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Spin-orbit-coupled electronic transitions between donor and acceptor conduction bands are
shown to account for the ESR linewidth in tetrathiafulvalenium tetracyanoquinodimethanide
(TTF-TCNQ) and similar compounds. Slight admixture of in-plane (o) donor orbital character
into the acceptor conduction (m) bands via the overlap of these orbitals is essential, since the
donor heavy atom spin-orbit interaction mixes effectively only donor 0- and m orbitals. The
corresponding spin-orbit transitions within or between donor stacks are usually symmetry for-
bidden, which result is significant for the one-stack salts.

Despite extensive electron-spin resonance (ESR)
investigations of one-dimensionally conducting
organic charge-transfer compounds such as
tetrathiafulvalenium tetracyanoquinodimethanide
(TTF-TCNQ) and its isostructural selenium analog
TSeF-TCNQ, their ESR line broadening (hH)
mechanism is not well understood. ' Experiment
shows d His due to donor chalcogen (S or Se) spin-
orbit interactions, ' denoted H,h', but symmetry re-
strictions limit spin-orbit scattering in a one-
dimensional band. 2 Thus, the bH mechanism re-
quires weak interstack interactions, as recognized by
theories based on dimensionally restricted modifica-
tions of spin-orbit relaxation in isotropic metals. 2

This approach, however, partially neglects a key fact:
namely, that the one-center matrix elements of H,h'
between S or Se valence atomic orbitals (AO's), com-
pared to which all other spin-orbit terms are negligi-
ble, couple the m molecular orbitals (MO's) of the
donor conduction-band states only to in-plane S or Se
o. AO's. Thus, difficulties associated with mixing
these energetically and spatially dissimilar m and cr

orbitals further restrict the already symmetry-
restriced spin-orbit scattering within an isolated donor
stack. Moreover, and contrary to the dimensionally
restricted isotropic metal models, the required
interstack interaction cannot be supplied by
7Td % pt

—type integrals such as the interstack
transfer integral tq. ' Here we show that the acceptor
m states acquire small amounts of donor 0- character
via overlap between the donor a- and acceptor m.

AO's, enabling spin-orbit-coupled transitions between

adjoining donor and acceptor conduction-band states.
Also, the unexpectedly small angular dependence of
bH on external magnetic field (H) in TTF-TCNQ, '

despite its highly anisotropic crystal structure, 4 will

suggest its transitions are predominantly (filled donor
state) ~(donor, acceptor pair).

Figure 1 depicts for TTF-TCNQ the effect of the
chalcogen spin-orbit interactions and the conse-
quences of overlap between the acceptor m AO's and
the S or Se pa donor AO's. For a given S or Se
atom H,'h' = &( l s where h./t =7.2 x 10"and
3.8 x 10' sec ' for S 3p and Se 4p AO's, respectively, '
and is and f 1 are the electron-spin and orbital ang-
ular momenta. For the molecular coordinates depict-
ed in Fig. 1 [y z(TTF plane), z I!(TTF central C—C
bond), and x iy and z] the only nonzero one-center
spin-orbit matrix elements are (m~~ Xs, l, ~

o.„),as
shown in Fig. 1, and (n~~ &(s„l„~o,). The o„AO's of
a given donor have significant overlaps with acceptor
7r AO's as shown in Fig. 1. The smaller (donor
o, )-(acceptor m ) overlaps will be neglected.

The acceptor m and donor o- orbitals are too dis-
similar energywise to be mixed significantly by the
electronic Hamiltonian, except for the mixing im-

posed on overlapping orbitals by the Pauli exclusion
principle. As can be shown by writing the wave func-
tions as antisymmetrized products of all occupied or-
bitals, this mixing is conveniently calculated by
orthogonalizing the acceptor m orbitals to the donor S
or Se o- orbitals. Thus, tight-binding approxima-
tions7 to the donor and acceptor conduction-band
states are

N-1
11(o)=~ tlz X $7(r))exp-k

t

11(A) A)
—t/2 X ~(A) g $ ( (o) ~~(A)) (o)

q—i ch
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largely removes the dependence on details of the
band model.

This formalism together with TTF-TCNQ crystal-
structure data4 enables calculation of the spin-orbit
matrix elements between II states of adjoining
donor-acceptor stacks. m'A' for TCNQ is given by
Lowitz. A Huckel MO calculation' for TTF, with
ns=1.5p and pcs=0 gp (uc=0 pcc= p), gtves

ps =0.32 for all S m AO coefficients in m'

Hartree-Fock AO's" were used in the overlap in-

tegral calculations. The result is

x [0.0060 —0.0137cos(2n k/N) ],
(2)
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FIG. 1. Effects of spin-orbit interactions and interstack
overlap in TTF-TCNQ. Nearest-neighbor overlap pairs are
indicated by light dotted lines, but other pairs are included
in the calculation. The indicated S-N and S-C pairs are
separated by 3.20 and 3.73 A, respectively.

Here m„' is the highest occupied m MO of the p.th
donor molecule, m„"' is the lowest unoccupied MO of
the qth acceptor molecule, and 0-„,&„denotes a chal-

cogen per„valence AO on the ~th donor molecule.
This band model is very approximate because of
strong electron-lattice coupling in organic metals such
as TTF-TCNQ. ' It also neglects Coulomb interac-
tions which may explain why b H is sometimes in-

dependent of the orientation of H. Nonetheless, this
model should provide a reasonable estimate of the
spin-orbit coupling because, as will be discussed in
more detail later, averaging over the band states

where (s'is, is) is the matrix element for the
electron-spin transition which accompanies the inter-
stack transition.

It can be shown that (II„', ', iH,'&",
i IIkt, ') =0 for a

donor stack of identical centrosymmetric molecules.
Thus, these direct spin-orbit transitions, as contrasted
with second-order processes involving electron pho-
non coupling, do not affect previous conclusions
about the ineffectiveness of spin-orbit scattering
within a donor stack. 2 To do this we consider the
constituent orbital matrix elements: (H,p' ) ~„
= (m' 'iH,p'int ') where rr' ' and n' ' may con-
tain overlap-admixed a„and 0.

~ components,
respectively. Since H,'& is Hermitian and imaginary
( l = r && p = iiir x—'7) and the erat

' are real,
(HP')»= (HP' )„„,a—nd (H,P')»=0. For cen-
trosymmetric molecules the p, v pair has a symmetry
center with I I'"'H,

q
=H,'~ ', I'I'"'vr ' = + m' and

I I'"'vr„'0 = +m.„'D where I'I'"' is the corresponding in-
version operator Thus, 1. '""'(H,P')„„=(H,P')„„
= —(HP' )„„. Since (H,P' ) „changes sign under
I'~"', it and (II', 'iH, 't', ", iIIk, ~) must vanish. This

result, which also holds for interstack spin-orbit cou-
pling between stacks of identically oriented donor
molecules, is significant for one-stack materials such
as (TMTSeF) 2X.t2 Possibly, symmetry-breaking
molecular oscillations are involved in the b,H
mechanism in these materials. This would be con-
sistent with observations that EH[(TMTSeF)2X] is
always considerably less than bH(TSeF-TCNQ) and,
unlike EH(TSeF-TCNQ), increases rapidly with in-

creasing temperature. " Moreover, the marked in-
crease of hH in (TMTSeF)2PF6 upon doping with
(TMTTF)2PF6 may be due to impurity-induced sym-
metry breaking. '

The spin-orbit induced interstack transition rate is'

W, „=2t 'i(II' 'iH, 't', ", iIII'„')i' it/(I+ —'
kriss)

(3)

where a factor of 2 is included because each donor
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electron can go to two acceptor stacks and vice versa,
tmI, is the transition energy, and 27[[ = T~~p+7'[]D is
the coherence-loss rate in (II„'",'~H, 'q",

~ IIk, ') due to

intrastack conduction electron scattering at rates v~~&

and 7~~D for the acceptor and donor stacks.
To estimate bHin TTF-TCNQ we first assume

that a sufficiently wide range of k states is populated
that Eqs. (2) and (3) may be averaged over all k
values, i.e., 0 ~ k ~ X—1. Second, we assume that

~k 2/711 and hence rll/( I +
4 ~k+11)

interstack transitions. These assumptions are reason-
able first because the energy uncertainty associated
with the rapid intrastack electron scattering
(t/7p=0. 22 eV at 300 K, 0.15 eV at 100 K) is com-
parable to the narrow conduction-band width (=0.32
to 0.55 eV), '5 and, second, the incomplete electron
transfer in TTF-TCNQ (charge formula
TTF~ 59TCNQ~ 59)" indicates considerable energy
overlap between the TTF and TCNQ states. [Be-
cause this procedure involves a sum over a complete
set of states it is independent of the model used, e.g. ,
the tight-binding model of Eq. (1), to construct the
conduction-band functions from the individual m

MO's. A rather unrealistic nonband model involving
transitions between individual donor-acceptor pairs
yields the same result. ] With these approximations,
and taking (s'~s, ~s) = —,, temporarily neglecting its

possible angular dependence on H, Eqs. (2) and (3)
yield for TTF-TCNQ

W= (8'„)=6.5 x10 ps(As/h)'mii

=1.0 &&10' sec ' (4)

for ps =0.1, Aq/f =7.2 && 10"sec ', ' and
~[[=3 && 10 ' sec ' at 300 K as determined from re-
flectance spectra which should adequately represent
the combined scattering from both stacks. The corre-
sponding ESR line broadening from the uncertainty
principle (0 E =O'II') is, in magnetic field units,
b,H =6 6, in agreement with the observed 6 6 at
300 K

This calculation is readily extended to TSeF-TCNQ.
Assuming its crystal structure is identical to that of
TTF-TCNQ (they are very similar), '7 and using a
Hartree-Fock Se4p AO, "yields 0.0072 and —0.0150
for the constant and cos(27rk/X) coefficients,
respectively, in Eq. (2). A Huckel MO calculation
for TSeF with us, =0.5P and Pcs, =0.5P, '8 gives

pse =0.40. With h.s,/k =3.8X 10 sec, and
r

~~
=4.2 x 10 "sec at 300 K, '7 Eqs. (2)—(5) yield

4H =452 6 in agreement with the observed 500 6
at 300 K. ' The increase in AH on going from TTF-
TCNQ to TSeF-TCNQ is largely due to the increased
spin-orbit interaction, but an increased unpaired elec-
tron density on the less electronegative Se, and a
longer v [[ also contribute.

As previously predicted by a dimensionally restrict-
ed isotropic metal model, ' b ' combination of Eq.
(4) with the assumption that o.[p' ~ r~~ where o.[p' is the
single-particle conductivity, '9 predicts: b,H ~ o.[I'.
This relation holds for variations of AH and a ~f' with
substance, temperature, and pressure in several
TTF-TCNQ —like compounds. " It fails in other
cases, however, such as TMTTF-TCNQ where EHis
quite small and has a low-temperature ( T =40 K)
minimum' rather than increasing with 'Tp and rr'g as T
decreases. Since the TMTTF-TCNQ crystal struc-
ture' suggests exceptionally weak interstack interac-
tions, its small hH may be partly due to molecular-
oscillation-induced intradonor stack transitions. This
could yield the observed AH vs T behavior.

Although the agreement between theo:y and ex-
periment strongly supports the proposed model, there
remains the interesting question of why AH is often
unexpectedly independent of field orientation. ' For
example, the transitions (D:A ) ~(D A:) and
(D A) ~(D A ), where the dots denote electrons,
are (doublet) ~(doublet) spin transitions. They con-
tribute to AH only if an electron-spin flip occurs, and
thus depend strongly on the orientation of H since
(+—, ~s, ~+—, ) =0 unless Hxz

The transitions (D:A) ~(D A ) ~(D A:), how-
ever, are (singlet) ~(random singlet-triplet pair) spin
transitions. The doubly occupied levels must be
singlets (~S)), and the donor-acceptor pair has a
random or uncorrelated spin state [~RP) = —,

x /&exp(iver)~g) where $=S,T ], Tp, Tt and t—he

( 's are random-phase angles] because the rapid in-
trastack scattering makes the lifetime of such a pair
in specific states too short for development of a
coherent spin state, i.e., the pair is similar to doublet
molecules colliding in a fluid. Averaging over the
X 's, which eliminates cross terms, and noting that

g& is a complete sum over pair spin states and that

s, operates on only one electron of the pair shows
that [(S~s,~RP)[z =

4
(S~sz~S) = —,6

which result,

and thus hH, are independent of H. (The value —,6

is equivalent to [(D~s,~D)[' = —for doublet transi-

tions because two electrons are relaxed in the pair
transition and each has a spin-orbit term. )

A rough estimate of the net spin transition rate, as-
suming simple band states populated in accordance
with the charge formula'6 TTF~'9-TCNQ~'9, yields
hH, „/AH;„=2 versus the observed 1.2, ' for angu-
lar variation of H in the ac crystal plane. A possible
explanation lies in the effect of Coulomb interactions
on the band states which, in the valence-bond —like
model of Torrance, "cause band states formed from
basis states with only one electron on a given accep-
tor molecule (or hole for donor molecules) to be
lower in energy than band states formed from basis
states with two electrons (or holes) on a given
molecule. [The true situation of course lies between
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the extremes of this and the molecular-orbital model
of Etl. (1).] Transitions involving a doubly occupied
acceptor state or a doubly vacant donor state will be
suppressed if this energy difference is sufficient to
yield tok ~2/r~~ in Eq. (3). For 7~~ =3 & 10 "sec the
required Coulomb contribution to teak is roughly 0.5
eV, which is similar to other estimates of the
Coulomb energy. " The only nonsuppressed transi-
tion is (D:A) ~(D A ) which is independent of

field orientation and is the transition involved in
forming the charge-transfer salt.
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