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Thermal conductivity and electrical resistivity of copper in intense
magnetic fields at low temperatures
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Measurements are reported for the first time of a complete set of thermal conductivity
and electrical resistivity data, both transverse and longitudinal, in fields up to 12.5 T be-

tween 3 and 1S K for a polycrystalline sample of copper (residual resistivity ratio equal to
108). The transverse resistivity data obey the Kohler rule at all field levels; the longitudi-
nal data, only at higher fields (H & 5 T). The longitudinal resistivity data do not show

saturation. The transverse thermal conductivity is depressed more by intense fields than
is the longitudinal conductivity. Effective Lorentz numbers, defined by the Wiedemann-

Franz law, are determined: The longitudinal Lorentz number is H-field independent, but
the transverse Lorentz number is found to increase linearly with H. The latter depen-

dence is significant, dL/dH =0.112)&10 W0 K per tesla.

INTRODUCTION

&lpo=f (~lpo» (2)

where hp is the change in resistivity in field H.
Experimentally, Kohler's rule is strictly obeyed
only when electron scattering by nonmagnetic im-

purities is dominant. Copper and gold follow Eq.
(2) at low temperatures for fields up to 10 T, but

Electron transport in metals has occupied a cen-
tral role in physics for a long time, particularly as
one of the early successes of quantum physics.
The Wiedemann-Franz law relates the thermal
conductivity E to the electrical resistivity p,

'

KplT =L =(darkle) l3,
where L is the Lorentz number and T is the abso-
lute temperature. The derivation of Eq. (1) does
not depend on any assumptions about the details of
the Fermi surface and is valid for all metals. This
law is a good approximation for most metals due
to a fortuitous cancellation of the electron mean
free path at the edge of the Fermi surface in the
derivation. At low temperatures the Wiedemann-
Franz law is valid provided that (1) the phonon
contribution to the thermal conductivity is negligi-
ble, and (2) the conduction electrons are scattered
elastically. The latter condition requires that the
temperature-independent, electron-impurity scatter-
ing dominates over the electron-phonon scattering.

Electron transport in magnetic fields is usually
represented by Kohler*s rule in the form of a
universal function,

aluminum and indium show significant deviations
from Kohler's rule.

In the present investigations, we have measured
the electrical resistivity and thermal conductivity
of a copper wire which satisfies the validity condi-
tions for the Wiedemann-Franz and Kohler laws.
Measurements were made in both transverse and
longitudinal magnetic fields up to 12.5 T at tem-
peratures between 3—15 K. We believe that these
measurements represent the first complete data set
measured on the same sample of copper, and the
goal here is to examine both the validity and aniso-
tropy of Eqs. (1) and (2) in intense magnetic fields.

Our original purpose for pursuing these mea-

surements was related to the development of a
method for measuring specific heats in intense
fields at low temperatures using a variation of the
"calibrated wire" technique. In this case the cali-
brated wire is the copper wire reported here, and
the calibration required measuring the transverse
and longitudinal thermal conductivity in intense
fields.

EXPERIMENTAL METHOD AND RESULTS

The copper wire was from a commercial spool
and had a diameter of 0.079 mm and a residual
resistivity ratio (RRR) of 108. The resistance of a
section of this wire in zero field between 1.5 —25
K is shown in the inset of Fig. 1. The resistance,
and hence the resistivity, is essentially tempera-
ture-independent below —15 K, and hence the
electron scattering is dominated by impurities rath-
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er than by phonons, thus satisfying the electron
scattering condition mentioned above.

The phonon contribution to the thermal conduc-
tivity at low temperatures is given by

(3)
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FIG. 2. Transverse magnetothermal conductivity
data for the copper wire. At zero field, measured data
are shown for both the transverse sample (triangles) and
the longitudinal sample (circles). The curve through the
zero-field data is the third-order fit discussed in the text.
The curves for H & 0 were obtained by the procedure
described in the text for separating the transverse and
longitudinal components.
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FIG. 1. Kohler plots of the transverse and longitudi-

nal magnetoresistance of the copper wire measured.
The data points shown are for 3, 7, and 10 K. The
dashed curve is the Kohler fit obtained by Fickett (Ref.
5) from the magnetoresistance of a large number of
copper samples. The inset shows the resistance of the

wire, 1.5 —25 K, in zero field measured on a separate
sample.

where E„ is the conductivity at high temperatures,
G is a constant =-70, N is the number of free elec-
trons per atom, and SD is the Debye temperature.
For copper (N =1, 8D ——313 K), Ei -1.8X—10
T (Wcm 'K '), which is negligibly small for the
copper wire used here even at 12.5 T (e.g., see Fig.
2). Consequently, the copper studied here satisfies
the validity conditions for the Wiedemann-Franz
and Kohler relations.

The magnetic field measurements were made in
a 14-T superconducting magnet. The sample hold-
er consisted of a brass can which fitted into the
tailpiece of the insert Dewar of the magnet, and
the can was suspended on a long, stainless-steel
tube which served as both the pumping line and
the conduit for electrical leads. Attached to the
flange of the brass can was a copper post on which
the samples were mounted. This copper post was
attached to the flange with a stainless-steel link
designed so that the post could be temperature-
controlled without a large loss of liquid helium.
Heater leads were wrapped at the top of the copper
post and were powered by a commercial tempera-
ture controller which operated from a silicon diode
mounted in the post. Also mounted within the
post was a calibrated germanium thermometer
which was used to calibrate the capacitance ther-
mometer mounted on the sample in zero field at
the start of each run (see below). For controlling
temperatures in magnetic fields, the calibrated
capacitance thermometer was used to determine
the set point of the controller.

The electrical leads were heat sunk both at the
flange of the brass can and at the top of the copper
post. Radiation baffles were placed in the
stainless-steel tube, and zeolites were placed in the
bottom of the can. The sample holder was evacu-
ated at room temperature before cooldown, and no
helium exchange gas was used. The cooldown time
for the copper post was -3 h to reach helium
temperatures, and it was found that this cooldown
time was sufficient to stabilize the capacitance
thermometers against drifting. ' The brass can
was lined with aluminized Mylar, and the estimat-
ed radiation-transfer heat load on the samples was

~ 1 iMW under worst conditions (sample at 15 K,
can at 1.5 K). This radiation load was negligible;
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in the thermal conductivity measurements, for ex-

ample, typical heater powers were & 1 mW.
In all the measurements here, the capacitance

thermometers were calibrated in zero field at 6—8

points between 3—15 K, and the C —T data were
fitted to a fourth-order expansion. " The uncer-
tainty in the measurements of absolute tempera-
tures from this procedure is & 15 mK. The sam-

ples were placed in the homogeneous field region
of the magnet, and based on the magnet specifica-
tions we estimate that the uncertainty in the field
measurements is &0.05 T. The capacitance ther-
mometers were measured using a transformer-
ratio-arm bridge plus oscillator (1 kHz) and detec-
tor, and the measurement uncertainty of the bridge
assembly translates into a temperature uncertainty
=+0.2 mK.

Samples for electrical resistivity measurements
were prepared by wrapping a long section (3 m) of
the wire on a substrate of copper (transverse sam-

ple} or alumina (longitudinal sample) with General
Electric (G.E.} 7031 varnish. A capacitance ther-
mometer was attached to the substrate with the
varnish, and the thermometer leads were tempered
to the substrate. The substrate, in turn, was bolted
to the copper post. The copper wire was wrapped
noninductively on the substrate such that for the
"transverse" sample a coil was produced with the
axis of the coil oriented parallel to the field. For
the "longitudinal" sample, a long, thin alumina

plate was wrapped such that the major faces of the
plate were parallel to the field. Usual four-lead
potentiometric measurements were used wherein
the current was supplied by a battery supply and
the voltage drops measured on a digital voltmeter.

Zero-field resistivity measurements on the two
samples agree to within about +2% [i.e., p(4 K}
=9.032+0.152 nQ cm]. There is a correction to
the resistivity due to electron scattering at the wire
surface (Nordheim's rule), but this correction ap-
plies mainly to very pure copper wires. An esti-
mate of this correction for the wire here indicates
that surface scattering contributes & 10%. This
correction was ignored.

The transverse and longitudinal resistivity sam-

ples were each measured at 2.5, 5.0, 7.5, 10.0, and
12.5 T, each at several temperatures between 3—15
K (note from the inset in Fig. 1 that the T depen-
dence of the resistivity is small). However, our
transverse coil was not purely transverse but did
contain a small (-6%) longitudinal component;
similarly for our longitudinal coil. The ratios of
these two components can easily be determined
from the dimensions of the sample, and a separa-

tion of the components made. The measured resis-

tivities were interpolated to give values at 1-K tem-

perature intervals so that this separation was done
at the same temperature.

This separation of the purely transverse and
longitudinal components based on the geometries
of the coils assumes that the magnetoresistance is a
well-behaved function of the angle between the
field and the wire axis, which is unproven. How-

ever, in our case this is a necessary assumption,
and the angle involved in these coils was (+3'
from the pure transverse or pure longitudinal case.

The resulting "pure" resistivities, transverse and

longitudinal, are summarized in the Kohler plot of
Fig. 1. The transverse magnetoresistive effect is
considerably larger than the longitudinal effect,
and this result is not affected by the geometric
separation of the components discussed above.
The transverse data yield a good Kohler plot,
whereas there is a considerable deviation in the
longitudinal Kohler plot at 2.5 T. Shown for com-

parison in Fig. 1 is the Kohler plot reported by
Fickett from measurements of the transverse mag-
netoresistance of a large number of copper sam-

ples.
The thermal conductivity data were measured on

samples consisting of wire bundles (24 wires for
the transverse sample, 6 wires for the longitudinal
sample). One end of the wire bundle was wrapped
noninductively around a capacitance thermometer
using G.E. 7031 varnish, and the other end of the
bundle was indium-soldered to a copper pin
mounted in the reservoir post. Two heaters were
mounted on the wire bundle at locations between

the thermometer and the reservoir as follows: A
manganin heater (-300 0) was wrapped on one
end of a small alumina plate in a bifilar fashion
using the 7031 varnish, and the wire bundle was

wrapped noninductively around the other end of
the alumina plate and attached with the varnish.
The separation of the heaters was chosen to give a
favorable 2 /I ratio (2.03-cm separation for the
longitudinal sample, 10.9 cm for the transverse
sample). For mechanical stability the wire bundles

were woven inside parallel glass capillary tubes,
and these tubes, in turn, were mounted on the
reservoir post with Teflon fixtures. The axes of
the glass tubes were arranged perpendicular to the
magnetic field for the transverse sample, parallel to
the field for the longitudinal sample. Care was
taken to avoid any contact between the glass capil-
lary tubes and the thermometer or heaters. An es-
timate of the error introduced by the capillary
tubes indicated that this error was negligible due to
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the high thermal conductivity of the copper wire
bundle. Care was also taken to arrange the trans-
verse sample such that the longitudinal component
was minimized (15%), and similarly for the longi-
tudinal sample (4%).

The heater resistances were corrected for the
(slight) temperature dependence of the manganin
wire, ' and the power dissipated in the hookup
leads was taken into account. ' The advantage of
the "two-heater, one-thermometer" method for
measuring thermal conductivity is that only one
thermometer calibration is involved so that the
hT's can be measured very accurately ( &+5 mK).
In this method the two heaters are separately ac-
tivated to the same power level and hT is mea-
sured. The heater currents were measured by mon-
itoring the voltage drop across a series resistor, and
the capacitance thermometer was measured as
mentioned above. b, T/T values were maintained
at 3—5%.

The zero-field thermal conductivities measured
on the two samples are shown in Figs. 2 and 3,
and there is good agreement between the two zero-
field data sets (spread &+5%). The largest uncer-
tainty in K results from determining the spacing of
the two heaters.

The two data sets were separated into pure trans-
verse and longitudinal components using the sam-
ple geometries, as was done above for the electrical
resistivity data To a.ccomplish this, the K(T) data

sets were first fitted to a third-order expansion to
determine the K's at 1-K intervals. This expansion
fitted the experimental data very well, as may be
seen by the curve through the zero-field data in
Figs. 2 and 3. In carrying out this separation of
components, it is more convenient to deal with
thermal resistances, which are additive, than with
thermal conductances.

However, the transverse sample was measured at
2.5, 5, 7.5, 10, and 12.5 T whereas the longitudinal
sample was only measured at 5 and 10 T (due to
restrictions on magnet time). Consequently, an ex-
act separation of thermal conductivity components
could be done only at 5 and 10 T.

In order to determine transverse and longitudinal
components at fields other than 5 and 10 T, the
following procedure was used: The Lorentz num-
bers obtained from Eq. (1), based on'the pure,
transverse, and longitudinal electrical resistivities,
and thermal conductivities at 0, 5, and 10 T, are
shown plotted in Fig. 4 between 5—12 K. This
temperature range was selected because above
about 12 K the Wiedemann-Franz law is not strict-
ly valid (see inset, Fig. 1), whereas below about 5
K it was believed that the multiple curve-fitting er-
rors were unduly influencing the E/p ratio in Eq.
(1). Moreover, as seen in Fig. 4, it is in this 5—12
range that the zero-field Lorentz numbers are in
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FIG. 3. Longitudinal magnetothermal conductivity
data (see Fig. 2). The dashed curves at 2.5, -7.5, and
12.5 T were obtained using Eq. (1) and the longitudinal
electrical resistivity data (see text).

FIG. 4. Lorentz-number data at 0, 5, and 10 T ob-
tained from experimental data. The open symbols are
transverse data, the closed symbols, longitudinal data.
The dashed line is the theoretical value of the Lorentz
number.
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H-field dependence as it implies that at —= 16 T the
transverse Lorentz number is doubled.

DISCUSSION

P+
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FIG. 5. H-field dependence of the transverse and
longitudinal Lorentz numbers derived from the data in

Figs. 1 —4. The transverse Lorentz number varies

linearly with H, dI. /dH =0.112)&10 8 WQK T '.
The dashed line is the theoretical value of the Lorentz
number.

good agreement (-+1%).
From Fig. 4, the transverse Lorentz numbers

have a significant H-field dependence, but the long
itudinal Lorentz numbers are essentially 0-field in-

dependent (the spread in the latter is (+2%}.
Therefore, assuming from Fig. 4 that the longitudi-
nal Lorentz number is H-field independent, the
longitudinal thermal conductivity can be deter-
mined directly from Eq. (1) from the longitudinal
electrical resistivity data at 2.5, 7.5, and 12.5 T.
These data are shown by the dashed curves in Fig.
3. And finally, these latter deduced data are used
to separate the transverse component from the
measured thermal conductivity data on the trans-
verse sample at 2.5, 7.5, and 12.5 T, and these data
are shown in Fig. 2. The transverse data in Fig. 2
at 2.5, 7.5, and 12.5 T are more reliable than the
corresponding longitudinal data in Fig. 3 because
the longitudinal component in the transverse sam-

ple was small (15%).
We finally arrive at the anisotropic H-field

dependence of the Lorentz number from the above
data and Eq. (1}. This is shown in Fig. 5 for
T =10 K (similar plots are obtained at other tem-

peratures, 5—12 K). The longitudinal Lorentz
number is H-field independent, but the transverse

Lorentz number varies linearly with field,
dl. /dH =0.112X10 W QK T ' (on a rela-

tive basis, =5% per tesla). This is a significant

The literature on magnetoresistance phenomena
in copper is quite extensive because high-field mag-
netoresistance data (and Hall-effect data} contain
important information regarding the Fermi sur-
face. The classic theoretical work on the Fermi
surface of copper is Pippard's model. ' The vast
majority of experimental studies have involved sin-

gle crystals of copper of very high purity
(RRR & 20000).

The longitudinal magnetoresistive data of Fig. 1

do not obey Kohler's rule at low-field levels.
Anomalies have been reported in the longitudinal
magnetoresistance of single crystals of copper, '

and these anomalies have been explained both in
terms of the alignment sensitivity of the crystal to
the field' and in terms of the channeling of con-
duction electrons in a longitudinal field. ' It is in-

teresting that the longitudinal magnetoresistance
data of Fig. 1 do not display saturation with field,
which for very pure copper single crystals limits

(hp/po), „=0.98. ' The explanation here may be
the disproportionately large effect dislocations have
on the longitudinal magnetoresistance. ' The data
presented here demonstrate that both the electrical
resistivity and the thermal conductivity of elec-
trons in copper are more affected by a transverse
field than a longitudinal field, as one would quali-
tatively expect from the way electrons spiral in a
magnetic field.

We have no adequate explanation for the ap-
parent linear dependence of the transverse Lorentz
number on field, Fig. 5, which means that the
resistivity increases with field faster than the con-
ductivity decreases. In a longitudinal field, howev-

er, the two effects appear to exactly compensate.
An explanation of these findings would entail a
careful averaging over randomly oriented grains to-
gether with considerations of changes in the Fermi
surface with temperature and intense magnetic
fields.

Finally, the results presented here are of impor-
tance to the design of cryogenic devices where
often the distinction between transverse and longi-
tudinal magnetic field effects is not drawn. Also,
the Wiedemann-Franz law is often invoked to esti-
mate thermal conductivities from electrical resis-

tivity data for commerical coppers, ' whereas the

Fig. 5 data indicate that this procedure could seri-

ously underestimate the thermal conductivity.
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