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We have extended our generalized kP interpolation scheme to wave functions. The
speed of this method with wave functions was about 200 times faster than the Korringa-
Kohn-Rostoker method. All matrix elements of interest were accurate on a 5% or better
scale. As an example we calculate the positron annihilation spectra of ferromagnetic
iron. This is a typical case where the matrix elements of the annihilation process play a
dominant role, since some of the bands near the Fermi level have pronounced s-p charac-

ter.

I. INTRODUCTION

The interpolation of energy eigenvalues in elec-
tronic band theory is a well-studied problem. Less
well characterized is the problem of interpolating
wave functions and their matrix elements. Howev-
er, this aspect is equally important since matrix
elements are basic ingredients for the evaluation of
almost all physically observable quantities. In this
paper we consider an accurate and fast interpola-
tion method for wave functions and we apply this
method to calculate positron annihilation spectra
of ferromagnetic iron.

In principle, wave functions can be derived from
every interpolation method, such as pseudopoten-
tials,! parametrized tight binding or Slater-Koster
schemes,? or combined schemes.’ The description
of wave functions through E-ﬁ perturbation theory
is particularly straightforward and simple.* We
have expanded our study of the generalized kP
interpolation method’ to approximate wave func-
tions as well as eigenvalues. Not too surprising, it
turns out that the accuracy of the interpolated
wave functions is less: Nevertheless the method is
sufficiently accurate to be useful, and is quite fast.

Experiments studying the annihilation of ther-
mal positrons in solids provide us information con-
cerning energy levels as well as wave functions.®
This powerful technique is founded upon the imag-
ing of the properties of the annihilated electron in
the final gamma quanta. Experiments measuring
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the total momentum of the photons are very well
described by electron band theory, since sampling
the electrons in reciprocal space focusses on the
itinerant character of the electrons. We have
evaluated positron annihilation spectra of fer-
romagnetic iron, using a new, parametrized band
structure of ferromagnetic iron which was con-
structed to accurately describe the results of de
Haas— van Alphen technique measurements.”? We
compare our results with the available experimen-
tal data.’

The plan of this paper is as follows. Section II
recapitulates the basic formulas of our generalized
kP interpolation method. Section III describes
the interpolation of wave functions. In Sec. IV we
discuss the accuracy of our interpolated matrix ele-
ments for positron annihilation by comparing them
with matrix elements evaluated by a Korringa-
Kohn-Rostoker (KKR) method. In Sec. V we
show our results for positron annihilation spectra
of ferromagnetic iron, while Sec. VI shows our
conclusions.

II. GENERALIZED k-F INTERPOLATION

The relation between the band structure in two
points in reciprocal space is furnished by E-f)’ per-
turbation theory.* If the energy eigenvalues and
wave functions are known for a specific value of
the wave vector K one can deduce the band struc-
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ture in a general point K by diagonalizing the E-f)’
Hamiltonian

H;(k,K)=[E/(K)+(K—K)*]3;
+2(k—K)-B;(K) . (1)

Here (ﬁ,,.(ﬁ) are the matrix elements of the
momentum operator, and E;(K) is the energy
eigenvalue for band i.

In many cases one is interested only in bands in
the immediate vicinity of the Fermi level. This al-
lows us to approximate the full k-p Hamiltonian
by a matrix of finite rank; the size of this matrix
determines the accuracy of the resulting eigen-

Hy(K,K)H,, (K,K)
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values. In the case of narrow bands the quality of
the evaluated eigenvalues is poor and an extrapola-
tion over a full zone of the band structure is inac-
curate.'®

Fortunately the number or bands to be described
is often small. Then it is convenient to reduce the
size of the model Hamiltonian matrix to the num-
ber of bands of interest. This can be done most
simply by applying Léwdin perturbation theory.'!
We separate the energy bands into two classes,
class 4 containing the bands of interest and class B
containing all other bands. We define the Lowdin
matrix U by

Upm(E, K, K)=H,, (K,K)+ = = —— 4 -
" i 1%9 E —Hy(k,K) ijes [E —Hy(k,K)][E —H;;(k,K)]
15£n,m n#1
I1£j
jEm (2)
[ —
The eigenvalue problem then reduces to diagonaliz- eigenvectors of the k-p Hamiltonian
i ix of i SN, - o - N
ing a matrix o tEeleC of class 4, ZH;j(k,K)dj(nk,K)=E,,(k)di(nk,K) , ©)
> Uum(E,k,K)c,, =Ec,, n€4, (3) j
meA
while the elements of the eigenvector in class B are Ynk, D)= K-8 T 2d;(nk, KWK, T) . @

determined by
Upm(E, K,K)

C, = ——= 5 Cn, NEB . 4)
" m%AE_Hnn(k’K) "

The Lowdin matrix U is a function of the wave
vector k and can be expanded in symmetry adapt-
ed polynomials which are centered at K:

Upm(E, K, K)=3C.,(E,K)p/(K—K) . (5)
1

The crystal symmetry of the electronic band struc-
ture is reflected in the coefficients C. Using the
Wigner-Eckart theorem these are factorized into
the product of a generalized Clebsch-Gordon coef-
ficient and a reduced matrix element. In our pre-
vious paper’ we have shown that these reduced
matrix elements can be used as free parameters for
a fast and accurate interpolation of the energy
eigenvalues of the electronic band structure.

III. INTERPOLATION OF WAVE FUNCTIONS

Of course the use of the kP Hamiltonian is not
restricted to the evaluation of energy bands alone.
Wave functions may be obtained directly from the

j
The accuracy of the interpolated wave functions
can be simply estimated by the following argu- _
ment. Suppose the interpolated wave function 9
differs from the exact wave function ¢ by an
amount 81,

b=9+8¢ . 8)
Because of orthogonality we have
PYoyY=0. 9)

The difference between the interpolated energy €
and the exact energy € then becomes

E—e=8yHSY , (10)

where (9) is used together with the fact that ¢
obeys Schrodinger’s equation. Hence as is well
known the error in wave function is of first order,
while the error in the energy is of second order.
The typical accuracy of the energy in a global fit is
in the range 0.1 — 1.0 % and consequently the error
in the wave function is expected to be 2—3 %.
Wave functions abound in information compared
with the energy bands. It is neither feasible nor
desirable to define the accuracy of a wave function.
All one really wants to know is the accuracy of the
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description of experimentally observable quantities,
due to the errors in the matrix elements. Hence,
model wave functions have to be tested for each
new application again and again by comparing ma-
trix elements obtained by integrating ab initio wave
functions and model wave functions.

The derivation of the k-p Hamiltonian (1) uses
the orthogonality of the basis functions

[ & u*(nK,Pu (mE,F) =8 - (a1

This relation leaves the phase of the wave func-
tions undetermined. However, the relative phases
of the components of the eigenvectors of the model
Hamiltonian are fixed and do not allow any varia-
tion in the relative phases of the basis function.
The question arises which value of the angle £(jK)
has to be used in the expansion

llj(n]_(’,?)zei(r—i )-?Edj(nl_(',ﬁ)eig(jf)
J
X YK, ) . (12)

Equivalently one can ask which values of the rela-
tive phases of the basis functions are consistent
with the fitted values of the parameters in the
model Hamiltonian.

Lowdin’s formula shows that the phase factors
of basis functions belonging to class B are not im-
portant since these basis functions only appear in
combinations of the form ¢*i. Phase factors of
wave functions belonging to class 4 are determined
by comparing eigenvectors of the model Hamil-
tonian with values derived from ab initio eigen-
functions near the points of high symmetry. We
have

d;(nk,K)= [dru*(GK, Pk, . (13)

In case of potentials with inversion symmetry the
coefficients d can be chosen real for real values of
the parameters. Consistently, plane-wave expan-
sions of the wave functions have real coefficients
and phase differences become mere sign differ-
ences. The relative sign of basis functions at
points of high symmetry can be unambiguously
determined by comparing values obtained via (13)
with model eigenvectors.

A second problem is the evaluation of the ma-
trix elements of the model Hamiltonian U connect-
ing the basis states of class 4 and class B. Since
the influence of basis functions belonging to class
B is relatively small (less than 20% for the cases
we have investigated) it is sufficient to take the in-
fluence of class B into account only up to first or-
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FIG. 1. (a) Positron annihilation momentum density
with §=(0,0,x) a.u.; solid lines are obtained from
ab initio results, dashed lines from interpolated wave
functions. (b) See (a). ¢ =(0.58116,0,x) a.u. (c) See (a).
q=(1.16233,0,x) a.u.
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FIG. 2. Twice-integrated positron annihilation spectra along § near [100]. Theoretical results are given by the solid
line (majority spin) and the short dashes (minority spin); experimental results are given by the medium-sized dashes

(majority spin) and the long dashes (minority spin).

der of the expansion given in Eq. (2), and using
previously defined quantities,

. - - 2(k—K)BK)
d;i(ink,K)= 3 djink, K)—=—=
j'€4 E(nk)—E(]K)

JEB (14)

using ab initio values for the matrix elements of
the momentum operator. One has to determine by
trial and error how many elements from class B
must be used in expansion (14). In the cases we
have investigated this number turned out to be of
the same order as the number of elements in class
A. Phase problems do not occur, since the matrix
elements are constructed from ab initio wave func-
tions.

Smooth interpolation throughout the first Bril-
louin zone is accomplished by applying the same
type of Gaussian weight factors as was used previ-
ously for the energy values®:

Zexp[ —a(k—K»?/rAK) g (nK,7)
K

Ynk,P)=

’

Eexp[—a(E——I—i)z/rz(I—{)]
K

(15)

where the wave functions ¥ (nk,T) refer to the
point of high symmetry K. The summations in-
corporate all points of high symmetry K used for

model Hamiltonian expansions. r(K) is the range
of the expansion centered at K. a can be chosen
freely to give an optimal results. It is a necessary
condition that the wave functions ¢¥(jK,T) at dif-
ferent points of high symmetry are phased
coherent. This can be easily achieved by following
the phase of ab initio wave functions along lines
connecting the points of high symmetry. The er-
rors in the approximate wave function appear in
their radial part, since their angular variation was
constructed through symmetry projectors, and is
exact.

The deviations in the radial parts of the wave -
function are primarily caused by their energy
dependence: We have approximated this by the

[
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FIG. 3. Difference between the majority- and
minority-spin spectra along § near [100]. The theoreti-
cal results (solid line) are multiplied by 0.1. Dashed line
indicates the experimental results.
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FIG. 4. Difference between the spectra along two directions, §) near [211] and §, near [421]. Theoretical results are
given by the solid line (majority spin) and the short dashes (minority spin); experimental results are given by the
medium-sized dashes (majority spin) and the long dashes (minority spin).

few values at K. Such errors could be made small-
er by including more states belonging to class B
and by improving on the matrix elements of U
connecting class A and B. The error in the radial
part of the wave functions is largest for wave vec-
tors along lines of high symmetry since in that
case the mixing of the basis functions is restricted
by symmetry so that states distant in energy play a
role.

All matrix elements of our interest turned out to
be accurate on a 5% or better scale. This is a
consequence of the necessary quadratures in direct
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or in reciprocal space, which tend to average such
errors. The speed of this method with wave func-
tions was about 200 times faster than that of the
original KKR scheme.>’

IV. MATRIX ELEMENTS FOR POSITRON
ANNIHILATION

We have applied our interpolation method to
evaluate the photon momentum distribution as
measured in a positron annihilation experiment.
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FIG. 5. (a) Contours of the total once-integrated positron annihilation spectrum, [N (1,5t )+N(U,5, ?)]/2 in a (110)
plane. First Brillouin zone is also shown. Subsequent contours differ by 0.025. (b) Three-dimensional plot of (a).



FIG. 6. Contours of the spin difference of the once-
integrated positron annihilation spectra, N (1,5, 1)
—N(,§ t)in a (110) plane. First Brillouin zone is also
shown. Subsequent contours differ by 0.010. Dashed
contours indicate a negative density.

The phonon momentum distribution is given by®

ploq)=3F(E(n ko))
nk
= —> — 2
X |fd3re-'q TPn Ko, DT | -

(16)
(a)
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o denotes the spin of the annihilated electrons and
Ppos is the wave function of the positron. F(E) is
the Fermi distribution function. The wave func-
tion of the positron is evaluated in the independent
particle approach, neglecting the correlation be-
tween the positron and the electrons which locally
alters the electronic structure. Details can be
found elsewhere.’

As a test case we have evaluated p(oq) for bee
iron using Manning’s potential as given by
Wood'?!3 which was made ferromagnetic by ap-
plying a simple rigid Stoner shift. In Figs.

1(a)— 1(c) we compare our results with the results
of an ab initio KKR calculation done by Rabou.'
The overall structure is well reproduced and
Fermi-surface breaks are identical in position. By
construction, the correspondence at points of high
symmetry is exact. Exponentially growing errors
occur in those regions in reciprocal space, which
connect the domains of the separate interpolations.
By comparing the values of the matrix elements in
the 55 ab initio points used for the construction of
the model Hamiltonians® we find an average abso-
lute error in the matrix elements equal to 3% of
their maximum value. Locally in reciprocal space
this error can be larger, as is shown in Figs.
1(a)—1{c). Since the interpolated values oscillate
around the ab initio values, integration in recipro-
cal space is favorable for reducing the errors. The
areas underneath the curves in Figs. 1(a)— 1(c) de-

FIG. 7. (a) Contours of the total, normalized, positron-annihilated momentum density, [N 'p(1,§(+N flp( 1,9)1/2,
in a (100) plane. First Brillouin zone is also shown. Subsequent contours differ by 0.010. (b) Three-dimensional plot of

(a).
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(a)

FIG. 8. (a) Contours of the spin difference of the normalized positron annihilation densities, N ;'p(1q)
—N flp( 1,q), in a (100) plane. First Brillouin zone is also shown. Subsequent contours differ by 0.010. Dashed con-
tours indicate negative values. (b) Similar to (a) in a (110) plane.

[100] 5
P (mrad)

FIG. 9. Contour diagram of the spin difference of the normalized positron annihilation densities as reconstructed
from the experiment (Ref. 9). Broken lines represent the Brillouin-zone boundaries.
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viate by 3% to 10%, where the relative error is
largest when the total area is small.

V. POSITRON ANNIHILATION PROFILES
FOR FERROMAGNETIC IRON

In this section we present theoretical results for
positron annihilation experiments in ferromagnetic
iron. The electronic structure of ferromagnetic
iron is derived from a parametrized model poten-
tial, which is constructed to yield accurate results
for de Haas—van Alphen technique measure-
ments.”® In the standard type of positron annihi-
lation experiments using long-slit detectors one
measures the twice-integrated photon momentum
distribution

N(o§,5)=N;" [dqplo@8(5G—s), (17
which is normalized by
N,= [d’qp(oq) . (18)

The crystal direction § coincides with the z axis of
the experimental apparatus, along which axis one
of the detectors can be moved. The annihilation
with the core electrons is neglected in the theoreti-
cal curves. Since core electrons are localized, their
contribution to the momentum distribution is long
range in reciprocal space and the addition of this
contribution will effectively lower the central part
of the theoretical curves. However, the effect of
the core levels on the normalized profiles is only
small, especially when one considers the differences
between the profiles.

Figure 2 shows the theoretical and experimental
results!® for the twice-integrated spectra for § near
a [100] direction. The theoretical calculations un-
derestimate the density for small values of ¢ and
hence the annihilation with the s-p —like electrons.
Due to the correlation between the electrons and
the positrons the electronic density in the intersti-
tial region near the positron is increased. Figure 3
shows the difference of the majority-spin and
minority-spin profiles for this direction. The
agreement between experiment and theory is good
and predicts an effective polarization of the posi-
tron of about 15%. Figure 4 gives the differences
of the profiles for two directions, N (o5},s)

— N (0%5,s), with §; near [211] and §, near [421].
Since these differences are about 1% of the total
signal, the inaccuracy of the matrix elements ob-
scures the relation between the experimental and
theoretical results. Also, the cancellation of errors

stemming from the connecting regions in recipro-
cal space is less effective when the profiles are tak-
en in different directions.

Once-integrated momentum distributions are
displayed in Figs. 5 and 6 for comparison with fu-
ture experiments. They are obtained from

N(0,3,0)=N;" [d’qp(0q)8(s-G—7)
X8(tg—1t), (19)

and are normalized because of (18). The peaks in
the (112) directions are related to the band struc-
ture near N, which has large s-p character near the
Fermi level. These features are possibly large
enough to be detectable in experiments using array
counters.

The normalized positron annihilation momen-
tum density N, 'p(0q) itself is shown in Figs. 7
and 8, while Fig. 9 gives the experimentally deter-
mined spin density.” The overall agreement is
good and the only large difference is found in the
negative peaks along the (110) directions. These
features cannot be resolved in the construction of
Fig. 9 from the experimental data because of their
localized character.

VI. CONCLUSIONS

_, In this paper we have shown that a generalized
k-P interpolation method can be utilized to extract
accurate wave functions in a fast, simple, and effi-
cient manner. The accuracy of the model wave
functions is 1 order of magnitude less than that of
the underlying eigenvalues. In the connecting re-
gions between the separate fits centered on dif-
ferent points of high symmetry the errors in the
wave functions are more pronounced than the er-
rors in the energy eigenvalues. The use of our gen-
eralized kP interpolation scheme enables the cal-
culation of large numbers of matrix elements of
complicated materials. Finally, we hope to have
stimulated the investigation of ferromagnetic iron
by means of two-dimensional positron annihilation
experiments.
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