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A molecular-dynamics simulation was used to examine the approach to equilibrium of
a two-dimensional solid near the melting transition. The system examined consisted of
256 particles interacting through an r repulsive potential. It was found that near the

transition the behavior is characterized by both increasing relaxation times and increasing

thermodynamic fluctuations. No true metastable states were observed. This behavior ap-

pears to be the critical slowing down that accompanies continuous transitions, supporting

the view that melting in two dimensions, at least under some circumstances, is continu-

ous. Estimates of the effects of those fluctuations which are suppressed because of the

finite size of the system further supports this view. The transition temperature was

found to be consistent with the Kosterlitz-Thouless dislocation hypothesis for melting but

the system was too small to make any reliable statements about the existence of the hex-

atic phase proposed by Nelson and Halperin.

I. INTRODUCTION

The nature of melting in two-dimensional sys-
tems has been studied for many years, and yet this
phenomenon is still the subject of much controver-
sy. ' The great interest which has developed over
the last few years in this subject has been generat-
ed, to a large extent, by some recently proposed
theoretical models for this transition. The theory
of Kosterlitz and Thouless predicts a second-order
melting process driven by the unbinding of disloca-
tion pairs. A later enhancement of this theory de-
rived by Nelson and Halperin predicts that melting
should occur in two stages, the first stage produc-
ing a proposed anisotropic liquid phase (the hexatic
phase) and the second stage (at higher temperature)
resulting in the normal isotropic liquid. The
lower-temperature transition is predicted to be the
Kosterlitz-Thouless transition for which the Lame
coefficients A, and p of the solid just below melting
are related to the transition temperature T, by

4 kT —"' +"' '
4mkT, =

A, +2p
Qo,

where ao is the lattice constant and k is the
Boltzmann constant. The solid is predicted to
have algebraic decay of translational order but
long-range orientational order. The hexatic phase
should have algebraic decay of orientational order
and exponential decay of translational order. The

isotropic liquid has, of course, exponential decay of
both.

Throughout the history of the study of melting,

both in two- and three-dimensional systems, com-

puter simulations have played an important role.

Early simulations of hard-disk systems and those

with r " repulsive interactions indicated that melt-

ing in two dimensions is not very different than

that in three. In particular, early studies indicated

that the transition was first order as evidenced by

the existence of a two-phase region. Later simula-

tions of Lennard-Jones systems showed a similar

behavior. In fact, the co-existence between solid

and liquid phases with the concomitant metastable

states and hysteresis remains the main argument of
those that claim a first-order transition for two-

dimensional melting. Unfortunately, an apparent

two-phase region can also be caused by finite-time

and finite-size effects in the model system. It is

these effects, in particular the finite-time effects,
that we examine in this paper.

Recent work has cast serious doubt upon the
conclusions of some of the earlier studies, attribut-

ing the apparent first-order behavior to the lack of
equilibrium in the system. Frenkel and McTague
gave the first simulation evidence that the melting

transition might be a continuous transition driven

by the Kosterlitz-Thouless and Nelson-Halperin
mechanisms. ' These conclusions have not gone
unchallenged, however, and new evidence has been

presented on both sides of the question. " ' Al-
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though the data reported in these studies is very
similar, the conclusions reached are often very dif-
ferent.

In previous studies, the reported results indicated
that often only passing thought is given to the
question of whether or not the system is in equili-
brium. At best, the system is run for a "long"
time before "long" time averages are calculated
without any quantitative justification of whether
"long" is indeed long enough. At worst, little con-
sideration is given to this question. What has been
lacking is a detailed study of the approach to
equilibrium and some quantitative criterion used to
determine if a given average is reliable or not. We
show that a simple quantitative criterion can be
used to determine which averages are valid (equili-
brium) averages and then use this criterion to ex-
amine the fluctuations near the melting transition.
These fluctuations make the evaluations of time
averages near the transition very difficult if not
impossible. Under these circumstances, improper
averaging can and does produce the type of hys-
teresis usually associated with a first-order transi-
tion. However, if care is taken to examine the
time dependence of this hysteresis, much of the
evidence for a first-order transition disappears. We
used this criterion to examine the time behavior of
each constant-energy run. If only those averages
which are judged by this criterion to be valid are
accepted, the hysteresis is greatly reduced, and the
transition looks very much like a continuous tran-
sition. In the end, we conclude that no valid con-
clusions about melting in two dimensions can be
drawn from any molecular-dynamics calculation
without doing a very careful quantitative study of
the relaxation effects near melting. It is not suffi-
cient to run for some arbitrarily long period of
time before starting the calculation of the time
average and then average over what appears to be a
long time based upon some. qualitative criterion or
"rule of thumb. " This is because relaxation times
very near the transition appear to be much longer
than any conceivable molecular-dynamics run.

II. RELAXATION EFFECTS NEAR MELTING

We have examined a system of particles interact-
ing with an r " repulsive interaction with n =5.
There was no particular reason for choosing 5, ex-

cept that it is a "reasonable" choice between the
"hard" Lennard-Jones repulsion value (n = 12) and
the "very soft" Coulomb gas value (n =1). It is

expected that the softer potentials are more likely
to exhibit Kosterlitz-Thouless melting. ' The ad-
vantages of inverse r potentials are well known,
namely, producing a phase diagram not complicat-
ed by the existence of a liquid-gas transition and
possessing special scaling rules which allow the
generation of an entire phase diagram from a sin-
gle isochore. ' This latter property is very useful
in molecular-dynamics studies since the "natural"
path for the dynamics is that of an isochore while
the most useful path for studying the nature of a
given transition is an isobar or an isotherm. Na-
turally, this scaling holds only for equilibrium
data.

If we write the interaction potential as

n

U(r)=E
n

then ri=(pcr2)(e/kT)2~" is the important thermo-
dynamic variable and all thermodynamic functions
scale along lines of constant ri. The natural (re-
duced) units for this system are e for energy, o for
distance, and r=(mo /e)'~ for time, where m is
the mass of the particle. These units are used for
all quantities reported in this work.

Since it was recognized that relaxation effects
would likely be very important, precautions were
taken to ensure that the system was initialized,
heated, and cooled as gently as possible. Except
for these precautions, the actual mechanics of the
molecular-dynamics procedure was quite stan-
dard. The initialization, heating, and cooling
procedures are discussed in the Appendix. All
runs were along a single isochore with a density of
1/~, and all results are reported for a system of
256 particles. Constant energy runs were divided
into blocks of 1000 steps and the time averages for
thermodynamic variables over each block were
written to a disk file for later analysis. This was
done a maximum of 99 times for any run, so that
the longest run was 99000 time steps. Near the
transition, it was absolutely necessary to run all
simulations for this period of time and even then
much data still showed strong relaxation effects
and could not be included in the equilibrium aver-
ages.

It was found that the best way to judge if the
system has come to equilibrium is to examine the
time dependence of the autocorrelation functions
of various thermodynamics quantities. These func-
tions enabled us to determine if the system had run
long enough to "forget" its initial configuration be-
fore averages were calculated. Furthermore, these
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functions estabhshed a quantitative criterion for
determining the minimum time period required for
a valid average. Decisions were based upon graph-
ical estimates for the relaxation times of the auto-
correlation functions. As a general rule, averages
were not calculated until the system had been run
at constant energy for about one relaxation time
and averages were then calculated over several re-
laxation times. It was found that these restrictions
ensured that averages from independent runs (runs
generated from independent initializations) were
reproducible and did not depend upon prior heat-
ing or cooling. Runs which did not satisfy these
restrictions were found to exhibit hysteresis, that
is, the averages depended upon the history of the
runs and independent runs did not exhibit reprodu-
cible results. It was also found that the relaxation
associated with a given run is independent of
which thermodynamic variable is used to define
the relaxation time. This is true even for variables
which are as different as the temperature and the
orientational order parameter g6 where we have de-

fined this to be

g,"exp(i 68,
&

)
6

1
(3)

The sums over i and j include only those pairs
with a separation less than ro ——1.44. This radius
is essentially the distance at which the pair-dis-
tribution function reaches its minimum value be-

tween the first- and second-nearest-neighbor peaks.
Instead of evaluating the autocorrelation func-

tions for the step-by-step values of the thermo-

dynamic variables, it is sufficient, for our purposes
here, to evaluate these functions for the block aver-

ages discuss& above. If I T; ) represents, for exam-

ple, the set of temperature block averages for a
given constant energy run, then the appropriate au-

tocorrelation function is given by

( T T, = '+" " "
(T.T.).—(T. )'.

where ( )„refers to the average over n. In gen-
1

eral, the maximum value of i was chosen to be —,

of the maximum number of block averages for a
given run and the sum over n was carried out for
evenly spaced values of n between zero and the to-
tal number of block averages for the run minus the
maximum value of i. Usually, 25 values of n were
sufficient to produce reliable results.

Figure 1 shows the temperature T, calculated
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FIG. 1. Average temperature calculated using the
equipartition theorem. The gap in the data for energies
between 0.142 and 0.146 shows the extent of the transi-
tion region. All data shown are equilibrium data.

from the equipartition theorem, as a function of
the energy E. Only those runs satisfying the above
acceptance criterion are shown. There is a distinct

gap in the data for energies between 0.142 and
0.147. All runs in this energy range showed relax-
ation effects on a very-long-time scale. This gap
delimits the transition region, defining this region
as that range of energies boundmi by points at
which the relaxation times increased or decreased
sharply. Such points are quite easy to locate. If
the block averages are truly independent (no relax-
ation effects) then the autocorrelation functions
should look like that in Fig. 2(a), the autocorrela-
tion function of a set of 100 random numbers.
Note that this function is not zero for i p 0 because
of finite sample effects. Figures 2(b) and 2(c) show
temperature autocorrelation functions for runs
which are somewhat above and somewhat below
the transition region. The similarities between
these two figures and Fig. 2(a) show that any re-
laxation effects in these runs decay within 1000
time steps. Time averaging starting with the
second block average and including several blocks
produces reliable equilibrium averages.

Figures 3(a)—3(c) show what happens to the au-
tocorrelation functions at the boundaries of and
within the transition region. Note the lengthening
of the relaxation time. Figure 3(b), which corre-
sponds to the system placed in the middle of the
transition region, shows that the relaxation time is
much longer than the time interval shown. Since
this time interval corresponds to 25000 time steps
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FIG. 2. Comparison of three autocorrelation func-
tions showing a lack of any relaxation effects: (a) auto-
correlation function for 100 random numbers, (b) auto-
correlation function for run at energy of 0.1402, and (c)
run at energy of 0.1523. Run (b) is in the solid phase
and (c) is in the liquid phase.

TIME/7

FIG. 3. Comparison of three autocorrelation func-
tions showing relaxation effects: (a) autocorrelation
function for run at energy of 0.1415, (b) at 0.1449, and
(c) at 0.1462. Run (a) is at the solid boundary of the
transition region, run (c) is at the liquid boundary, and
(b) is in the middle. The +'s show the temperature au-
tocorrelations while the +'s show the 1b6 autocorrela-
tions.

and the run was continued for nearly 100000 time
steps, any average based upon this run would be
suspect and unreliable. In fact, it appears that
runs in excess of 500000 times steps would be the
minimum needed before reliable averages could be
obtained. These figures also demonstrate that re-
laxation effects for the temperature and for g6 are
essentially the same. Similar effects were observed
for other thermodynamic functions. These relaxa-
tion effects are accompanied by a dramatic in-

crease in the amplitude of the fiuctuations. Figurc
4 shows
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the relative variance of the temperature block aver-

ages, as a function of the energy. The large peak
in this relative variance reflects a corresponding in-
crease in the fluctuations of thc step-by-step tem-
peratures. This increase in the fluctuation ampli-
tude correlates quite well with the increase in the
relaxation time. Thus as the transition is ap-
proached from either side, there is a marked
change in the thermodynamic fluctuations which
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FIG. 4. Relative variances of the temperature-block
averages. Note the dramatic increase in the amplitude
of the temperature fluctuations as the transition is ap-
proached from either higher or lower energies.
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simultaneously increase in amplitude and slow
down.
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III. THERMODYNAMIC RESULTS
(L15-

In the standard molecular-dynamics run, the en-

ergy, area, and particle number are fixed. Howev-
er, the best way to examine the nature of a transi-
tion is to display the data as an isobar or isotherm.
If temperature (isobar) or pressure (isotherm) is
plotted as a function of the area (or density), then
any two-phase region will be characterized by a
horizontal line whose endpoints define the boun-
daries of the two-phase region. Of course, in a fin-
ite system this horizontal line will not actually be
observed. ' Nevertheless, there should appear two
branches in each plot, with two definable points
which represent the endpoints of the two-phase re-

gion. The endpoint pairs in each plot must have
the same pair of values for g. Furthermore, there
should be no relaxation associated with either end-

point since these represent a single-phase system.
It would also be expected that metastable states
corresponding to supercooling and superheating
should be observable. These metastable states
should be characterized by long-time behavior
showing nucleation effects rather than relaxation
effects. Figures 5 and 6 show isobar and iso-
therm plots generated from the isochore data
through use of the scaling equations for the inverse
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FIG. 5. Isobar generated from the data shown in Fig.
1 by using the scaling equations. Runs generated by
heating are plotted with + and those generated by cool-
ing are plotted with +.
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FIG. 6. Isotherm generated from the data shown in

Fig. 1 by using the scaling equations. Runs generated

by heating are plotted with + and those generated by
cooling are plotted with +.

r potentials. ' The pressure P and temperature T
are plotted as a function of the area A. Note that
each plot there is a noticable gap in the data for a
range of areas between 3.115 and 3.142. This gap
corresponds to the gap in Fig. 1 with the data in-
side this gap showing strong relaxation effects,
having relaxation times so long that reliable aver-
ages could not be calculated euen for runs of
100000 time steps. However, outside of this range
the data is reproducible and independent of wheth-
er it was obtained from a set of runs generated
through cooling or a set of runs generated by heat-
ing. In both the isobar and the isotherm plots, re-
laxation effects become important before the
branches can reach a common temperature (isobar)
or pressure (isotherm). This is most noticeable in
the isotherm plot, but also can be seen clearly in
the isobar plot if the scale of the plot is enlarged.
This is done in Fig. 7 which also includes averages
which are not equilibrium averages, based upon the
criterion in the preceding section. Nevertheless,
these averages were for entire runs of 99000 time
steps and are typical of the sort of results reported
in many papers. Note that there is indeed hys-
teresis in the data. However, this hysteresis is time
dependent with the amount of hysteresis decreasing
Uery slowly as, the length of the run is increased.
The fact that it is indeed relaxation and not metas-
tability is shown clearly by the autocorrelation
functions but is very difficult to see by simply
plotting the thermodynamic functions versus time.
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FIG. 7. Isobar using an expanded scale for the area

and including very-long-time averages which did not

satisfy the acceptance criterion of Sec. II. Equilibrium

values are given by 1t for runs generated by heating and

+ for those generated by cooling. Nonequilibrium long

time averages are given by Q for the heating cycle and

by Cl for the cooling cycle.

If such plots are drawn, they show no evidence of
nucleation of the sort seen for three-dimensional
systems. Rather, they show fluctuations with

large amplitudes and very long periods. Again, the
autocorrelation functions, which show a damped
oscillator behavior, are the clearest evidence for
these relaxation effects. Figure 7 also shows that
once beyond the region of strong relaxation effects,
the runs obtained by cooling resulted in the same
averages as those obtained by heating. However, it
is very important to allow each cooling cycle to
take place only after the system has run at con-
stant energy for a long time, preferably about one
relaxation time. Heating the system was not as
delicate a process, but it also is preferable to run
the system at constant energy for some period of
time between heating cycles.

Both Figs. 5 and 7 show that on the liquid side
of the transition region, there is noticeable round-

ing of the isobar. Furthermore, the fluctuations in
thermodynamic functions such as the temperature
increased dramatically as the transition region was

approached from either end as shown in Fig. 4.
These fluctuations can also be seen in the step-by-

step temperatures and give rise to a peak in the
specific heat. Using the step-by-step averages of
the square of the temperature it is possible to cal-
culate the specific heat at constant area, but it is

FIG. 8. Specific heat at constant area as a function
of the energy per particle. The points show the results
of a calculation of the specific heat using temperature
fluctuations while the solid lines are smooth curves
drawn through points calculated by differentiating the
data in Fig. 1 as explained in the text.

necessary to average T over very long runs in or-
der to obtain reasonable values. Thus the data
shown in Fig. 8 are only for the longest runs made.
The curves drawn in that figure represent values

obtained by an approximate differentiation of the
temperature versus energy data in Fig. 1. A simple
point-by-point first-difference scheme was used to
obtain the derivative, and a smooth line was drawn

through the calculated points. The uncertainty in
the calculated values using the differentiation
scheme is between 1% and 3%, being less further
from the transition. The agreement between this
scheme and the fluctuation calculation is reason-

ably good.
In Fig. 9 we show

~

g6'~ as a function of the en-

ergy. This graph shows runs obtained by both
heating and cooling and includes both equilibrium
data and nonequilibrium data. Each class of data
is represented separately. The sudden decrease in

~ P6 ~

occurs at the solid boundary of the transition
region. The slight amount of hysteresis is associat-
ed entirely with the nonequilibrium runs, which are
the same runs shown in Fig. 7. The equilibrium
runs show a set of consistent values for

~ g6 ~

in-

dependent of whether the run was generated from
a heating or a cooling cycle. Because of the long
relaxation times in the transition region, it is not
possible to describe the precise behavior of

~ g6 ~

at
the transition. However, it is clear that the order
parameter decreases very quickly, in a very narrow
temperature range, from a value of about 0.66 to
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FIG. 9. Absolute value of the Nelson-Halperin order
parameter as a function of the energy per particle show-

ing both equilibrium and nonequilibrium data. Equili-
brium data for the heating cycle are given by + while

+ gives the equilibrium data for the cooling cycle. The
nonequilibrium long-time averages are given by Q for
heating and by 0 for cooling.

FIG. 10. Comparison of the Nelson-Halperin order

parameter (+) and the self-diffusion constant (+), both

calculated for the same set of 10000 step runs. If a
value for the order parameter is shown without a corre-

sponding value for the diffusion constant, that diffusion

constant was found to be zero. The curve drawn

through the diffusion constant data is drawn only as an

aid for the eye.

zero as melting is reached. Above the transition,
the standard deviation of the order parameter is
larger than the average value, indicating that it is
statistically zero as expected. It was impossible to
come to any defendable judgments about finite-size

effects upon
~

1I6
~

or upon the existence of the
hexatic phase.

While the order parameter is decreasing very
rapidly as the transition is reached, the self-
diffusion constant D, is i'ncreasing very rapidly, as
shown in Fig. 10. In this graph, the values of

~ gs ~

and D, were calculated over the same set of
10000 step runs and the equilibrium criterion was
not applied to these averages. The diffusion con-
stant was calculated from the asymptotic slope of
the average of the square of the relative displace-
ment at "large" times. These values were
checked against values obtained by the integration
of the velocity autocorrelation function and the
two methods were found to agree to within about
10%. The complementary behavior of D, and

~ $6 ~

is rather obvious from the graph. Where no
value of D, is shown corresponding to a given
value of

~ F6 ~, then that diffusion constant was
found to be zero.

IV. CONCLUSIONS

It is always dangerous to draw unqualified con-
clusions about the nature of any phase transition
from the results of a simulation without a careful
study of both the finite-time effects and the finite-
size effects inherent in any such calculation.
Nevertheless, an examination of the results of the
last section gives more support to the view that
melting in two dimensions is a continuous transi-
tion and presents some serious problems for the
view that it is first order. Perhaps the most signi-
ficant evidence in favor of the view that it is con-
tinuous is the fact that in both the isotherm and
isobar plots it was not possible to find a common
pressure (isotherm) or temperature (isobar) for both
branches due to the onset of relaxation effects.
The fact that the relaxation effects are accom-
panied by increases in the corresponding fluctua-
tion amplitudes indicates that the phenomena ob-
served is the critical slowing down which accom-
panies continuous transitions. Furthermore, the
decrease in the order parameter

~ g6 ~

and the in-
crease in the specific heat are characteristic of such
transitions. No metastable states, in the usual
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sense of the term, were observed. Thus the two
most characteristic phenomena associated with a
first-order transition were not found in this system.
Finite-size effects ' would not be expected to ac-
count for this negative result since the finite sys-
tem tends to stabilize not destabilize the metastable
states.

A check of the Kosterlitz-Thouless idea of dislo-
cation unbinding can be made by comparing T,
calculated from Eq. (1) to what is actually ob-
served in the simulation. What is needed for this
comparison is an evaluation of the Lame coeffi-
cients just below melting. This evaluation was car-
ried out via two techniques. The first technique
was the standard analysis of the transverse currents
to calculate the second-order elastic coefficients
and from these the Lame coefficients. The fluc-
tuations in the transverse currents were averaged
over runs of 10000 steps using samples of 100 to
200 configurations. This calculation produced
elastic coefficients which were accurate to about
15—20% as judged by the degree to which the

isoptropy condition and the density-current sum

rule were satisfied. An independent check of the
Lame coefficients obtained in this manner was
made by an analysis of the dynamic structure fac-

tor S(Q,co). First, the autocorrelation function

S(Q, t), where

S(Q, t) = ((f(Q, r);f(Q, O) )),
f(Q, r) = g exp[iQ. rj(t)],

were calculated from step-by-step configurations in
a 10000 step run. Then S(Q,c0), the temporal
Fourier transform, was calculated and examined
for peaks which would signal the existence of pro-
pagating modes in the solid. Figure 11 shows a
typical plot of S(Q,co) for a run just below the
melting transition. There are spurious oscillations
in this plot due to the finite-step and finite-range
limitations of the integration over time. Neverthe-
less, the peak in S(Q,ro) is quite distinct. By
choosing the relative orientation of Q, the scatter-
ing vector, and q, the wave vector of the propagat-
ing mode, it is possible to separate the contribu-
tions of the longitudinal and the transverse
modes. This analysis only requires that the two
modes be uncoupled and this is always the case for
q along a high-symmetry direction. Vibrational
frequencies were calculated at various points in the
first and second Brillouin zones to ensure that
these frequencies had the periodic behavior expect-

i.o e
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FIG. 11. Dynamic structure factor S(g,r0) for a typ-
ical case just below the melting transition. The rapid
oscillations are caused by finite-time-step and finite-
range limitations in the integration of S(g, t)exp(ivor).

ed of such modes. A plot of co vs q along a high-

symmetry direction is shown in Fig. 12 for both
modes. These frequencies were obtained in the vi-

cinity of the (1,0) "Bragg" peak. By estimating
both sound velocities from these graphs and using
standard continuum theory, it is possible to ob-
tain the Lame coefficients. These values are
A, =0.31 and IM =0.05, which are to be compared to
the values of 0.32 and 0.05 found by the trans-
verse-current method. The S(Q, ro) method ap-
pears to be less susceptible to variations than is the
case with the transverse-current method. Using
Eq. (1), we then obtain a value for T, of about
0.013, while the simulation shows the transition to
occur between 0.013 and 0.014. This agreement is
striking. It should be noted that although we did
not examine the free energy of the system, we

would expect that our transition temperature is the
thermodynamic transition and not the upper limit
to the stability of the solid. ' We base this judg-
ment upon our analysis of the isotherms and the
fact that this data should reflect equilibrium states.
If mestastable states had indeed been observed, this
presumption would not be justified and it would
then be necessary to perform a free-energy analysis
to determine the thermodynamic transition.

While the evidence for a continuous melting
transition is strong, the evidence for an hexatic in-
termediate phase is not. Because of the small size
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FIG. 12. Longitudinal and transverse frequencies for
density waves in the solid along the line from the center
of the hexagonal Brillouin zone to the midpoint of one
of the sides. The curves shown are the qualitative best
fit. The slope of each curve, in the limit of small q,
gives the corresponding sound velocity and these are
used to calculate the Lame coefficients.

of our system, we did not examine the behavior of
the g6 correlation function. Such an analysis is the
best way to detect the existence of this phase. '

We did, however, examine the dependence of the
static structure factor S (Q) upon both the magni-
tude and direction of Q. Below the melting transi-
tion, S(Q) showed the expected Bragg peaks for a
a simple hexagonal lattice. We found the width of
these peaks to be dominated entirely by the finite
size of the system. The peak width is identical to
that of 256 particles arranged in a 16X 16 hexago-
nal array. As the transition is approached from
below, the width remains constant and the height
steadily decreases. The decrease in the height of
the peak is associated with the thermal motion of
the particles about their lattice sites. The constant
width indicates that the correlation length associat-
ed with any disordering phenomena (like pairs of
dislocations) was much larger than the size of the
system. Any increase in the width of the peaks
due to these dislocations would have to be in the
region where strong relaxation effects were found.
A calculation of the population of dislocation pairs
in the spirit of Ref. 17 showed that this population
was less than S%%uo of the number of particles for
those runs that were in equilibrium. It is clear
that much longer runs with larger systems will be

necessary if the effects of the dislocations upon the
width of the structure factor are to be reliably cal-
culated.

Above the transition, S(Q) showed the expected
lack of any "long-range" order. However, it did
appear that the structure factor was not isotropic
as expected. It is not clear if the observed aniso-
tropic behavior is evidence for a anisotropic fluid
or has some other less exotic explanation. Much
longer runs on a larger system and a careful con-
sideration of any effects of the boundary would be
necessary before any conclusions could be drawn.

Up to this point, we have said little about any
finite-size effects for this system. While a careful
determination of the size dependence of various
thermodynamic and structural quantities is a siz-
able task (given the very long runs that are neces-
sary in the transition region), there is one interest-
ing consideration which does have an important
bearing on any examination of the melting transi-
tion. If the transition were first order, then self-
consistency suggests that density fluctuations in
the solid phase just below the melting temperature
must be small enough so that no significant por-
tion of the solid is likely to be found at a density
equal to that of the liquid. If this is not the case,
then it would be reasonable to expect that the in-
terface between the solid and liquid phases in the
two-phase region would be unstable. It is then of
some value to examine the density fluctuations as-
sociated with large wavelengths and to compare
the size of these fluctuations to the difference be-
tween the solid and liquid phases interpreting the
gap in Fig. 1 as a two-phase region instead of a
critical region. Density fluctuations associated
with regions larger than the size of our system can
be calculated by using the Lame coefficients calcu-
lated for the finite system as good estimates of the
Lame coefficients of the macroscopic system. Cal-
culating the rms fluctuations in the density p due
to the longitudinal modes we find

where the sum over q includes only those modes
with wavelengths larger then the size of the sys-
tem. The m~ and e& refer to the frequency and po-
larization of the longitudinal modes, respectively,
and 0 is the area of the macroscopic system.
Evaluation of this sum in the long-wavelength lim-
it gives an rms density fluctuation equal to
0.014p, &;d which is to be compared to a density
difference of 0.008p„~;d from Fig. 7. This does not
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prove rigorously that the two-phase region is un-

stable to density fluctuations. However, it does in-
dicate that the long-wavelength fluctuations which
are suppressed by the finite size of the system will
tend to shift the balance in favor of the continuous
transition and against the first-order transition.
These large-amplitude density fluctuations are con-
sistent with the view that the transition is continu-
ous.

A proper treatment of the melting transition
must include transverse modes (these generate the
dislocations} and energy fluctuations. Such a treat-
ment of the long-wavelength modes is beyond what
we wish to do here. However, such considerations
may be treatable in conjunction with a molecular-
dynamics calculation in a manner similar to the
Monte Carlo renormalization-group calculations
that have been applied to spin systems. Any
pure simulation, be it molecular dynamics or
Monte Carlo, will always be plagued by finite-
sampling and finite-size constraints.
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APPENDIX

The usual method of initializing a molecular-
dynamics Mn is to place the particles in a ped'~t
lattice and then to give each particle a random dis-

placement relative to its lattice site and a random
initial velocity. Heating and cooling usually take
place by the spontaneous increasing or decreasing
of the kinetic energy of each particle. These pro-
cedures can produce configurations which are very
far from equilibrium and may contain local config-
urations which are highly unlikely for a system
near equilibrium. To avoid any such problems, a
quasiharmonic nearest-neighbor lattice-dynamics
calculation was used to initialize the system. This
determined both the initial displacement and the
initial velocity for each particle. The amplitude of
each harmonic wave was calculated using the
standard classical formula relating temperature to
amplitude and the phase of each wave was chosen
at random. Once initial positions and velocities
were determined, the exact equations of motion
were integrated to allow the system to come to
equilibrium. Although the lattice dyanmics does
not produce a state of equilibrium, it does produce

one with reasonable local configurations, that is,
without any particle being very close to another or
having a very large velocity. Furthermore, with
some experience, it was quite possible to predict
within a few percent what input "temperature"
was required for the initialization to result in a
desired final energy or temperature of the model
system. Energy values for several runs were ob-
tained by appropriate heating or cooling pro-
cedures. Furthermore, more than one initialization
was used to avoid the possibility of being trapped
in a narrow region of phase space. Many of these
runs were used to check the data reported here but
are not shown explicitly.

Heating or cooling was performed by applying
to each particle a "viscous" force f proportional to
the particle's velocity u with

f=bv . (A1)

Then the exact equations of motion were integrat-
ed. For cooling one needs b & 0, while for heating,
b & 0. While heating, it is necessary to correct the
total momentum of the system at every time step
brause computer round-off error guarantees that
the model system will always have some small to-
tal momentum. A positive b will always produce a
net increase in any initial total momentum. Each
heating or cooling cycle consisted of approximately
200 steps during which the "viscous" force was
turned on and then 1000 steps at constant energy.
This configuration was then used as the initial con-
figuration of a constant-energy run. From a single
initialization, several constant-energy runs were ob-
tained by either heating or cooling the system by
small amounts. For those runs obtained by heating
some initial configuration, the heating process usu-
ally was started from a configuration which had
been run at constant energy for about 1000 time
steps. Homeuer, for the set of runs which were
generated by cooling, the cooling process was start-
ed from a configuration which was run at constant
energy for one relaxation time or for. 50000 time
steps, whichever came first. This was done in an
attempt to avoid changing the energy of the system
before the effects of the last cooling process had
damped out.

The value of the time interval used for each time
step was determined by requiring energy conserva-
tion over the entire energy range of interest and
over the longest run used. Near the transition,
runs of nearly 100000 time steps were typically
used. A single time step was about 0.02m, which
means that runs were typically about 1809r near
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the transition. Energy conservation held to about
four or five significant features. How much, if
any, of a given run was included in the thermo-

dynamic average was determined by an examina-

tion of the time dependence of appropriate auto-
correlation functions.
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