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Laplacian roughening models and two-dimensional melting
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Roughening models which mimic the translational and rotational symmetries involved

in two-dimensional melting are defined. One of the models is related via a duality trans-

formation to a gas of disclinations in a solid interacting with an r lnr potential. The
theory of dislocation-mediated melting suggests a sequence of two continuous phase tran-

sitions for this gas and for the corresponding roughening models. Grain-boundary-

mediated transitions are also possible. The roughening models are particularly amenable

to computer simulations.

I. INTRODUCTION

Considerable uncertainty still surrounds the sta-
tistical mechanics of two-dimensional melting.
Unlike the situation in three dimensions, analytic
theories are possible, ' based on a dislocation
mechanism proposed by Kosterlitz and Thouless. '

Dislocation pairs unbind via a continuous transi-
tion into a liquid-crystal-like hexatic phase, instead
of an isotropic liquid. ' ' This hexatic liquid can
then transform into an ordinary liquid via an un-

binding of point disclination charges.
Although some computer studies are consistent

with a two-stage melting process, most simulations
have been interpreted in terms of a first-order tran-
sition directly from solid to liquid. Precision ex-

periments on melting of real thin films are just be-

ginning to be carried out. A number of experi-

ments seem to favor dislocation-mediated melting:
The melting temperature obtained by Grimes and
Adams9 for electrons on the surface of helium is in

good agreement with the predictions of the disloca-
tion theory. ' Diffraction experiments off incom-
mensurate methane, "xenon, ' and argon' physi-
adsorbed onto graphite reveal apparently continu-
ous melting transitions. The high-resolution x-ray
radiation study of xenon, in particular, is in excel-

lent agreement with the extension of the disloca-

tion theory to allow for a periodic substrate. '

Melting of xenon at submonolayer coverages, how-

ever, turns out to be first order. ' Both continuous
and first-order transitions appear possible.

To further clarify the melting process it would

clearly be useful to have simplified statistical
mechanical models, analogous to the lattice gas
model of the liquid-gas critical point. ' Such
models already exist for superfluid helium films,
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which are believed to exhibit a vortex unbinding

transition. ' ' ' Computer simulations of "XF-
spin-models" seem quite consistent with the
Kosterlitz-Thouless picture of a vortex-mediated

phase transition. ' ' Numerical studies of interfa-

cial roughening models, which are believed to be
in the same universality class as helium films,
have also been interpreted in this way. These sim-

plified caricatures of reality attempt to isolate im-

portant features of the statistical mechanics. They

are, moreover, not subject to the severe equilibra-

tion time difficulties which would attent the simu-

lation of an actual helium film.
Unfortunately, the computer studies of melting

mentioned earlier may also be subject to severe

equilibration time problems. Equilibrium just
above a dislocation unbinding transition requires

times long compared to

/M
+climb ST~Dclimb ~

where gr is a (diverging) translational correlation

length, and D,i; & is a diffusion constant for dislo-

cation climb (i.e., for motion perpendicular to its
Burgers vector; this requires cooperative motion of
vacancies and interstitials). Because D,i; & is quite
small,

—10 ' cm /sec (1.2)

conventional molecular dynamics simulations, with
maximum run times of at most 10 sec (in argon-
like units ), are probably incapable of following a
continuous dislocation-unbinding transition. It is
possible that a transition which exhibits hysteresis
loops on a 10 -sec time scale, may in fact be con-
tinuous on the much longer time scales available in
real experiments. (Equilibration problems may not
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be so severe near a hexatic-to-liquid transition. )

In this paper we introduce a class of "Laplacian
roughening" models, which mimic the translational
and rotational symmetries embodied in two-
dimensional melting. These systems should be no
more difficult to study numerically than the usual
interfacial roughening models described in Ref. 22.
Problems associated with equilibration with respect
to dislocation climb are avoided entirely. One of
the models is dual to a gas of disclinations in a
harmonic solid, which interact a r lnr interac-
tion. (Two types of disclinations possible in a tri-
angular solid are shown in Fig. l.) In this case we
argue that one might expect a transition from a
phase with bound disclination quadrupoles and
hexapoles to one with free dislocations represented
by isolated disclination pairs. This phase (which
corresponds to a hexatic liquid) can itself
transform into a liquid phase with free disclina-
tions. The interface in the corresponding
roughening model becomes first translationally,
and then orientationally disordered with increasing
temperatures. Any or all of the models could also,
in principle, exhibit a first-order transition.

One can also use these models to study the role
of grain boundaries in melting. Fisher et al.
have discussed melting via proliferation of low-
and high-angle grain boundaries. Although low-

angle boundaries would probably produce a hexatic
phase, large-angle boundaries would lead directly
to an isotropic liquid. Chui has argued that
grain boundaries or a coupling to density changes
in a solid will always produce a first-order solid-
liquid transition.

Intriguing simulation results on a model of melt-

ing have already been presented by Saito. ' Saito
simulates a vector Coulomb gas of dislocation
charges, and finds a continuous transition to a
hexatic liquid at high core energies, and a first-
order transition at low core energies. Because this
model does not include the disclination pairs
buried in every dislocation core, he does not see
the second disclination unbinding transition expect-
ed at high core energies. Saito argues that the
first-order transition at low core energies is a
grain-boundary-driven melting into an isotropic
liquid. Although this is certainly a plausible inter-
pretation, it is possible that this transition is also
into a hexatic phase. The hydrodynamic descrip-
tion of hexatics developed in Ref. 3 suggests that,
if dislocations are plentiful, there will be a tenden-

cy to align in grain boundaries. Hopefully, sirnula-
tions of the Laplacian roughening models (or direct

(a) (b)

FIG. 1. Fivefold (a) and sevenfold (b) disclinations
imbedded in a triangular lattice.

numerical studies of disclinations interacting with
an r lnr interaction) will clarify the situation.

It is worth noting that all the models discussed
above break down when the linear density of dislo-
cations in a grain boundary approaches one per lat-
tice constant. One then approximates a 60' grain
boundary, which in a triangular solid has, in fact,
zero energy. This point may provide an explana-
tion for the grain boundaries observed, for exam-
ple, by McTague et al. i in simulations of particles
interacting with a repulsive 1/r potential: If the
width of the hexatic phase is narrow, disclinations
must unbind into an isotropic liquid when the
translational correlation length is still large. Under
such circumstances, they can only separate by lay-
ing down a cut in the bond angle field, i.e., a 60'
grain boundary. A premature disclination un-
binding (i.e., before dislocations dissociate) of this
kind was proposed as a mechanism for a first-
order transition in Ref. 2.

In Sec. II A, we first define the Laplacian
roughening models, and then discuss the behavior
of the interfaces they describe as a function of
temperature. Two distinct roughening transitions
are possible. Section II B shows how one of the
models can be mapped onto the theory of two-
dimensional melting. A number of universal re-
sults for roughening correlation functions are tabu-
lated. In Sec. II C, we discuss the behavior of La-
placian roughening models in dimensions other
than d =2. Appendix A discusses the behavior of
a Laplacian roughening model at high tempera-
tures, and a duality relation is worked out in Ap-
pendix B. The theory of disclinations interacting
in a harmonic solid is sketched in Appendix C.

II. ROUGHENING MODELS
AND TV'-DIMENSIONAL SOLIDS

A. Laplacian roughening models

To motivate the models introduced here, consid-
er first the symmetries of a two-dimensional crys-
tal. The long-wavelength free energy of a triangu-
lar solid,
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d r 2pu, j+A,ukk (2.1)

depends on elastic constants p and A, , as well as on
the symmetrized strain tensor

u J(r)= —,[8;uj(r)+Bju;(r)], (2.2)

where u(r) =u(x,y) is the displacement field.
This free energy is invariant under a three-
parameter family of continuous transformations,

u(r)~u(r)+uo+()o(z X r), (2.3)

where uo is a uniform translation and Oo represents
a rotation about the z axis. A 2d solid is charac-
terized by quasi-long-range translational order and
long-range orientational order. There are two
possibilities with increasing temperature: Both
these symmetries can be restored at once, produc-
ing an isotropic liquid, or translational and orienta-
tional order can be eliminated sequentially, with an
intervening hexatic phase. It is not possible to de-

stroy orientational correlations without obliterating
translational order, since a rotation drastically af-
fects translational correlations between distant
points.

Now consider a Hamiltonian for an integer field
h (r) located at the sites r =(x,y), of a triangular
lattice with unit spacing, namely,

The t 5& I are the six triangular lattice unit vectors
shown in Fig. 2. A gradient would replace the La-
placian in the usual models of interfacial roughen-
ing. The partition function associated with A is
just

(2.6)

At low temperatures the discreteness of the
"height" variable h (r) will surely be important.
One ground state consists of a flat interface orient-
ed perpendicular to the z axis. A discrete infinity
of alternative ground states can be generated by the
set of transformations,

h(r)~h(r)+I+ 6 r,
2m-

(2.7a)

where m is an integer, and 6 is a reciprocal-lattice
vector of the triangular lattice. (The partition
function is in fact invariant under these transfor-
mations at all temperatures. ) At sufficiently high
temperatures we expect that discreteness should
not matter, and that the sums in Eq. (2.6) can be
replaced by integrals. The system then becomes in-
variant under a family of continuous transforma-
tions,

A =——,Jg
~

hh(r) ~i'. (2.4)

h(r) —+h(r)+ho+ c.r, (2.7b)
Here p is, for example, a positive integer, J is a
positive constant, and the operator 6 creates a lat-
tice approximation to V Ii (r),

(2.5)

FIG. 2. Six-nearest-neighbor vectors 5~ on a triangu-
lar lattice with unit spacing.

where ho represents a translation of the interface

and c =(c„,c„)parametrizes rotations about the x
and y axes. The interface now has neither a well-

defined orientation nor a well-defined position.

With decreasing temperatures the interface could

lock into a definite orientation and position simul-

taneously. Alternatively, the orientation could lock

first, with the interfacial position remaining
"rough" or ill defined. The interface would then

become smooth at a lower temperature. It is not

possible to break the translational symmetry

without also giving the interface a definite orienta-

tion. Evidently, there is an interesting analogy be-

tween the possible behaviors of the Laplacian

roughening models with decreasing temperature,

and the different ways of melting a two-

dimensional solid with increasing temperature.

The roles of orientational and translational degrees

of freedom are reversed.
To distinguish between different phases it is con-

venient to introduce a correlation function which is
invariant under (2.7), namely,
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Ck(R)—:(exp{2trik [h (r t) —h (r2)+h (r3)—h (r4, )+h (r5) —h (r6)]]), (2.8)

where k is a real constant. The six points r; form
the vertices of a regular hexagon with characteris-
tic dimension R (see Fig. 3). At low temperatures
the h ( r; ) assume values corresponding to a
smooth, oriented interface, and we expect that
Ck(R) approaches a constant for large R,

lim Ck(R) =const+0 .
R~co

(2.9)

At high temperatures h (r ) should fluctuate wildly,
since the interface has neither a definite position
nor a definite orientation. For the special case

p =2, we show in Appendix A that these fluctua-
tions cause Ck(R) to decay to zero, like the ex-

ponential of the area enclosed by the hexagon

lim g (r)=const & ao .
P-+ ao

(2.14)

g (r) —,K( T)ln(r/a),3

r~m 4~

where

(2.15a)

K(T)=4rr ksT/J . (2.15b)

The behavior of g (r) for large r confirms our ex-

pectation that the interface will be orientationally

rough at high temperatures.

At high temperatures one can show for p =2 that

g (r) diverges logarithmically with r (see Appendix

A),

where

e
—c(T)k~x~ (2.ioa)

B. Duality and phase transitions in a disclination gas

(2.10b)

A duality transformation (valid when p =2) to be
discussed later suggests that a third, intermediate
phase is possible, in which Ck(R) decays algebra-
ically to zero,

Chui and Weeks have shown that the discrete
Gaussian model of ordinary roughening can be

mapped onto a Coulomb gas of integer changes

originally solved by Kosterlitz in the context of the

2d XK model. ' This mapping is a "duality
transformation" in the sense that high tempera-

tures in the roughening problem are mapped onto

CR(R) —1/R I (2.11)

with a temperature-dependent exponent rl(T). This
phase corresponds to a rough, but orientationally
locked interface. The correlation function Ck(R)
seems particularly well suited for distinguishing be-

tween the various phases in numerical simulations.
Alternatively, one could study

1 d Ck(R)

4m dk k p

(2. 12)

Another interesting correlation function is

6

g(r)—:g ([h(r) —h(r+5~) —h(0)+h(5~)] ),
(2.13)

which measures correlations between tangents to
the interface at widely separated points. In any
phase with a locked interfacial orientation we ex-
pect that

FIG. 3. Positions r; entering the six-point height
correlation function Ck(R). The + signs determine the

sign of the Ih(r;}I. The characteristic dimension of the

hexagon formed by these points is R. The correlation

Ck(R) is related via a duality transformation to the po-

tential of mean force between disclination charges at the
vertices of this hexagon. Plus and minus signs then in-
dicate sevenfold and fivefold disclinations, respectively.
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low temperatures in the Coulomb gas, and vice
versa. Analogous manipulations are applied to the

partition function (2.6) in Appendix 8, with the re-
sult that

'exp
—2m AT g V(r —r )s(r)s(r')J (2.16)

where, for large r, the potential V(r) takes the
ofm

V(r}= (r lnr+Ar2 B) .—
8m

(2.17)

s(r)=0, (2.18)

but also have no net dipole moment,

mrs(r)=0. (2.19)

Combining Eqs. (2.17) and (2.16) we obtain a large
distance approximation to Z, namely,

e (2.20a)

where

~

r —r '~ ln
~

r —r '~s(r)s(r ')
16m .
+E,gs (r) (2.20b)

The parameters A and B are positive constants, and
the prime in Eq. (2.16) means that the summations
are restricted to integer complexions Is (r) I which
not only are charge neutral,

I

teracting via a repulsive 1/r potential by Morf. 37

Part!cles whose coordination number deviates from
six are indicated by asterisks and diamonds.
Highlighting these special S- and 7-coordinated
particles constitutes a microscopic definition of dis-
clinations. The disclination model constructed in

Appendix C keeps track of the positions and in-

teractions of the asterisks and diamonds and allows
them to be created and annihilated. The remaining
particles are accounted for only to the extent that
they mediate interactions between disclinations.

The behavior of this disclination gas (at least in
the limit of large core energies) is a consequence of
the theory of dislocated mediated melting
developed in Ref. 3. As discussed in Appendix C,
disclinations will be tightly bound into quartets
and sextets with no net charge or dipole moment
in a low-temperature solid. It is then convenient to
group the disclination charges into neutral dipole
pairs, which behave like dislocations To see t.his
imagine pulling a quartet apart as shown in Fig. 5,
assuming that the remaining disclinations adjust to
ensure overall dipole charge neutrality. It is tedi-
ous but straightforward to show that the contribu-
tion to Eq. (2.20b) of this configuration for large
separations is just

and b; bjlnr-
4a

(b; r)(bj" r)
r 2

(2.21)

The parameter A drops out because of the dipole
neutrality condition.

Equation (2.20} looks like the partition function
for a set of charges interacting via an r lnr poten-
tial. The quantity E, plays the role of a core ener-

gy. Unlike a conventional two-dimensional
Coulomb gas with logarithmically interacting
charges, like charges attract and unlike charges re-

pel. As shown in Appendix C, the same partition
function describes a grand canonical ensemble of
disclinations interacting in a harmonic solid. This
correspondence is illustrated in Fig. 4, which is
taken from a computer simulation of particles in-

+2E, ( [ b; )
'+

f b; ['), (2.22)

where r is the separation, and

bk=z)(5k . (2.23)

But this is just the interaction potential between a
pair of dislocations with Burger's vectors b; and
bj, core energy 2E„and separation r . Similar
results hold for arbitrary complexions of disclina-
tion pairs. The combination of the dipole neutrali-
ty, constraint and the r lnr potential strongly favors
separated disclinations pairing into dipoles separat-
ed by a lattice constant. It is then reasonable to
replace Eq. (2.20} by the partition function for a



274 DAVID R. NELSON 26

o

0
0

o

o
0 + 0

o
o

o 0

o g 0 ' o

00 p 0 0 p o 0 0 p
0 P 0

O 0 0 0 0 00 0 0 0 0 0
P 0 0 0 0 0 P 0 0 0 % 0 0 p c0 0 0

0 0 0 0 0 0 0 0 0 g 0 0 0 00 O O G O 0
0 p 0

0 0 Q
0 0 0 0 0 0 0 Q 0

0 0 o 0 o0 o o 0 o 0 0 O o 0 o0 p 0 0o o o 0 0 p 0 0 0 00 p 0 o
p 0 0 0 3K (' 0 O

0
p Q p 0 0 0 0 4 0 0 0 p

0
p 0 0 0 0

00 o 0 Q 0 0 0 0 0 0 0 Q
p 0 0 0 0 0 0 0 0 0

p 0 0
0 p 0 0 0 p 0 0 000 0 0 0 0,) 0 O 0 0 0 0p 0 0 0 0 0 o ~ oo o o 0 o o o 0 C'0 0 0 0 p 0 0 0 Q p 0 0 0

0 0 0 0 0 0 0 0 0 p 0 0
o 0 0 0 0 o o oo 0

Q 0 0 0 0 0 0 P 0 0 0 o
o 0 o o 0 p 0 0 0

o 0 0 0 o o
Q p o o o 0

o 0 o 0
0 0 0 p 0 0 P 0 P 0 p 0 0 0 0 0 0 p

p Q 0 0 0 0

o o o 0 0 0 Q 0 o o o o o o» ' o o
0

0 0 P 0 G 0 0 0 0 0 n . 0 P 0 o
Q 0 Q 0 0 0

Q 0 0
o 0 c

o 0 0 0 0 o 0 o 0

o
o o 0 0 0 " o o + @ o o % 0

o o 0 0 O O O O 0 O 0 Q 0 & 0 oo 0
Q 0 0

0 0
0 0 0 o

Q 0 0 0 0 0 Q p 00 g 0 0 o o o o0 0 0 0 0 p 0 o o o o 0
0

0 0 0 o 0 o o 0 0 o 0 0 o 0
3K 0 p 0 O0 0 0 0 O 0 0 o o o o0

o o 0 0
o o 0 0 0 o o o 0 0

0 0 0 0 0o
0 0 0 o o o 0 o c

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 o 0 o'o0 n o 4 0 ~ 0 0

FIG. 4. Microscopic disclination "charges" in a computer simulation. Asterisks and diamonds indicate 5- and 7-
coordinated particles, respectively. All other particles have coordination number 6. The picture is taken from a simula-
tion by Morf of particles interacting with a repulsive 1/r potential (Ref. 37).

logarithmically interacting dislocation gas at tem-
perature T,

—M~/k~ TZd= e
f b(r;)J

where

(2.24a)

b(r;).r;Jb(rj) r;J
2

I'ij

+2E,& I b,
I

'
~ (2.24b)

FIG. 5. A quartet of disclinations pulled apart into a
pair of dipoles. For large separations the dipoles in-
teract like two dislocations with Burgers vectors rotated
by 90' with respect to the dipole moments. gb(r;)=0 . (2.25)

The sum is over complexions of Burgers vectors
b(r;) located at the bonds I r; I of the triangular
lattice, and subject to the constraint,



26 LAPLACIAN ROUGHENING MODELS AND TWO-DIMENSIONAL. . . 275
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liquid
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rough, oriented
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hexatic
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roug h, unoriented
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I

T2
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FIG. 6. Relation between the roughening temperature
scale T and the temperature T of the disclination gas
provided by the duality transformation.

tial screening at large distances. The correspon-
dence between these two transitions and the two
distinct roughening temperatures Tj and T2 they
suggest for the Laplacian roughening models are
summarized in Fig. 6.

The duality transformation for the roughening
correlations Ck(R) and g (r) is also discussed in
Appendix B. The result for Ck(R) takes the form

—Uk (R)
Cx(R}=e (2.27)

The "temperature" T is inversely proportional to
the temperature in the original Laplacian roughen-

ing model. Note that the Burgers vectors are au-
tomatically quantized in direction and magnitude
by the underlying triangular lattice. Burgers vec-
tors appropriate to other crystal structures could be
obtained from I.aplacian roughening models de-
fined on alternative lattices.

The behavior of the vector Coulomb gas (2.24)
was worked out in Refs. 2 —4. Dislocation pairs
unbind via an infinite-order phase transition at
temperature T=T . Above this temperature free
dislocations produce a screened, logarithmic in-
teraction which is attractive for disclinations with
opposite sign. ' The effective Hamiltonian after
dislocation screening is taken into account has the
forms

(2.26)

A second disclination unbinding transition occurs
at a higher temperature T= T;, leading to exponen-

I

ER
Uk(R)= k g( —1)i+'

~ r, r,'i'—

Xln
~
rj —rl

~
(2.28)

where K„measures the strength of the screened
disclination potential. It is easy to check that
Ck(R) decays as indicated in Eq. (2.10a), with

3' 27c(T)= ln
8a 16

(2.29)

The quantity K~ was calculated in Refs. 3 and
4. At temperatures below the dislocation unbind-

ing transition KR is given by

Kz ——lim K (1),
I~ oo

where K(l) is the solution of a coupled set of re-
normalization recursion relations,

(2.30)

where Uk(R) is the renormalized interaction poten-
tial (i.e., the "potential of mean force" ) for six
disclination test charges of strength k with alter-

nating signs located at the vertices of the large
hexagon in Fig. 3. At low temperatures T, Uk(R}
for large R is just

dE (1) 3 2 x(i s 2 E(,l)/8m

dl 2
rry (l)e '"—Io(K(l)ISrr)) my (l)e —'"—~ Ii(K(l)ISrr)+O(y (1)),

4
(2.31a)

dy (1) K(l)
dl 8~

2 — y(l)+2' (l)e ' '~' Io(K(l)/Sn)+O(y3(1)) . (2.31b)

The functions Io(x) and Ii(x) are Bessel functions,
and the equations are to be solved subject to the in-
itial conditions

I

universal constant as T~Tm,

—2EK(1=0)=K, y(1=0)=e (2.32)
lim Kz(T)=16m .

m

(2.33)

Note from Eq. (2.24b) that 2E, is the core energy
for a single dislocation. It is a consequence of
these recursion relations that ER approaches a

It follows from Eq. (2.29) that c (T) is universal
just above the upper roughening temperature T2,
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lim c(T)=61n =3.1394886. . . .27

T~T+, 16

(2.34)

The coupling E„"diverges like gr just above the
dislocation unbinding temperature, ' which
translates into a diverging exponent g as T~Tz
in the roughening problem,

12
g(r) = lnr .

r~oo ~
(2.35)

Just below T2 the logarithmic behavior will cease
for r ~ fr, where gr diverges as T approaches T2
from below,

const/( T —T2 ~"
T (2.36a)

where

As shown in Appendix 8, the height tangent
correlation function g (r) is closely related to the
renormalized interaction potential between two
well-separated disclination pairs. At high tempera-
tures in the roughening model g (r) should behave
as in Eq. (2.15a), with E replaced by Kit. As
T~Tz the universal prediction analogous to
(2.34) is

(2.41)

The corresponding result transcribed for Laplacian
roughening models is

lim ri(T)=12.
T~T+)

(2.42)

At temperatures below TI, Uk(R) will tend to a
constant at large R. This constant diverges as
T~T, ,

~

lim Uk(R)=12k In($6/a),
R~oo

(2.43a)

(2.40)

Just below the disclination unbinding transition at
T=T;, Ez approaches a universal constant,

V=O. 369 634 77. . . . (2.36b)
where

The function g (r) then tends to a constant given

by

lim g(r)= In(gr/a)—12 1

r~ oo
/

T T2/"-
(2.37)

This finite large-r limit signifies an oriented inter-
face, which we expect at all temperatures below

T2-
Above the dislocation unbinding temperature,

disclinations see the screened, logarithmic interac-
tion characteristic of the hexatic phase. The corre-
sponding potential of mean force Uk(R} can be
calculated using the effective Hamiltonian (2.26)
and the Kosterlitz theory' of the two-dimensional
scalar Coulomb gas. The result for large R is

const/~ T —T& ~g6-e (2.43b)

~ ~2mk( 1)sh( r ) 2~+( ))sh( g + R )s e s

S S

(2.44)

If the two continuous roughening transitions at
Ti and T2 are well separated the specific heat will
exhibit two maxima, one below T~, and one be-
tween T~ and T2. These maxima represent the en-

tropy liberated by successive dislocation and dis-
clination unbinding transitions. There are only
essential singularities in thermodynamic quantities
at T& and T2.

Other correlations, besides Ci, (R) and g(r),
might be used to characterize first-order roughen-
ing transitions. The importance of grain boun-
daries, for example, could be assessed by evaluating

R

Ui, (R)= k g ( —1)j+J In
~ rj rj' ~, —

36

(2.38)

where Ez is a renormalized coupling calculable
from Kosterlitz's recursion relations. ' ' Sum-

ming the interactions over the hexagon formed by
the I rj I, we find using Eq. (2.27) that the Ck(R)
decays as in Eq. (2.11), with

Rg= 6mECg . (2.39}

where the j r, j are arranged in two parallel
columns separated by R shown in Fig. 7. For
p =2 Laplacian roughening models this goes over
via the duality transformation into the renorma1-
ized interaction potential for two parallel grain
boundaries, composed of dislocations with equal
and opposite Burgers vectors. Each dislocation is,
in turn, made up of a disclination pair. This re-
normalized potential would presumably exhibit in-
teresting behavior near a grain-boundary-mediated
phase transition.
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C. Continuation in dimensionality

It is interesting to explore the behavior of the
Laplacian roughening model with p =2 in the vi-

cinity of two dimensions. The behavior of conven-
tional roughening models near d =2 has been

determined by Kosterlitz. ' His analysis of the
scalar Coulomb gas in d dimensions can be applied
to the lower roughening transition in its entirety.
There is no transition above two dimensions, and
below d =2 one finds a finite roughening tempera-
ture T1, with '

gs-1/~ T T, ~—"',

v6= 1/(2v'2 —d ),
(2.45a)

(2.45b)

in contrast to Eq. (2.43b).
It is straightforward to generalize the recursion

relations (2.31) out of two dimensions to study the
upper roughening transition. Duality now gives a
gas of charges interacting with a potential which is
the solution of

g2

12M 128 '/z
8 1/2

FIG. 7. Points entering the height correlation func-
tion Eq. (2.44). The plus and minus disclination charges
which result from the duality transformation form a
pair of parallel grain boundaries of separation R.

V V(r)=0 (2.46)

dSC-'

dl
—1 3 2 E/8e'eK '+ m—y e ~ I—(E/Sm. )

2

in d dimensions. To lowest order in @=2—d, the
recursion relations (2.31) are now

=2.418m'/2

' 1/2

+4 F1/2
123

(2.50a)

3 2 KlsÃI (E/8~)
4

(2.47a} = —1.6S4&'/2. (2.50b)

y 1 E
dl 2 Sm

2— E— j7
This fixed point describes a roughening transition
at a temperature T2 such that

+2my e ' ~IO(E/Sm. ) . (2.47b)
(2.51a)

Although there is no fixed point describing a
roughening transition above d =2 (e & 0), for posi-
tive e, there is a fixed point at

with

yT=, [1+0(e'~')],
2.418m'/'

(2.51b)

(E~) '= [1 mBy~+O(e)], —
16m

(2.48a)

y*=(e/12m A) +O(&), (2.48b)

where

A =2e Io(2)—e Ii(2)=21.937. . . ,

B=e'Io(2) =6.1965. . . .

(2.49a)

(2.49b)

Linearizing about this point, we find both positive
and negative eigenvalues

which should be compared with the result (2.36) in
d=2. The quantity gr is the length scale below

Ti beyond which V(r} ceases to behave like a solu-
tion of (2.46) due to screening.

It is straightforward to solve the Laplacian
roughening model exactly in d=1 and show that
the interface is both orientationally and transla-
tionally rough at all finite temperatures. The ab-
sence of any roughening transitions above d=2
suggests that the interface is always orientationally
and translationally locked in this case. This result
can be understood in the following way: Above
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d=2 duality no longer leads to the dipole charge
neutrality condition (2.19). Consequently, free
dislocation dipoles will exist at any finite tempera-
ture, just as in the hexatic phase. These free di-

poles will screen the disclination interaction down
to an effective potential

(2.52)

3--

2

Smooth,
oriented
interface

~Rovqh, oriented interface

Rough, unoriented
inter face

The same kind of screening occurs in the hexatic
phase in d=2. Above two dimensions, however,
V ffe(r) is not strong enough to bind disclinations,
so that free disclinations will exist at any finite
temperature. In the language of the I.aplacian
roughening models this means that the interface is
smooth and oriented at all temperatures. Our con-
clusions in various dimensions are summarized in

Fig. 8.

FIG, 8. Possible phases for the Laplacian roughening

models as a function of temperature T and interface di-

mension d. For 1 &d &2 there are two distinct roughen-

ing temperatures.

G(q) =[4——,(cos5, .q+cos52 q+cos5& q)]

(A3)

and
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APPENDIX A: CORRELATIONS
AT HIGH TEMPERATURE

The quantity 0 is the area of the system, and the
wave vectors q are chosen to satisfy periodic boun-

dary conditions. The wave vector summation in
(A2) is restricted to the first Brillouin zone of the
triangular lattice. It is now straightforward to
show that

26

ce(R(=exp —2e e g ( —(Vh(r() )j=1

AT=exp —2m k I(R)J
where

To evaluate

Ck(R) =—exp —2m.ik g ( —1) h(rj) (Al)
j=1

6 2

I(R)=—QG(q) g ( —1) e0

(A6)

at high temperatures, we observe that it should be
possible to replace sums over h (r) by integrals
when averaging in this limit. For p=2, the Hamil-
tonian (2.4) can be diagonalized via Fourier
transformation

A = ——,Jg [bh (r)]

and we have set (see Fig. 3)

rj ——R5j .

To extract the large-R behavior, we let

p=Rq,
and note that

R4
G(p/R) = [1+0(R )] .P —

4

(A7)

(A9)

where

= ——,JgG '(q) ~h(q) i
(A2)

As R tends to infinity, the summation in (A6) be-
comes unbounded above. Taking the limit 0—+ ao,
we find
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2
d 1I(R)=R f & g ( —1) e
4

3kBr
g(r)= Inr .

mJ
(A16)

I (R)= f, [1—Jo(2p)+2J0(~3p)
p3

—2Jo(p}1 (Al 1)

where Jo(x) is a Bessel function. The remaining
integral can be evaluated exactly imposing a lower
cutoff, rescaling the arguments of the Bessel func-
tions, and then sending this cutoff to zero. The re-

sult is

I(R) = ln R (A12)
~ 4m 16

which, when combined with (A5), is just Eq; (2.10).
Similar manipulations applied to

g(r)= g ([h(r) —h(r+5&) h(0)—+h(5~)] )

suffice to show that
(A13)

(A10)

Carrying out the angular integrations we have

APPENDIX 8: DUALITY TRANSFORMATION

The duality transformation of the Laplacian
roughening model for p=2 makes use of the Pois-
son summation formula, which asserts that

f(h)= g f dh f(h)e
h= —oo S =—op

for any function f(h). Applying this formula to
each of the sums in Eq. (2.6) we obtain

(Bl)

f dh(r}
r S(r)=—oo

Xexp pA +—2iri gs(r)h(r}

r s(r) =—eo

(B2)

Just as in Ref. 23, the h field is easily integrated
out by first passing to the Fourier representation
defined in Appendix A. The resulting expression
for Z may be written

4kgT 1g(r)= J 0
6

X QG(q)g (1—e ')(1—e' i''),
where

)& exp
2n kBT—

g G(q)s(q)s( —q)

(B3)

(A14)

which for large r and in the limit Q~ oo may be
written

P

2mkg T
Zo ——g G(q)J

' 1/2

(B4)

g(r)= f,(1—e"'), (A15)
6kB T
J Bz4 q~

s(q)= pe'"'s(r),0 (B5)

where the integral is restricted to the Brillouin
zone. It is now straightforward to demonstrate
that, as r tends to 00,

and G(q) is given by Eq. (A3). Because G(q)
diverges like q at small momenta there are con-
straints on the allowed values of the Is (r) I. To
see this we rewrite the summation in (B3),

g G(q)s(q)s( —q)

= g p'(r —r ')s(r)s(r ')+—g G(q) gs(r) +—gq;qJG(q) g r;s(r) g rj's(r ')
Q n +f7~I' q r q r r

T

gq~G(q) gr s(r) gs(r)
Q

q r r

(86)
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where

V(r)= —QG(q)[e' ''+ —,(q.r) —1] .0 (87)

The potential V(r ) is finite for all r & ao, but the sums in the second and third terms of (86) diverge in the
thermodynamic limit unless

gs(r)=0 (88)

and

g rs(r) =0 . (89)

When these constraints are imposed in the limit Q~ ao the last term also vanishes and we have

r s(r)= —co

exp
2+kg T—

V(r —r ')s(r)s(r ') (810)

The prime indicates that the constraints (88}and (89) must be respected. It is straightforward to show that,
for large r,

V(r)= (r lnr+Ar B), —
8n.

(811)

where A and 8 are positive constants sensitive to the details of the triangular lattice Brillouin zone. Note
from (87} that V(r) vanishes for r=0

The duality transformation also applies to the correlations functions defined in the text. Equation (2.8)
becomes

Ck(R) =exp
2dksT— , 4Ir ATg k'( (V+"V(Vr—r, exp —:gZk( —)Vr(r)V(r —r)) ),J 1

(812)

where the prime indicates that the average is to be taken over an ensemble specified by a probability distri-
bution

8'( Is (r) I ) &)(: exp
—2m. AT

V(r —r ')s(r)s(r ')
J (813)

subject, however, to the constraints (88) and (89). Equation (812) is the "potential of mean force" associ-

ated with six disclination test charges k with alternating sign introduced at the vertices of the hexagon in

Fig. 3. From (811), it follows that the prefactor in (812) is just the high-temperature result for Ck(&) de-

rived in Appendix A. Com~tions due to finite temperatur~ are provided by the second factor
To transform the correlation (2.13) it is convenient to define

Ãk(r)—:g (expI2mik[h(r) —h(r+5z) —h(0)+Iz(5&)J } (814)

and note that the desired correlation function is

g(r)= —
~ Pp(r)1 d

4& dk k o

In analogy with the result (812), we find

(815)
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6
9',(r)= g exp

—4m AT
k [V(r+5j)+ V(r —5j)—2V(r) —2V(5j)]

g exp
—4m AT gkr(r ')[V(r ' —r) —V(r ' —r —r ) —V(V')+V(r' —6))] ) . (B(6)

r+ t

Using (B15) it can be shown that the first term of (B16}leads to the high-temperature result for g (r) quoted
in Appendix A.

APPENDIX C: DISCLINATIONS
IN A HARMONIC SOLID

Singular solutions which minimize the continu-

um elastic free energy (2.1) for an isotropic solid

have been discussed by Nabarro. In general, the
displacements u (x,y} for a singularity located at
the origin may be written

u (r)=—

us(r) =—

where

1 BX(r } 2p+A,+ Pr
2p Bx p(p+ A, )

1 BX(r} 2p+A,+ r
2p By p(p+ A, )

(Cl)

(C2)

X=xP +yg +R . (C3)

The functions P, Q, and R are harmonic, and P
and Q are harmonic conjugates. The solution cor-

responding to a disclination (called a "dislocation
of Volterra's sixth order" by Nabarro} has

where the contour is any counterclockwise path en-

closing the origin. This constraint will be satisfied,
provided we choose

——,p(p, +A, )
D= S ~

2p+A,
(C9)

which satisfies the useful relation
(C10)

where s characterizes the strength of the disclina-
tion at the origin.

For harmonic solids we can obtain X, P, and Q
for an array of disclinations with integer charges sj
at positions I rj J by a superposition. The function
X(r), for example, is

——,p(p+&)

j
Xln(

~

r —rj ~
/a),

P(r)=Dx ln(r/a) —Dy tan 'y/x,

Q ( r ) =Dy ln(r Ia ) +Dx tan 'y Ix,
X(r)=Dr ln(r/a),

(C4)

(C5}

(C6}

——,op(p+A, )
gsj5(r —rj) .

2p+A,

(Cl 1)

where D is a constant determined below, and a is a
microscopic cutoff. To see that the corresponding
displacements are indeed just those of a disclina-
tion, we compute the local rotation

u,j(r)=p,j(r)+u,q'" (rs),

where26

(C12)

The strain field u,j(r ) can be decomposed into
smooth and singular parts,

8(r ):——,(B„u„—Bru„}

2p+X BP Bg
2p(p+ A, ) By Bx

sing ~ sing ~ singg—
4 ( ~) &kk 5(j (C13)

D tan y/x .2@+A,

p(p+&)
(C7} a,"j s(r) =&;kej[B~BiX(r) . (C14)

f d8(r)= s, s =+1,+2, . . .2K

6
(Cg)

Disclinations in a triangular solid are characterized

by a nonzero line integral of the "twist" 8(r ) (see

Fig. 1},

with

F= ,
' I d'r(2py, ', +—Aykk)+F6[„s, (C15)

Inserting this decomposition into the continuum
elastic free energy (2.1},we find that
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Upon imposing these constraints one can integrate
by parts in (C16) and find that

"+ f d'rxv'x .
4p(@+A, )

(C18)

Inserting Eqs. (C10) and (Cl 1) into this result, we
find that the free energy contributed by the in-
teracting disclinations is

18 2p+A,

&&ln(
~
r; —rl

~

/a) . (C19)

FIG. 9. Interactions between disclination charges at
the vertices of a rectangle. Because the force between
disclinations increases with distance, the interactions
along the diagonals of the rectangle dominate.

2 2„(&X)

(C16)

sj ——0, (C17a)

(C17b)

It is straightforward to show that the energy of a
configuration of disclination charges is only finite
provided that

The partition function (2.20) in the text is just a
lattice approximation to the grand canonical parti-
tion function associated with (C19). The parame-
ter E appearing in Eq. (2.20b) acts like a core ener-

gy or chemical potential for the disclinations.
It is worth commenting on the sign of the dis-

clination interaction which appears in Eq. (C19).
Evidently, disclinations of like sign attract and
those of unlike sign repel, contrary to one's intui-
tive expectation from, for example, Fig. 4. The ex-
planation of this perplexing result lies in the dipole
charge neutrality condition and the strength of the
r lnr potential. An isolated disclination pair can-
not be separated without violating Eq. (C17b). We
are led to consider configurations like the quartet
of charges shown in Fig. 9(a), which admits distor-
tions preserving this constraint. The four interac-
tions along the edges of the rectangle are repulsive.
Because the force associated with an r lnr potential
actually increases with distance, however, the at-
tractive interactions along the diagonals dominate.
The net force increases linearly with the dimension
of the rectangle and will tend to produce a tightly
bound quartet. If a tightly bound quartet separates
at all, it is energetically preferable to do so by
creating two separated dipoles, as shown in Fig.
9(b). As discussed in Sec. II, these dipoles behave
like logarithmically interacting dislocations with
equal and opposite Burgers vectors. In order for
the net force between these dipoles to be attractive
the sign of the r 1nr potential in (C19) must be
positive.
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