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Dynamic scaling in a critical microemulsion system

Mahn Won Kim and John S. Huang
Exxon Research-Engineering Company, Linden, Ne~ Jersey 07036
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We have used light scattering to study the dynamics of fluctuations in a water-in-oil mi-

croemulsion near a critical phase transition point and found excellent agreement with the
mode-mode coupling theory of Kawasaki as modified by renormalization-group calculations. An
alternative origin of the modification of the Kawasaki expression is also suggested by considera-
tion of the effects of the internal current of a liquid droplet moving through another liquid.

We have previously studied the dynamic scaling
behavior in a pure three-component water-in-oil mi-
croemulsion system which consists of a small amount
of sodium di-2-ethylhexylsulfosuccinate (a surfactant
commonly known at AOT), water and decane. '2 We
have found that the average hydrodynamic radius,
RH, of the droplet phase as determined by dynamic
light scattering, plays a similar role as that of the
correlation length in an ordinary multicomponent sys-
tem near a critical (or multicritical) point. This
average hydrodynamic radius appears to characterize
the apparently monodispersed water droplets in oil
reasonably well.

The surfactant-stabilized microdroplets are thought
to behave like hard spheres. 5 But very near the tran-
sition temperature, it is observed that the single-
exponential fit to the scattered intensity correlation
function deteriorates, especially at large scattering an-
gles. It is also known that as the average droplet size
increases, the interfacial tension between the water
and oil phases decreases. ' Thus we suspect that the
monodispersed hard-sphere droplet picture may not
be an adequate representation of the minority water
phase. In the neighborhood of the transition point,
one might question the usefulness of a model-
dependent hydrodynamic length as measured by the
best single-exponential fit to the real time correlation
function of the scattered light. A more serious draw-
back of using 80 to describe the characteristic
length of the critical system is that this value as ob-
tained via Stokes-Einstein relation depends on the
viscosity of continuous-oil phase, which has a very
different temperature dependence compared to that
of the solution viscosity (Fig. 1). Since RH is only an
approximate measure of the static correlation length
in the critical regime, we were satisfied in our previ-
ous publication to have observed a qualitative fit of
our AH data to the mode-mode coupling theory.

We have now removed this somewhat troublesome
choice of viscosities by study of the static correlation
length obtained by the angular asymmetry in the
scattering intensity data. This characteristic length of
the system (which we shall call (,) can be calculated

3.0

2.5-

o' 2.0-
O

i—1.5-
0
O 10

o)

25 26 27 28 29
TEMPERATURE (4C)

30

FIG. 1. Viscosity measurements of the microemulsion
system are shown by the open circles, O. The filled circles
and the dotted line represent the solvent viscosity of the
continuous phase,

from the slope and the intercept of the inverse
scattering intensity versus k' plot. [k is the photon
momentum transfer: k = (47r/X) sinS/2, where h. is
the wavelength of light in the scattering medium and
S is the scattering angle. ] Since we have observed
the Debye-Ornstein-Zernike behavior ' of our in-
tensity data we can identify gl, some sort of "aver-
aged" radius of gyration of the droplets, with that of
the static correlation length.

In order to study the nature of the critical phase
transition in a pure three-component microemulsion,
we have carefully measured the static correlation
length in a system containing 3 g of AOT surfactant
in a 100-cm3 of 5.8/94. 2 mixture (by volume) of
double distilled water and decane. The resultant mi-
croemulsion is a clear homogeneous fluid at room
temperature. The sample was passed through a 0.2-

p, m filter into a 9.00-mm-i. d. precision bored NMR
tube, which was later permanently sealed by a torch.
A 15-mW He-Ne laser, a computer controlled 128
channel multibit Malvern correlator, and a tempera-
ture stabilized spectrometer (temperature was regu-
lated to within +0.002' C) were employed for our ex-
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periment.
Our data are summarized in Table I. $1 was calcu-

lated from angular asymmetry in the scattering inten-
sity data, and the linewidth I" was obtained from the
method of cumulants" fitted to the intensity-
intensity correlation function. The critical tempera-
ture of this system was determined to be 30.200'C.
In this Communication, we discuss only the relation

of static correlation length (fI) and a dynamic
linewidth (I') near the critical temperature.

The mode-mode coupling theory of Kawasaki
gives a relation between the dynamics of the fluctua-
tions as measured by the linewidth I" and the scaled
correlation length kgb.

TABLE L Values of the Kawasaki function I'/Ak2 [Eq. (1)] are listed at various temperature and k/1. I' is measured

by dynamic light scattering, k(I is obtained from the angular asymmetry scattering intensity and k =4~/X sin(8/2) is the

scattering wave number. The critical temperature is 30.200'C.

Temperature (C)
r

AI&
Temperature ( C) () (cm)

f
AIc

29.841

29.828

29.802

29.724

29.669

29.589

29.472

29.309

29.071

28.905

28.695

28.354

1.'I 75x10

1.145x10 6

1.140x10

1.014x10

8.949x10 6

8.004x10

7.184x10

6.181x10

5.309x10

4.448x10

4.023x10 6

3.621x10

1.187

2.195

2.867

1.160

2.146

2.804

1.')51

2.129

2.781

1.024

1.&S4

2.474

0.904

1.672

2.183

0.808

1.495

1.953

0.726

1.342

1.753

0.624

1.156

1.508

0.536

0.992

1.295

0.449

0.831

1.085

0.406

0.751

0.982

0.366

0.676

0.884

1.892

-3.251

4.135

1.891

3.188

4.036

1.946

3.155

3.990

1.856

2.905

3.575

1.596

2.579

3.187

1.579

2.360

2.900

1.561

2.310

1.613

1.963

2.353

1.580

1.854

2.152

1.459

1.649

1.889

1.433

1.586

1,787

1.464

1.6&4

1.727

28.048

27.360

27.034

26,67

25.92

3.298x 'I 0

3.046x10

2.25&x10

1.89&x10

1.760x10

0.226

0.262

0.298

0.330

0.369

0,436

0,500

0.560

0.616

0.691

0.754

0.806

0.208

0.242

0.308

0.402

0.490

0.569

0.743

0.154

0.228

0.298

0.363

0.422

0.551

0.130

0.192

0.251

0.305

0.355

0.434

0:463

0,177

0.327

1.472

1.465

1.460

1.442

1.451

1.495

1.486

1.547

1;675

1.486

1.514

1.536

1.520

1.538

1.572

1.669

1.259

1.289

1.289

1.2&S

1.349

1.142

1.134

1.148

1.152

1.158

1.165

1.176

1.216

1.170

1.181
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where Hp(x) = 4x[1/x3+ I/x+(I —1/x4) arctanx],
and A =ksT/6mipgl g„ is the shear viscosity of the
microemulsion and k~ is the Boltzmann constant. If
we should take q, = q, and plot our linewidth data
r/(Ak2) vs k)1, we see a systematic deviation of our
data with the Kawasaki's function Hp(k/1),
represented by the dashed curve in Fig. 2. The
scattering of data points of small k)1 values are pri-
marily due to inaccuracy inherent of the weak scatter-
ing intensity at temperatures far away from the criti-
cal point. However, the fit can be made almost per-
fect by multiplying H p(k )I) by a constant factor of
1.2 (solid curve in Fig. 2). This result, which is
probably reliable to 10%, is in good agreement with
the renormalization-group calculation of Siggia et al. '

They have shown that, for the Rayleigh linewidth in
the one-phase region above T„ the Kawasaki func-
tion is modified by a coefficient I p which they es-
timated to be equal to 1.20:

(2)

We feel the agreement between our data and Eq. (2)
is significant despite the fact that there are still uncer-
tainties in substituting q„ the measured shear viscos-
ity, for the frequency-dependent q in Eqs. (1) and
(2). It is known from studies on the dynamics of
concentration fluctuations in binary mixtures in the
hydrodynamical and nonhydrodynamical regimes by
Berge et al. ' and by Chang et al. ' that the error in-
troduced by this approximation is probably quite small.

An alternative origin of the factor of 1.2 for I 0 in
Eq. (2) may also be found in the hydrodynamic prop-
erties of the liquid droplets diffusing in a second
liquid phase. The Einstein-Stokes relation with a
nonslip boundary condition is appropriate to describe
the Brownian motion of a solid sphere:
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where q as q' are the external and internal viscosi-
ties, respectively. For our microemulsion system,

q ——g', substituting this result into Eq. (5), we get
C = s, effectively changing the nonslip boundary

condition for a rigid sphere into a nonstick condition
for a liquid droplet. Equation (3) now reads

D = ks T/Cf = 1.20ks T/f

and Eq. (1) becomes

(3')

I I I I
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FIG. 2. Measured values of I /Ak vs k(l are represented

by the filled circles. The dotted line represents the Kawasaki
function Hp(k('I) [Eq. (1)j. The solid line represents the
best-fit function I'pHpikgli with I'p= 1.20.

D = ksT/f (3) I /2k~=I. 20H (kg, )

I" =Dk (4)

However, if we should consider the possible internal
current in a moving liquid droplet, the Einstein-
Stokes expression for the resistance f should be
modifiedis, i6 with a factor

(5)

where D is the diffusion constant, f = 6mqa, and a is
the radius of the sphere. The corresponding
linewidth, I', as measured by light scattering is relat-
ed to D by

which gives the same result as Eq. (2).
The microdroplets of the dispersed phase in mi-

croemulsions in a certain sense behave like macro-
molecules in solutions. The nature of the critical
phase transition is certainly similar to that observed
in binary fluids. ' The important difference between
the two systems is that unlike the true macromolecu-
lar solutions, the number of droplets in microemul-
sion is not conserved due to the growing size of the
droplets near the transition. A detailed theoretical
treatment of the phase transition in this system
should be of great interest.
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