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We have measured the nonlinear thermal conductance of a thin film of “He as a function of
temperature and heater power for a fixed film thickness. When heat transfer through the gas is
included we obtain a qualitative understanding of the data in terms of Kosterlitz-Thouless
theory as extended to finite superflow by Ambegaokar et al. The exponent in the power law re-
lating conductance and heater power exhibits the universal jump at T, predicted by its simple re-

lationship to the areal superfluid density.

It is now rather well established that the superfluid
transition in thin films of “He is associated with
vortex-antivortex unbinding as discussed by Koster-
litz and Thouless.! The magnitude of the jump in
the superfluid density at the transition temperature,
as observed by Rudnick et al.,? Chester et al.,? and
Bishop et al.,* agrees with universal behavior predict-
ed by Nelson and Kosterlitz.> The detailed character
of the dissipation of superflow at finite frequencies
and in the presence of a finite superflow, has been
discussed by Ambegaokar et al.° and Huberman et al.”
Some of these predicted features have recently been
confirmed by Maps and Hallock®® and by Angolet
et al.!® They observed a predicted exponential depen-
dence of the effective thermal conductance on re-
duced temperature for T < T,. More recently,’!! a
power-law dependence of the conductance on applied
thermal power was observed for T < T,.!2

In this Communication we report measurements of
the effective conductance in a superfluid film as a
function of applied thermal power and of temperature
for fixed film thicknesses. Contrary to what has been
assumed, ? the superflow velocity along the film is
not uniform because of heat transport through the
gas, and this nonuniformity leads to position depen-
dence of the conductance. More importantly, the
dependence of the conductance on applied heater
power is, under accessible experimental conditions,
quite different from that which had been expected.
Only when gas conduction is included are we able to
quantitatively explain the simple relationship ob-
served between the exponent and the coefficient in
the power law relating conductance and heater power.
Finally, the measurements of the temperature depen-
dence of the exponent are presented and it is shown
that, except perhaps very close to T,, the exponent
(and therefore the superfluid density) varies linearly
with temperature. Within 10 mK of 7, the exponent
increases from one to two, consistent with the
universal jump in o, It is reasonable that the rise in
the exponent is spread over this temperature range in
that the correlation length becomes comparable with
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the size of the system within a few mK of T..

Our experimental arrangement is similar to that of
Maps and Hallock. A thin glass strip 1 cm wide by 5
cm long is thermally anchored at one end and a resis-
tance heater is placed at the other. The apparatus is
placed within a sealed container inside of which is
also placed a large quantity of Grafoil.!* The effect
of the Grafoil is to greatly reduce the temperature
dependence of the film thickness. A fiberglass
“‘wick”’ is used to couple the Grafoil to the thermally
anchored end of the glass strip so as to complete the
thermal anchoring of the film. Several carbon ther-
mometers were placed at various positions on the
glass strip and the resistors were moved about during
the course of the experiment in order to make certain
that the thermometers do not substantially affect the
superflow. ,

In film conduction experiments of the type dis-
cussed in this paper, the conductivity of the helium
gas plays an important role. In response to applied
power at the heater, helium is evaporated away and
the superfluid flows along the film. As a conse-
quence, there will be a steady-state density of free
vortices®

ny e vS[2+x(T)/2] , (1)
where x (T) =— 4+ 27k*m~%kz o,/ T is zero at T,.
Because the vortice move in response to vy, a tem-
perature gradient is created along the film:

qar veny @ p DT 2

dz

Now a temperature gradient along the film necessari-
ly implies that there is thermal conduction from the
film through the gas.! Of course, the film cannot
transport entropy so the energy conducted from the
film is obtained through a net condensation of gas
onto the film. We neglect the very small entropy
production rate associated with vortex dissipation in
the film. The rate at which latent heat is released
through condensation is then just equal to the rate of
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thermal conduction. This condensation causes a gra-
dient in the superfluid velocity. It follows that
¥ dz l

where L is the latent heat, o the areal superfluid
density, k is the gas conductivity, T is the tempera-
ture of the film at the location z, T} is the tempera-
ture of the surroundings, and / is some effective dis-
tance to those surroundings. The heat input by the
heater must, of course, be included in the vicinity of
the heater. We explicitly ignore any variation of the
film thickness along the film, which would probably
make the effect discussed here even more important.
Solving for the temperature and superfluid velocity
gradients self-consistently yields an effective conduc-
tance which depends on the location of the thermom-
eter. In addition, the temperature at some position
on the film depends on the heater power in a more
complicated manner than T « Q3**/2,

The temperature gradient is given by?®

T h Dh 3+x(7)/2
a
a __a T
dz s kaTvoao x( )[vo
3+x(1)/2
=1Fc(D| . @
Vo

where s is the specific entropy, D is the vortex dif-
fusivity, o is the ‘‘background’’ superfluid areal den-
sity, m is the mass of a helium atom, a,is the vortex
core radius, and vo=~%/ma,. Differentiating Eq. (3)
yields

3+x/2
dzv: - kFx Vs = (5)
dz?  2Loyl
Therefore
dv, _ kFx 12
dz Lo, (4+x/2)
44x/2 4+x/271/2
5 “ v (2) | I v,(0) ] ©
Vo (20
One can easily show that for v, (heater) >> v,(0),
AT (heater) _ 2+X/4 )
AT, ’
where
12
AT~ Loyl Fx 0o~ Logwk
0 k |4+x/2 » X0 may,

and w is the width of the film.

In Fig. 1, we show a plot of the temperature at a
point about 1 cm from the heater as a function of
heater power for various temperatures. Clearly, the
temperature varies as a power of the applied heater
power over a substantial range before saturating at

FIG. 1. Plot of the change in temperature at a point in
the film as a function of applied heater power for various
temperatures.

high powers. The temperature difference, at which
non-power-law behavior is apparent, increases as the
temperature is decreased below T.. In the power-law
region where AT =4 (T) Q%" Eq. (7) implies that
A and B are related to each other by the expression

Ind (T) =In(AT,) —B(T)InQ, , 8)

where In(AT,) is only a weak function of tempera-
ture as long as T is not too close to T..

Figure 2 is a plot of the measured values of
In(AT) vs B(T), confirming the linear relationship
for temperatures not too close to 7.. Note that this
relationship implies that the power-law curves in Fig.
1 radiate from a common point on the plot. Further-
more, the values of Q¢ (120 xW) and AT, (240 K)
obtained from the data are in reasonable agreement
with the expected values. Taking ao—~ 4 A yields
Qo—~400 uW. Taking k ~30 uW/cmK,
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B(T)

FIG. 2. Plot of the logarithm of the power-law coefficient
vs the exponent. The straight line is our fit to the data
below T,.
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FIG. 3. (a) Plot of the power-law exponent B (T) vs tem-
perature. (b) Plot of the reduced exponent vs reduced tem-
perature. In calculating reduced temperature, account is tak-
en of the slow variation of film thicknesses with tempera-
ture. The scale on the right is the corresponding superfluid
density. The straight line is for reference only.

Dho/mkgT ~—0.2, and I ~ 1 cm yields AT~ 170 K.
Note that ignoring the effect of thermal conduction
from the film yields the same value for Q, but a
value for AT, of 2.5 x 10° K, seven orders of magni-
tude larger.

Figure 3(a) shows a plot of the exponent B (7T) as
a function of temperature. This exponent should be
related to o by the expression

B(D)=1+[(a/D)k*m ks Vo /T .

To obtain o we plot [B(T)—1]T/T, versus reduced
temperature in Fig. 3(b). In spite of the large Grafoil
surface area, the film thickness changes by about 7%
over the range of temperatures shown. We therefore
take T, as a weak function of temperature in calculat-
ing the reduced temperature (7/7T,—1). The transi-
tion temperature is arbitrarily taken as the tempera-
ture where B(T) =2. Except very close to T,, the
data are well characterized by a linear dependence on
temperature.

The analysis presented in this paper suggests that
one must be very careful in interpreting heat conduc-
tance experiments in thin superfluid films. The ex-
ponent characterizing the power-law dependence of
temperature gradient on heater power is significantly
affected by the conduction of heat from the film
through the gas and the consequent condensation
onto the film. The exponent observed is not the
zero-power value 3 +x/2 but rather the quantity
2+x/4. We have not observed crossover from one
regime to the other and we expect this to occur at
powers well below those limited by considerations of
temperature resolution in our apparatus.
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