
PHYSICAL REVIEW B VOLUME 26, NUMBER 5 1 SEPTEMBER 1982

Nondispersive relaxation in supercooled liquids and glasses
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'Ve show that dispersive relaxation in supercooled liquids and glasses described in our earlier

paper is not always inevitable. Here we discuss two circumstances where the relaxation is purely

exponential.

We have recently developed a theory of relaxation
processes in supercooled liquids and glasses" based
on the free-volume model. ' ' Our results are in

good qualitative and quantitative agreement with ex-
periment for both the relaxation of thermodynamic
properties and for dissipative processes such as
dielectric relaxation via ionic motion. We can ac-
count for the temperature dependences, ' the magni-
tudes, and the dispersion of the observed relaxation
times 6 7

The essence of the argument is that there are two
classes of configurations of the environment of each
microscopic unit of the material: liquidlike and solid-
like. These liquidlike cells cluster and diffusive
motion is possible within large enough clusters of
liquidlike cells. In thermodynamic relaxation the
controlling variable is the fraction of liquidlike cells,
which relaxes by diffusion at the cluster surface. The
relaxation rate associated with a finite cluster or a
piece of the infinite cluster is proportional to its sur-
face to volume ratio. If W(v) is the relaxation rate
for clusters of size v, the relaxation function R (t) is

given by

R(r) = P(v)e ~ " 'dv,
al

where P(v) is the cluster size distribution function.
For small times, we have shown that2

laxation rate ( W) and characteristic time r and with
z replaced by

z= y
2x +y

(5)

Shear stress relaxation similarly requires diffusive
motion to the interfaces so that its long-time
behavior is given by (3) and (5).

In this Brief Report we point out that the disper-
sive relaxation described by (3) and (4) or (5) at long
times is not inevitable. There are two specific sets of
circumstances in which the relaxation function either
is, or appears to be, purely exponential. We discuss
the latter case first. Rewrite (I) as a cumulant ex-
pansion,

lnR (r) = X C„(W) r"/n!,
n 1

Ci=(W) .

Cz = ( W2) —( W) ', etc.

(6)

Exponential behavior ceases when the quadratic term
in tin (6) becomes comparable to the linear term.
Denoting that time as t„wesee that relaxation will

appear purely exponential if

(W)r, »1.
R(r)-e-t )'

and for large times that

R(t) —e '' '

In (3),

z y
x+y

(2)

(3)

(4)

where t, =2C~/C2. Thus the condition for apparent
exponential behavior is

—'((Wz)/(W)'-I) « I . (10)

Equation (10) can be examined only if P(v) is expli-
citly known. We therefore augment the exponential
form previously used for P(v) to establish the
asymptotic behavior (3) and take

Here y is the power of v in the argument of the ex-
ponential' in P(u) -exp( —cv"), where c is a con-
stant and x is the power of v in cluster surface to
volume ratio, 0 & x & 3

. For dielectric relaxation by

ionic motion, the polarization relaxation time is the
time to diffuse across a liquid cluster, L'/4D cL v '".
Equations formally identical to (2) and (3) hold for
R (r) in this case also, but with different average re-

—1= ——1
~ W') rr2 I
(W)' 6 z

(12)

P(v) =Bye s" v~ ' .

This choice of preexponential has no effect on the
asymptotic behavior, but greatly facilitates the
analysis. We obtain that
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when z approaches its upper limit of unity. Inserting
(12) into (10) gives us

1——1 &&1
12 z

(13)

W = 8'Oexp( —v, /vf) (14)

A beautiful example of such a local relaxation pro-
cess has recently been studied by Zeller. ' In pure
cyanobiphenyl CBS and in solutions of the trinuclear
compounds CT5 and CP4 in CBS, Zeller has found a
single dielectric relaxation time in the nematic phase.
Samples were supercooled below the melting point
and studied below the glass transition temperature as

as the condition for the relaxation to appear exponen-
tial. The largest values of z observed are typically
around 0.8.6' Equation (13) predicts that relaxation
would then be exponential over 100 factors of e.
More generally, as z approaches its upper limit unity,
it takes longer and longer for the asymptotic, nonex-
ponential behavior to manifest itself. The smaller the
dispersion of relaxation rates, the longer it takes to
appear. Small dispersion corresponds to small x, that
is to ramified clusters which result in turn from low
cluster interfacial energy. Small x means that the
cluster is practically all surface so that the surface-to-
volume ratio and the distance to the surface are very
weakly dependent on the cluster size.

The other case, in which the relaxation function is
strictly exponential, occurs when the relaxation pro-
cess is local, taking place entirely within a liquidlike
cluster. In the free-volume model, such a process re-
quires only that there be enough free volume present
in the cluster that the required local configuration for
relaxation can be achieved by free-volume fluctua-
tions. If the saddle configuration corresponds to an
expansion volume of v„only clusters of size larger
than v, = v, /vf, where vf is the average free volume,
admit the relaxation process. The relaxation rate
then has the form

well. In the supercooled liquid and the glass there is
nearly complete orientational ordering but transla-
tional disorder. The dielectric relaxation studies were
carried out in electric fields parallel to the directrix.
Thus the elementary step in the dielectric relaxation
was reorientation of the molecules by 180' along the
directrix. Zeller gives cogent arguments that the
reorientation is made possible by free-volume fluc-
tuations. Such reorientation clearly corresponds to
the local mechanism described above; it can take
place anywhere within a cluster of size v, or larger.
The relaxation function is exponential, and its tem-
perature dependence is given by (14). We have al-

ready shown ' that vf ~ T—To at sufficiently high
temperatures so that 8'would obey the Vogel-
Fulcher law as found explicitly by Zeller. However,
he finds that the Volgel-Fulcher law continues to
hold through and below Tg, the glass transition tem-
perature, whereas in most glasses the Vogel-Fulcher
law greatly overestimates the viscosity or relaxation
rates at Tg. Using the free-volume model, we have
shown that Gf makes a transition from proportionality
to T—Tp to proportionality to Tin a temperature
range which has nothing to do intrinsically with Tg,
the latter being set by kinetic considerations alone.

Zeller concludes that the absence of observed
dispersion is the relaxation rates is evidence against
the existence of percolation effects in the supercooled
nematics and the nematic glasses. We propose in-
stead that dielectric relaxation by orientation flipping
is insensitive to the size and shape of clusters and
that the existence of clusters has in fact not been
tested in the nematics. We suggest that enthalpy re-
laxation in response to small temperature steps be
studied with a view to establishing the presence or
absence of dispersion such as implied by (3).
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