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Area dependence of exchange stiffness energy in a spin-glass
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The area dependence of the exchange stiffness energy is investigated for a d =3 Heisenberg
spin-glass with Gaussian couplings. The results agree with the linear area dependence postulated

by Halperin and Saslow.

The presence of random and conflicting exchange
interactions in a spin-glass introduces frustration in
the system. This results in a lack of any long-range
spatial ordering of the spins and leads to a multiplici-
ty of ground states. The physics of a spin-glass at
low temperatures may be understood in terms of two
kinds of phenomena: (1) spin-wave-like excitations
within the vicinity of a given ground state, and (2)
transitions between different ground states. At very
low temperatures, due to the presence of barriers
between ground states, it is possible that the spin-
glass remains close to a ground state for a long period
of time.

Huber and Ching,! using the method of equations
of motion, and Halperin and Saslow,? by constructing
a hydrodynamic theory, predicted the existence of
spin-wave excitations with a linear dispersion relation
in the spin-glass. The occurrence of such excitations
relies upon a nonzero value of the exchange stiffness
for the system.

Following Halperin and Saslow,? the stiffness con-
stant p; is defined by the increase in free energy, AE,
above its equilibrium value given by

AE=1p, [@rIvecP)I2, )

where 6( T") measures the local rotation angle in the
spin-glass about the equilibrium state. It is assumed
that the spins are relaxed to equilibrium (a local
minimum in the free energy is obtained), while a net
rotation is maintained across the sample.

For an overall twist of A8 across the sample, AE
scales as

AE ~p,(A8)24/L . 0)

Here A refers to the area of a hypercube and L to its
length. The twist A@ is assumed to be imposed
across the length of the hypercube.

Recently Reed® and Walstedt* have carried out nu-
merical calculations of the exchange stiffness con-
stant for a nearest-neighbor Heisenberg and a
Ruderman-Kittel-Kasuya-Yosida (RKKY) spin-glass,
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respectively, in three dimensions. In both cases the
magnitude of p; was found to be consistent with that
predicted by Halperin and Saslow. Their calculations,
however, assumed the validity of Eq. (2) with respect
to the area dependence. In both calculations the
length dependence was studied and found to be in ac-
cord with Eq. (2).

In this note we report results of an investigation of
the area dependence of AE. Our results confirm the
predicted linear dependence on the area and lend fur-
ther support for the possible existence of spin-wave-
like excitations in spin-glasses. It is important to
note that we have not considered effects of damping
which may play an important role in the question of
whether these excitations are propagating or not.

We considered classical Heisenberg spins on a sim-
ple cubic lattice coupled by nearest-neighbor ex-
change interactions and at 7=0. The distribution of
exchange couplings was Gaussian characterized by
unit variance and zero mean value. We investigated
systems with L =8 and 4 =4 x4, 8§ x8, 12 x12, and
16 x16. Periodic boundary conditions were applied
in the transverse directions (across the ends of the
planes of area A).

In the first stage of the calculations we applied free
boundary conditions in the longitudinal direction and
we relaxed the system to five different ‘‘ground
states’’ by starting from five random configurations
of spins. The process of relaxation was done as sug-
gested by Walker and Walstedt,’ i.e., by aligning the
spins sequentially in the direction of their instantane-
ous local fields. If we define one iteration as AL spin
alignments then the ‘‘ground state’’ was reached
within 800—5000 iterations, depending on the size of
the system.

In the second stage of the calculations we applied a
twist of 5° about a fixed axis to the spins on one of
the (initially free) boundaries. Thereafter, the spins
at both boundaries were kept frozen. The bulk spins
were then relaxed within several hundred iterations.
The final energy of the system was higher than the
‘“‘ground-state’’ energy by an amount AE. For a
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given sample an average of AE over the five ‘‘ground
states’’ was taken. The individual AE ’s differed by
less than 50%.

The procedure was repeated for seven other sam-
ples with the same probability distribution of the ex-
change couplings and the average AE over the eight
samples was calculated.

We determined AE for four values of 4 and the
results of our findings are presented in Fig. 1. The
error bars indicate the size of the standard deviation.
Our results agree with the linear dependence on the
area, as suggested by Eq. (2). The straight line in
Fig. 1 represents the linear law. The value of AE for
the smallest system, i.e., the one of area 4 x4, is a
little above the straight line, presumably due to the
poor statistics of the small system.

It should be noted that our numerical procedure is
somewhat simpler than the one adopted by Walstedt.*
Checks of the length dependence yielded results in
agreement with those of Walstedt* and Reed.’

A spin-glass may be visualized as being made up of
many statistically similar blocks of length L and area
A. The strength of the coupling between neighboring
blocks is related to the free-energy sensitivity of a
block to a change in the boundary conditions. Re-
cently it has been suggested®’ that the sensitivity of
the system to changes in the boundary conditions
may yield information about the nature of ordering in
spin-glasses. It is interesting to note that both at-
tempts®’ at determining this sensitivity yielded an
A'2 dependence.

In contrast to the exchange stiffness problem,
when estimating the block-coupling energy one con-
siders two initially separated blocks of spins. If each
of the blocks is in its ground state one asks for the
total energy change on coupling the blocks together.
In spin-glasses, this change could be positive or nega-
tive and is proportional to 4'/% as shown by Ander-
son and Pond.®

On the other hand, in Ref. 7, the effects on in-
teracting blocks are mimicked in a single block by im-
posing periodic or antiperiodic boundary conditions
on the system. If the corresponding free energies are
denoted by Fp and Fap respectively, then AF = Fyp
— Fp for a spin-glass can again be of either sign. It
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FIG. 1. Plot of InAE vsinA for L =8.

follows that the configurational average of

AF, (AF),, over the distribution of the exchange
constants, vanishes. This, in turn, suggests that the
appropriate measure of the sensitivity of the system
to a change in boundary conditions is

SF=[((AF)?) ]2 (3)

The A2 law for 8F arises primarily as a result of
adopting the second moment of AF in the definition
of 8F.

Unlike AF, the exchange stiffness energy is neces-
sarily positive. Once a system is in its local free ener-
gy minimum, it always cost energy to impose a twist
by a small angle in the vicinity of the minimum. Our
numerical results show that this exchange stiffness
energy, as postulated by Halperin and Saslow,? is
indeed proportional to the area.
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