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We present a continuum version of the Potts model, which can be used to describe both ran-

dom and correlated continuum percolation.

The Potts-model formulations of both the random!
and correlated?™ percolation models have been in-
strumental in our obtaining a deeper understanding
of the percolation problem. They have also been
essential to our understanding of the fundamental re-
lation between thermal phase transitions and percola-
tion.>® These advances have all taken place in the
context of lattice models. No parallel program has
been devised for the problem of continuum percola-
tion which would deepen our understanding of phase
transitions in gel systems as well as fluids.

In this Brief Report we propose a Potts-like model,
the continuum Potts model (CPM), which provides a
Hamiltonian capable of describing both the random
and correlated continuum percolation problems. We
will present the model in the context of random per-
colation and then indicate the generalization to the
correlated case.

The continuum random percolation problem is de-
fined as follows: Consider a system containing N
noninteracting d-dimensional spheres of diameter R
in a volume V. Two spheres are said to be connected
(i.e., belong to the same cluster) if they overlap; that
is if the distance between spheres x; < R. A set of s
spheres is said to be connected if any sphere selected
at random from the set can be connected to any oth-
er sphere in the set by a path that only passes
through overlapping spheres. Such a set is called an s

particle cluster. This model has been studied with
J

config
o

renormalization-group’ and numerical methods® and
is seen to undergo a percolation transition at a critical
value of p=N/V in the thermodynamic limit. The
function that plays the role of the free energy in the
percolation problem is the mean number of clusters!
(N_). Once this function is obtained all quantities of
interest in the percolation problem can be calculated.

Consider then a system with the following Hamil-
tonian

—BH = 3v(x) (855, ~1) . )
Y

B=1/kgT, 80,.,1 is the Kronecker delta and v(x;) =0

if x; > R and v(xy) = o if x; <R. The function
v(xy) is simply the hard-sphere interaction. The
sum Eu is over all pairs of particles. The term
(8,'0j~ 1) in Eq. (1) has the following interpretation.

The particles can be thought of as having g internal
states. If two molecules are in the same internal
state then from Eq. (1) there is no interaction, how-
ever, if they are in different internal states there is a
hard-core repulsion.

The main result of this Brief Report is that the
mean number of clusters is obtained from Eq. (1) as
follows

—lim O
(Nc)—‘il_n}1 3 Inz , ()

where

(3)

This result can be obtained with the use of techniques similar to those developed in Ref. 1. We write

exp[Zv(xU)(S,i,j— 1)
/)

i<j

Since limy —; z = V%, Eq. (2) becomes

(No)=V-Nlim 2 3

q—1 aq config
(o}

f...fl;[d,-(*l

c<j

Consider the term in the expansion of the product in Eq. (5) of the form [], ;e

26

_ H [(1- e—v(xv.))saiaj + e—v(x‘.j)] ] @

H [(l _ e—v(xv))saioj +e—v(xy)] ) (5)

(x;:) . . . .
""" which gives a contribution
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to (N,) of
u(xi.)
ql—n'lla_q f fde'. y '

In Eq. (6) the term

f fdel —v(x;)

<J

is the phase-space volume occupied by the system of
N particles with the condition that no particles over-
lap, and V" is the total volume in phase space. The
ratio of these two quantities is the probability that
none of the N particles overlap. The right-hand side
of Eq. (6) then is the mean number of one-particle
clusters. Consider next the term in the expanded
product of Eq. (5)

—v(x;.) —v(x;;)
(1—e ”)8,,1(,2 II ¢ 79 . @)
i<j
ij#=1,2

The corresponding contribution to (N,) is then

(N-1) f RN fHdg".(l_e—u(x,y)) H e—v(xij) ,
' S5
(8)

where the integral is the total phase-space volume oc-
cupied by the N particles with the constraint that par-
ticles 1 and 2 overlap and all others do not. Dividing
the integral by V" gives the probability of this config-
uration. If we took the sum of all terms constructed
in this way with different pairs replacing 1 and 2, we
would have the mean number of clusters in the case
where one pair selected at random overlaps and all
others do not. Clearly a continuation of this process
will result in Eq. (2).

We point out here without going into details"? that
if we modify our Hamiltonian as follows,

—BH = zv(x,,)(a” 1)+h2(8,,1—1) )

then Eq. (2) is still valid with z constructed with the
Hamiltonian of Eq. (9). The order parameter and
mean cluster size are now related to the first and
second derivatives of (N,) with respect to A in the
standard way."® It is interesting to note that the ad-

f fde‘ u<x,.j> ' ©)

<J

[
ditional factor generated in the Boltzman factor by
the h(S(,il —1) term in Eq. (9) {exp[h(s‘,,l—l)]}

can be thought of as a fugacity. The CPM can then
be understood as describing a fluid (with a fixed
number of particles N) with the Hamiltonian given in
Eq. (1), however, the total number of particles with
an internal state o; # 1 is not fixed but is governed
by a fugacity e~

It is also clear that we can generalize our system by
adding to Eq. (9) an additional term Hy_ which can
be, for example, a Lennard-Jones potential or a
square well, or any of the potentials useful in fluid
theory. We have then

—BH =3 v(x)) (8g,5 =1 +h Z, (851 —1) +Hpr .
i

ij
(10)

This Hamiltonian, in a way similar to that discussed
above, describes correlated continuum percolation
where the correlation is dictated by Hp..!% The case
Hpy consisting of only a hard-core interaction has
been studied!! via Monte Carlo renormalization
group. A Mayer cluster approach to continuum per-
colation has also been proposed.!?

In conclusion, we have proposed a continuum
Potts model that is capable of describing both random
and correlated continuum percolation. This model
raises various questions. Among the more interest-
ing is whether there exists a relation between the per-
colation transition in this model [with the Hamil-
tonian given by Eq. (10)] and the critical point of
the fluid system specified by Hg. Such relations
between percolation and thermal transitions have
been found previously for lattice models.>* Ques-
tions involving such a relationship as well as those
involving the relation between the continuum percola-
tion model and gelation are currently being investigated.
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