Classical behavior of the index of refraction in two ferroelectrics in the high-temperature phase

Gerald Burns and F. H. Dacol

IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598

J. P. Remeika

Bell Telephone Laboratory, Murray Hill, New Jersey 07974

W. Taylor

Department of Physics, University of Endinburgh, Endinburgh, Scotland, United Kingdom (Received 28 June 1982)

We report very accurate measurements of the optic index of refraction as a function of temperature $n(T)$ of two ferroelectric materials PbTiO₃ and Pb₅Ge₃O₁₁. In sharp contrast to results in BaTiO₃, $n(T)$ is linear in the high-temperature centrosymmetric phases. The implications are discussed.

We have recently published¹ very accurate measurements of the temperature dependence of the index of refraction $n(T)$ in the cubic phase of the ferroelectric material BaTiO₃. These results show¹ large polarizations above the paraelectric to ferroelectric phase transition temperature T_c extending up to $\approx T_c +180$ °C and are contrary to what is expected from the soft-mode theory of structural phase transitions. ² Similar disagreement with this theory in the ferroelectric tetragonal phase³ has been explained by invoking linear coupling of the polarization with impurities or other local fluctuations.⁴ In the cubic phase, due to symmetry, the impurity coupling model is less able to explain the disagreement. In a comple- μ mentary experiment,⁵ the infrared reflectivity of Ba- $TiO₃$ above T_c shows that the temperature dependence of the "soft mode" is inconsistent with the Curie-Weiss behavior of the low-frequency dielectric constant and deviations occur for temperatures extending to $\approx T_c + 120$ °C. Infrared measurements in other perovskite ferroelectrics also show deviations from what is expected from the soft-mode picture. ⁶ Actually, much of the quantitative support for the soft-mode model of ferroelectrics comes from measurements of $SrTiO₃$ and $KTaO₃$, two perovskite crystals that are not ferroelectric.

It is therefore important to determine if any ferroelectric material actually shows behavior in agreement with the model. The first perovskite crystal that comes to mind is $PbTiO₃$. Unlike BaTiO₃, $PbTiO₃$ has underdamped soft modes in the ferroelectric and cubic phases as determined by Raman' and neutron⁸ measurements. In this Communication we report measurements of the temperature dependence of the index of refraction in the cubic phase of PbTiO₃ and also of $Pb_5Ge_3G_{11}$. The growth of the PbTiO₃ and Pb₅Ge₃O₁₁ crystals has been described previously.^{7,9,10}

Figure 1 shows the results for $PbTiO₃$ in the cubic phase.¹¹ As can be seen from the scale (0.001) between the tic marks) above T_c , $n(T)$ is highly linear with temperature. This is in sharp contrast to the results¹ in BaTiO₃ where at T_c we find (at 6328) A) deviations of 0.0025 from the high-temperature linear behavior. If such deviations exist in $PbTiO₃$ they are at least 20 times smaller than in BaTiO₃.

Figure 2 shows similar results in the axial ferroelectric $Pb_5Ge_3O_{11}$, a material with a more complicated structure than the perovskites. As can be seen, below T_c (\approx 180 °C) there is a strong deviation of $n(T)$ from the high-temperature linear behavior. These changes, due to the contribution to $n(T)$ from the spontaneous polarization via the electro-optic effect, will be discussed in the future. Here, we only emphasize $n(T)$ above T_c . Again, on the same scale as in Fig. 1 for PbTiO₃, $n(T)$ is linear with temperature for the indices both parallel (n_c) and perpendicular (n_a) to the ferroelectric axis. We find similar results for $n(T)$ at 5145 and 4880 Å.

The reasons for the deviations from the expected soft-mode behavior in $BaTiO₃$ are not clear. This effect has been discussed in terms of a crossover from

FIG. 1. Temperature dependence of the index of refraction in the cubic phase of PbTiO₃. The arrow indicates T_c .

26 2707 **2707** 2707 **21982** The American Physical Society

FIG. 2. $n(T)$ for both indices of refraction of Pb₅Ge₃O₁₁ emphasizing the high-temperture, nonferroelectric phase. The arrow indicates T_c .

displacive, at high temperatures, to order-disorder behavior within $T_c < T < \approx T_c + 150^{\circ}$ C.¹²⁻¹⁴ So far there is no direct evidence to indicate that this is actually true. From renormalization-group theory it has been argued that in crystals with the perovskite structure $(BaTiO₃, PbTiO₃, etc.)$ the crossover effect should be more pronounced than in $LiTaO₃$ ¹⁵ This comes about because the critical dimensionality of the former is larger than that of the latter.¹⁵ Our the former is larger than that of the latter.¹⁵ Our results for $PbTiO₃$ (Fig. 1) argue against this proposal since we see classical behavior of $n(T)$ in PbTiO₃ but nonclassical results in BaTiO₃ (Ref. 1), and both have the same structure.

Another suggestion¹⁶ is that the polarization fluctuations observed above T_c are related to random mean-square atomic displacements consistent with the high dielectric constant. Using the fluctuation dissipation theorem, the square of the polarization fluctuations δP^2 is related to the clamped dielectric

constant ϵ .

$$
\delta P^2 = kT\epsilon/V_c \tag{1}
$$

where V_c is a characteristic volume corresponding to the volume of the fluctuation.¹⁶ If one assumes that V_c is not very temperature dependent, an assumption-
that might be supported by related x-ray results.¹⁷ that might be supported by related x-ray results, 17 then $\delta P^2 \propto \epsilon = C/(T - T_0)$. Our polarization data above T_c in BaTiO₃ do not agree with this prediction. Further, although ϵ of PbTiO₃ has not been measured above T_c , a Curie-Weiss law is expected. Yet $n(T)$ in PbTiO₃ shows no indication of polarization fluctuations (Fig. 1).

The idea that the nonlinear behavior of $n(T)$ might be due to impurities (as is observed in most central peak experiments) is at odds with the fact that the same results are observed in $BaTiO₃$ grown in two entirely different ways.¹ In addition, the crystals of PbTiO₃ and Pb₅Ge₃O₁₁ probably have as many impurities as our $BaTiO₃$, yet no nonlinearities are observed in the former crystals.

Thus we have two materials $PbTiO_3$ and $Pb_5Ge_3O_{11}$ for which $n(T)$ is linear above T_c . In contrast, Ba- $TiO₃$ shows a nonlinearity in $n(T)$ (Ref. 1) and anomalous soft-mode behavior,⁵ and two other perovskite ferroelectrics $KNbO₃$ and $NaNbO₃$ (Ref. 6) also show anomolous soft-mode behavior in the infrared measurements. There is one distinct difference between these two sets of materials. In the first set (PbTiO₃ and Pb₅Ge₃O₁₁) the soft mode is underdamped^{7,8,18} while the soft mode is very overdamped for the latter three materials.^{5,6} However, a compre hensive understanding of the effects discussed here cannot, as yet, be proposed. It would be interesting to measure the infrared spectrum in $PbTiO₃$ above T_c . From the results reported here, normal softmode behavior would be expected.

- ¹G. Burns and F. H. Dacol, Solid State Commun. 42, 9 (1982); Ferroelectrics 37, 661 (1981).
- ²W. Cochran, Phys. Rev. Lett. 3, 412 (1959); Adv. Phys. 9, 387 (1960); 10, 401 (1961).
- 3G. Burns and B. A. Scott, Solid State Commun. 13, 423 (1973);G. Burns, Phys. Rev. B 13, 215 (1976).
- ⁴G. Burns and E. Burstein, Ferroelectrics 7, 297 (1974).
- 5Y. Luspin, J. L. Servoin, and F. Gervais, J. Phys. C 13, 3761 (1980).
- 6M. D. Fontana, G. Mertrat, J. L. Servoin, and F. Gervais, Ferroelectrics 38, 797 (1981); F. Gervais, J. L. Servoin, J. F. Baumard, and F. Denoyer, Solid State Commun. 4, 345 (1982).
- 76. Burns and B. A. Scott, Phys. Rev. B 7, 3088 (1973); Phys. Rev. Lett. 25, 167 (1970).
- G. Shirane, J. D. Axe, J. Harada, and J. P. Remeika, Phys. Rev. B 2, 155 (1970).
- ⁹J. P. Remeika and A. M. Glass, Mater. Res. Bull. 5,

3746 (1970).

- ¹⁰M. R. Houlton, G. R. Jones, and D. S. Robertson, J. Phys. D $8, 219$ (1975).
- 11 We were not able to pole the crystals well enough to obtain single domain crystals in the tetragonal phase so the indices of refraction have not as yet been obtained. However, the very abrupt phase change at 492 °C is easily seen.
- ¹²T. Schneider and E. Stoll, Phys. Rev. Lett. 31, 1254 (1973); Phys. Rev. B 13, 1216 (1976); S. Aubry, J. Chem. Phys. 62, 3217 (1975); 64, 3392 (1976); T. R. Koehler, A. R. Bishop, J. A. Krumhansl, and J. R. Schrieffer, Solid State Commun. 17, 1515 (1975).
- 13 A. D. Bruce and R. A. Cowley, Adv. Phys. 29, 1 (1980). A reprint of this is published by Taylor and Francis, London, 1981, under the title Structural Phase Transitions.
- ^{14}K . A. Müller, in *Nonlinear Phenomena at Phase Transitions*

and Instabilities, edited by T. Riste (Plenum, New York, 1982},p. l.

- 15 K. A. Müller, Y. Luspin, J. L. Sevoin, and F. Gervais, J. Phys. (Paris) (in press).
- 16 S. H. Wemple and M. DiDomenico, Jr., Phys. Rev. B 1, 193 (1970).
- ¹⁷R. Comes, M. Lambert, and A. Guiner, Solid State Commun. 6, 718 (1968); Acta Crystallogr. Sect. A 26, 244 (1970);J. Phys. Soc. Jpn. (Supplement) 28, 195 (1970).
- G. Burns and B. A. Scott, Phys. Lett. 39A, 177 (1972); D. J. Lockwood, T. J. Hosea, and W. Taylor, J. Phys. C 13 , 1539 (1980}.