated. The proper-
ties of the atom enter through the function bE",P,
the atom-induced electrostatic potential needed to

I

evaluate no, and the potential parameter 6, . By
including a number of different calculations of
bE"' (see Ref. 17 for a collection) the following
parametrized form for b,E,"ff has been obtained:

bE,"r'r (no)=
—252no —1.12 (eV),130n0/n

0.004

398(no —Q.Q127) +31no —2.81 (eV),

0.002 & no &0.0127

0.0127&no . (3.6)

The average, Eq. (2.17), is calculated using the b,P
of hydrogen in an electron gas, but the result is ba-
sically independent of the electron-gas density.
Even the free-atom potential can be used. A ra-
dius R,„, of 2.5ao has been used for the atomic
sphere in calculating no and a„,. The insensitivity
of the final result to this choice is illustrated in
Fig. 3. As for helium, a fairly constant region is
found around R,„,=2.5ao. The potential function
6, should have been evaluated for H in an electron
gas. Since this value was not available, and the po-
tential close to the proton is found to depend only
slightly on the surroundings, the 6, evaluated for
solid hydrogen has been used. One finds

ba =(15 24 2.99Rws)R ~et

in units of eV for 1.5ao &Rw, &4ao. Here Rws is
the metal Wigner-Seitz radius and R,„, (=2.5ao)
is the hydrogen-sphere radius.

The properties of the host metal enter Eq. (3.5)
through the electron density no(r ), the effective
potential V at the hydrogen site, and the parame-
ters hd, f, and Cd characterizing the d band. The
electron density used is simply a superposition of
atomic charge densities. ' This has been shown to
give an error of less than 1Q&o in the open sites

I

considered here. ' V is calculated from no(r) and
therefore also has the superposition form. The
band-structure parameters have been taken from
Andersen and Glotzel. Only the nearest neigh-
bors are included in the sum, Eq. (3.4). The input
parameters and the individual terms in the calcula-
tion of the hydrogen heats of solution are shown in
Table I.

In Fig. 5 the total binding energy of interstitial
hydrogen in the metals from K to Cu is shown to-
gether with the experimental low-concentration
heats of solution. A remarkable agreement is
seen in the trends along the series. In the figure
the two contributions bE,"fr (no) and bE"" are
also shown. It is seen how the major part of the
total binding energy and most of the trends stem
from the terms depending only on no. For most of
the metals no is such that bE,rf (no) is linear in
no (Fig. 1). The variations thus directly reflect the
variations in the interstitial electron density. These
variations can be fully understood on the basis of
the cohesive properties of the bulk metals. ""' For
Ca and K, no is so low, however, that bE",P (no)
bends over and starts increasing again with de-
creasing no.

Apart from the dip around Mn, which is con-

TABLE I. Crystal structure, hydrogen site of lowest energy, Wigner-Seitz radius Rs, center of the d band relative
to the effective potential in the interstitial region C~ —V, hopping integral entering Eq. (3 4), relative filling of the d-
band f, averaged interstitial electron density np [Eq. (2.17)], and the different components of the hydrogen binding ener-
gy bE [Eq. (3.5)] for the metals from K to Cu.

~ms (0)
Cg —V (eV)

Lgh, (eV )

ng (ao )
gE boff ( V)
gEhyb ( V)
hE (eV)

K
bcc
tetr.

4.862
8.1

201.0
0.00
0.002

—1.95
—0.14
—2.10

Ca
fcc
oct.

4.122
6.5

252.9
0.05
0.005

—2.25
—0.41
—2.66

Sc
hex
oct.

3.427
9.9

200.8
0.15
0.010

—2.45
—0.68
—3.33

T1

hex
oct.

3.052
11.6

156.0
0.25
0.017

—2.25
—0.83
—3.08

V
bcc
tetr.

2.818
14.2

123.9
0.36
0.028

—1.80
—0.86
—2.72

Cr
bcc
tetr.

2.684
13.6
99.7
0.45
0.033

—1.62
—0.83
—2.45

Mn
fcc
oct.

2.699
9.9

85.33
0.55
0.024

—2.00
—0.54
—2.54

Fe
bcc
tetr.

2.662
10.9
72.2
0.65
0.031

—1.70
—0.50
—2.20

Co
hex
oct.

2.621
10.4
62.8
0.75
0.032

—1.66
—0.32
—1.98

Ni
fcc
oct.

2.602
8.3

54.9
0.85
0.026

—1.96
—0.18
—2.14

Cu
fcc
oct.

1

0.021
—2.11

0
—2.11
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nected with the rnagnetisrn in the 3d series, ""' the
same variation in no, and thereby in EE, is expect-
ed for the 4d and 5d series in accordance with ex-
periment. The variation of the hydrogen heat of
solution perpendicular to the rows is illustrated in

Fig. 6 for Ni, Pd, and Pt. The anomalous tenden-

cy of Pd to absorb hydrogen is clearly seen to be a
consequence primarily of the open Pd lattice (no is
low).

The variation of the hybridization term is rather
smooth. To the right in the series, it is determined

by the (1 f) term in Eq. (—3.S) which simply
comes from the fact that the fewer d electrons
there are in the band, the fewer antibonding elec-
trons there will be after the 1s-3d hybridization has
been taken into account. Left of V, the large
values of Rws lead to a weaker and weaker hybrid-
ization ( i V,d i

decreases).
The hybridization term is most important in ex-

plaining the difference between Cu and Ni (al-

though the theory does not describe this too well).
In Cu, 5E" is zero since both the bonding and
the antibonding levels are occupied. This is not

I I I I I I

K Ca Sc Ti V Cr Mn Fe Co Ni Qu

FIG. 5. Comparison of the calculated hydrogen bind-

ing energies to the experimentally determined heats of
solution (Ref. 22) for the metals from K to Cu. The
heat of solution is the embedding energy minus the

binding energy in the H~ molecule ( —2.4 eV per atom).
Also shown are the individual contributions in Eq. (3.5),
AEgff (open circles), and hE"" (filled circles). For K
and Ca, bE is also shown for a complex where the
metal —H bond length has been allowed to relax. The
real value is expected to lie in between these two ex-

tremes indicated by error bars (see text). The dashed

circle for Cr denotes b,E for nonmagnetic Cr.

EXETER NT

Pt Pd Ni

FIG. 6. Comparison of experimental and theoretical

heat of solution for H in Ni, Pd, and Pt. The EE,"qq

contribution is also shown. The experimental values are
the hydride heats of formation (Ref. 27). Experimental

heats of solution only exist for Ni (0.18 eV) (Ref. 22)

and for Pd (—0.1 eV) (Ref. 22).

true for Ni, and even though no is larger for Ni

than for Cu, hydrogen is bound strongest in Ni.
Finally, it is interesting to note that the general

shape of the hybridization-energy curve in Fig. 5 is
very similar to that calculated by Muscat in his
embedded-cluster method for chemisorption ener-

gies.
Neither relaxation of the nearest-neighboring

metal atoms nor the zero-point motion of the hy-

drogen atom has been included. For the open sites
considered here both effects should be small (-0.1

eV) and of opposite sign. The effect of relaxations
is small because the metal —metal bonds (as mea-

sured by, e.g., the cohesive energy) are usually

much stronger than the H —metal bond. This is
not true to the far left in the series (in particular
for K and Ca). Here relaxing the nearest neighbor-

ings towards the hydrogen will increase the binding
considerably.

In Fig. 5 the two extremes where the metal —H
bond length is determined by the pure-metal lattice
or by the metal-hydrogen interaction (neglecting
the metal-metal interactions) are shown as an error
bar for K and Ca. The true answer will lie some-
where in between. The too-small binding found in
K and Ca may also be due to an underestimate of
4, . For these metals Rws is actually outside the
limits of validity for the formula used for 5, . The
other noticeable difference between theory and ex-

periment is for Cr. Here the discrepancy may be
related to the fact that the magnetic state of Cr is
very easily destroyed. Even small concentrations
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of hydrogen might thus lead to nonmagnetic Cr.
With the use of the (calculated ) Rws ——2.62ao of
paramagnetic Cr, which is lower than the value of
Table I, the charge density no increases and a
better agreement is found (see dashed circle in Fig.
5). In general it seems that in cases where the H-
metal distance is small (e.g., Cr) or where the met-
al core is large (e.g., Pt) the interaction is not quite
repulsive enough. This is probably related to the
neglect of the s-p pseudopotential, or equivalently,
to the fact that the orthogonalization to the metal
cores is not completely included through the
AE"' (no) term.

IV. CONCLUSIONS

The new effective-medium result, Eq. (2.20), has
been seen to be able to reproduce both the absolute
magnitudes as mell as the trends for the binding of
helium and hydrogen impurities in a large number
of metals. This gives some confidence in the
method as a way of estimating binding energies.
The expression Eq. (2.20) also provides a way of
splitting the interaction energy up into its different
components. The first term represents the kinetic
energy repulsion and the energy gain when the
valence shell of the atom is filled. The second
term is purely electrostatic and the third represents
the covalent interaction. For helium impurities the
first term dominates due to the kinetic energy part
of it. For hydrogen impurities the first term also
dominates, but here it is the tendency of hydrogen
to form a (heavily screened) negative ion that is
most important. In the present formulation the
covalent term only expresses the difference in hy-
bridization between the real host and the effective
medium. For the transition metals the effective
medium mainly describes the influence of the free-
electron-like s-p electrons on the impurity. Rough-
ly speaking, the interaction with the d band
(through the covalent term) is thus considered after
the interaction with the s-p bands has been taken
into account. That is why AE"" is so relatively
unimportant. This provides a way of looking at,
e.g., H —metal bonds, which is complementary to
the method usually adopted, where the interaction
with the d band is considered first, and the s-p
electrons afterwards (if they are considered at
all). Which way of looking at the bond is most
profitable must depend on the system in question.
If the two first terms in Eq. (2.20) are dominating,
as for H and He, then the present approach has

many advantages, as discussed in Secs. II and III.
If, on the other hand, b,E"' (no) gives only a
small part of the binding, then perhaps another ap-
proach will be better. This will mainly be the case
for the one electropositive elements where the ten-
dency to form a negative ion is not large enough to
provide a considerable part of the binding (cf. Fig.
1).

When a diatomic molecule is considered, it is of
course, in principle, the same whichever of the two
atoms is regarded as embedded in the other. In
practice, it will always be easiest to pick the most
electronegative atom as the one to embed in the
other, since the first term in Eq. (2.20) will then be
largest. This also means that the method is not
very suitixl for homonuclear molecules.

With the above limitations in mind, the method
should easily be applicable to a large number of
systems. The immediate extensions include the im-
purity problem with impurities other than He and
H and the chemisorption problem. It should also
be kept in mind that the effective medium can, in
principle, be any system and not just a homogene-
ous electron gas. The guideline in choosing the ef-
fective medium must be (1) that it resembles the
real host as much as possible in the vicinity of the
embedded atom and (2) that the embedding prob-
lem is tractable for this system. The embedding
scheme used by Muscat and Newns to calculate
chemisorption energies can thus be thought of as
an effective-medium approach with a jellium sur-
face as the effective medium. When small energy
differences are considered it is most likely that the
two first terms in Eq. (2.18) do not change appreci-
ably so that the whole energy difference will be
given by the change in the one-electron energies.
This may be one way of explaining why a large
number of qualitative conclusions in chemistry can
be reached on the basis of an understanding of the
changes in the one-electron spectrum, and why
only the one-electron energy change has to be con-
sidered in, e.g., explaining the trends and absolute
magnitudes in the transition-metal alloy heats of
formation. '
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