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Spin-glass and ferromagnetic states in amorphous solids
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The spatial correlation between the directions of magnetization is calculated phenomenologi-
cally for an amorphous solid with a random distribution of easy axes. It is found that, for large
exchange and small anisotropy, ferromagnetism can exist only in more than four dimensions.
For all dimensions d ) 2, spin-glass states of different types are possible. The dependence of
magnetic behavior on the intrinsic parameters of an amorphous solid is established.

A wide range of magnetically ordered amorphous
solids has been found during the last decade. ' There
are two general models for amorphous magnetism
which assume either random space distribution of ex-
change or random distribution of anisotropy axes.
Considering the later model, it is possible to divide
amorphous magnetics into two groups depending op
the ratio A. of anisotropy to exchange.

When anisotropy is large compared with exchange,
the local crystal field orients the atomic spins practi-
cally along easy axes at every site. Random distribu-
tion of easy axes gives way to a magnetically disor-
dered state. It is evident, though, that a state with
the atomic spins directed in a hemisphere is energeti-
cally favorable due to exchange interaction. This
leads to the appearance of the local magnetization
which rotates smoothly over the volume of magnetic.
The scale of this rotation is defined by the prehistory
of the sample. In particular, bulk ferromagnetism,
when all the atomic spins of the sample are directed
in a hemisphere, can be created by a strong magnetic
field. '

The case of A. (( I seems more subtle to us. On
the one hand, the large exchange favors the uniform
magnetization, while on the other hand, when mov-
ing along some path through a solid, the magnetiza-
tion "feels" numerous pushes of random local aniso-
tropy field, which is similar to the Brownian motion.
One cannot predict beforehand whether these pushes
destroy the long-range ferromagnetic order or not.
This problem was studied by Pelcovits, Pytee, and
Rudnic' by means of renormalization-group tech-
niques. They have shown that long-range fer-
romagnetism exists in more than four spatial dimen-
sions, and that in fewer than four dimensions the
low-temperature phase is a spin-glass. '

We have used the macroscopic approach to the
description of amorphous magnetism with random
anisotropy field n (x) and h. &( 1. The easy axes are
considered correlated on the correlation length 8„
which includes some interatomic distances a. We
find the correlation between the directions of the lo-
cal magnetization M(x) in two spatially separated

points. The characteristic scale 8 of the destruction
of this correlation defines the type of the magnetic
ordering. In two dimensions we find a completely
disordered state for a very large system. In more
than two dimensions we obtain a spin-glass state with
R —R, for A = h. (R,/a )' & 1. For A (& 1, long-
range ferromagnetism is established in more than
four dimensions, while the case of three and four
dimensions give a spin-glass state with R )& 8,.
The ratio R /R, depends strongly on the dimen-
sionality of space.

We shall describe an amorphous magnetic in the
d-dimensional space by the energy functional

E= 'dx —n
9M
Bx

——,'p(M n)'

with random anisotropy field n(x), n (x) = 1. For
n (x) = const, (1) is used for the description of
domain structure in a crystalline ferromagnet. In (1),
a & 0 and p & 0 are the exchange and anisotropy
constants, respectively. In terms of these constants,
X (& 1 corresponds to k = pa~/u && 1. The local
magnetization is assumed to rotate smoothly over the~2
volume so that M (x) = const. To begin with, we
shall consider for simplicity a two-dimensional field
n (x), its components being equal to

n~(x) = coss(x), nq(x) = sins(x)

where 8(x) is a given random scalar field. This
makes the local magnetization also to be two-
dimensional with the components

(2)

t

E=M'J~l d~x —u — ——pcos (g —S) . (4)

Minimization of (4) leads to the following equation:

Aqg(x) = sin2[g(x) —S(x) ]
2Q

Mt(x) = M cosg(x), Mq(x) = M sing(x) . (3)

Substitution of (2) and (3) into (1) gives
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b, ~ being a d-dimensiona1 Laplacian. The solution of
(5) can be presented as

where I is the gamma function.
We shall assume random field 8(x) to satisfy the

following conditions:
g(x) =

J
d~x' Gg(x —x') sin2[g(x') —8(x') ]

2Q

(6)
(sin28(x)) =0,

where dqGq(x) =Sq(x); Gq(x) and 8&(x) are the d-

dimensional Green function and the 8 function. The
Green function Gq(x) is given by

(2m ) 'In i« i, for d = 2
—[I'(d/2)/2n ~ (d —2) ] ix [~ ~, for d ~ 3

(7)

I

(sin[28(x) ] sin[28(x') ] ) = —exp—
j

The magnetic disorder in our model is characterized
by the correlation function Cq(i«i) = (f(x) —f(0) ).
It can be calculated assuming R » R, which corre-
sponds to g(x) = g(x') for ix —x'i -R,. In this
case, with the help of (6) and (8), we have for Cq,

Cq= Jl J d x'd x"exp( Ix' —x"I/R ) [Gq(x') —Gq(x —x')][Gq(x") —G~(x —«")]
8a4 (9)

Integration in (9) gives a logarithmic divergence of
Cq( I« i) for a very large system

(10)

Cg= —A
4

C4= —A lns R
(12)

Cg —A, for d ~5 (13)

Condition Cq « 1 defines the spatial region with

ferromagnetic ordering. For small X and not too
large R„so that A « 1, we have from (13) a long-

range ferromagnetic order for d ~ 5. In three and
four dimensions we obtain from (ll) and (12) a

spin-glass behavior. The condition C& « 1 gives the
characteristic scale of the destruction of the fer-
romagnetic order

where L is the size of a system. For D ~ 3 we obtain

n(x) = (cos8, sin8sinp, sin8cosp)

M(x) =M(cosg, sin( sing, sin(cosp), (16)

I

Relation (14) was obtained by Alben, Becker, and
Chi in Ref. 8.

For all d ~ 3, our assumption R && R, is valid
when A && 1. It is evident that R —R, for A & 1.
This state is the Edwards-Anderson spin-glass while
the state with R » R, could be called a correlated
spin-glass. We would like to emphasize that these
two types of magnetic behavior depend not on the ra-
tio A. of anisotropy to exchange but on the parameter
A = h, (R,/a ) '. This means that the cases of large
and small anisotropy discussed before correspond to
A. ) (a/R, )' and h. & (a/R, )', respectively. In the
latter case the magnetic behavior of amorphous solid
does not depend on its prehistory,

It should be noted that all our results would not
change if we use in (8) any other correlation function
which rapidly goes to zero for ix —x'i ))R,.

It is of great interest to consider a physical case,
i.e., three-component fields n (x), M(x) in three-
dimensional space

A ~R„ for d =3
R~ —'

R, expA ~, for d =4
(14)

(15)

where (8, P) and (g, P) are the angles of n(x) and
M(x) in a spherical coordinate system. In this case
the energy functional (1) takes the form

f I

E =M' J d x —a +sin g ——i3[singstn8cos(g —@)+cosgcos8]I p t 8$ p 8$ 2

jx c)x
j ~

(17)

We will calculate the correlation function ([M(x) —M(0) ]~). For ix i && R it reduces to the form

( [M(x) —M(0) ]') =M'( [g(x) —g(0) ]'+sing(x) sing(0) [y(x) —y(0) ]')
Minimizing the functional (17) we have in the lowest order in X

b g =—[sin( cos8 —cosg sin8 cos(Q —$) ] [sing sin8 cos(Q —@)+cosg cos8]
Q

h(&sing) = sin8sin(Q —@)[singsin8cos(f —Q)+cos(cos8]
0

(18)

(19)
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Calculations analogous to those of Cq(ix i) give the
following expression for the correlation function of
magnetization for R, « ix i « R:

tically does not depend on the number of com-
ponents of the random field n (x), but depends
strongly on the dimensionality of space.

(20)
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