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Intermediate-valence Tm: An exactly solvable impurity model
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We propose an exactly solvable model for valence fluctuations between two magnetic config-

urations. Most of the peculiar features of the magnetic properties of paramagnetic

intermediate-valence Tm compounds are well described by the model. We calculate valence,

specific heat, static magnetic susceptibilities, magnetization, and magnetoresistivity. We also in-

clude the resulting dynamical magnetic susceptibility. The results are in good qualitative agree-

ment with experiment.

I. INTRODUCTION

The discovery that Tm in Tm Te could enter into a
valence-fluctuation regime under pressure' did not
raise great interest. This was, probably, not only be-
cause of the difficulties involved in high-pressure ex-
periments, but also because it was thought that the
properties of intermediate valence (IV) Tm ions
would be similar to those of the other, more accesi-
ble, IV rare earths. 2

Anomalies in the lattice parameter and in the mag-
netic susceptibility of single-crystal TmSe suggestive
of IV3 together with x-ray photon spectroscopy (XPS)
spectra, renewed interest in Tm chalcogenides and
similar compounds.

Experimental results showed that the magnetic
properties of IV Tm compounds were completely dif-
ferent from the other known IV rare earths (Ce, Yb,
Sm, Eu, for example).

In the following description of experimental results
of the paramagnetic phases of IV Tm compounds,
the first properties, (a) to (e), are common to all IV
systems; (f) to (h) are found only in IV Tm com-
pounds.

(a) XPS results4: The energy spectra of TmSe
clearly show the simultaneous presence of
Tm2+(4fl32F ) aIld Tm3+(4f123JJ )

(b) X-ray absorption: From the analysis of extend-
ed x-ray absorption spectra7 it is concluded that all Tm
sites in TmSe are identical and that the valence of
Tm ions is 2.S, in agreement with estimations from
the static susceptibilities.

(c) Lattice parameter: Stoichiometric TmSe has a
lattice constant5 ~ of 5.71 A, indicative of a valence
of 2.8. The same value is obtained for Tm in

Tm„Yi „Se.
(d) Specific heat: A large linear term y —350 mJ/

mole K characterizes the paramagnetic regime.
(e} Compressibility: The compressibility of TmSe

is about twice that of SmS indicating also intermediate
valence. 9

(f) Magnetic susceptibility: The magnetic suscepti-
bility of paramagnetic TmSe and of Tm„Y~ Se in-

creases with decreasing temperatures while in other
IV systems it saturates at low temperatures. A large
Van Vleck term is found in Tm~ „Y„Se.' In TmSe,
antiferromagnetic order sets in at T -3.5 K. No
other IV system orders magnetically.

(g) Dynamical magnetic susceptibility: The dynam-
ical susceptibility of IV Tm is again completely dif-
ferent from that obtained for other IV systems. "'
At high temperatures it consists of a Lorentzian
quasielastic peak (width, —10 meV), which, for tem-
peratures below 100 K, splits into an inelastic peak
centered at about 10 meV and an elastic peak of
width of the order of k~T.

(h) Quite anomalous magnetic field dependences
are also found in the specific heat and in the electri-
cal resistivity' of TmSe.

Among these properties, those connected to the
occupation of the 4f shell in Tm, (a) to (e), are quite
similar to those found in other IV compounds and
are quite compatible with a resonant level picture of
the 4f states'3 or an hybridized 4f band if intersite
correlations must be taken into account. It is in-

teresting to consider which of these effects is single
ion in origin and which result from the concentrated
system. In this paper we consider the single-ion ef-
fects and in a future paper the periodic system. The
magnetic behavior of IV Tm described in (f) and (h}
is hard to reconcile at first sight with a resonant level
picture, for the effect of magnetic field within such a
picture would be to displace different levels by p,8
and this is expected to be very small as compared
with any of the other parameters in this picture; 4,
the energy difference between the two configurations
or I, the width of the resonance. Thus, it would be
hard to understand why small magnetic fields modify
so radically the properties of the system.

To solve this paradox we will study a model that
can be solved exactly. This allows us to get rid of
complicated calculations or approximations. The
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model makes compatible a resonant level description
of the 4f spectral densities with high correlations with
the magnetic properties of Tm IV compounds.

The most important feature of the model is that it
describes valence fluctuations between two configura-
tions both of which are magnetic W. e believe that this
feature is a necessary condition to an appropriate
descriptions of IV Tm ions.

Since the aim of the present work is to elucidate
the physical processes that lead to the peculiar mag-
netic behavior of IV Tm systems, we do not try here
to give a quantitative theory of their properties. Con-
sequently, the model we propose is the simplest one
that will satisfy our aim.

In Sec. II we set up the model Hamiltonian. In
Sec. III we diagonalize it and calculate the partition
function. Section IV is devoted to obtaining the dif-
ferent physical properties predicted by the model and
Sec. V contain the discussion of results and con-
clusions.

The energies of the states I T ) and I ) ) are split by
an external magnetic field 8 according to

E~ =E —go8;E i
=E +go8

H& =E+I+ & (+ I +Eol0& &01+E-I —
& & I (6)

The energies are split by 8 according to

E+=(E+5) +p, t8

The hybridization Hamiltonian reads

H», = gv(l+&(T Ic„,+c„', I T) &+I

+
I
—

& ( l I ckl+ ck'l
I l & &

—I)

+ v'(lo&(T lc«+c'll T & &0I

+lo&((le.l+c'll g&&ol) . (g)

II. MODEL

Hband = Xako Ckocka
ko

(2)

The second term in Eq. (I) represents the spin-one-
half and spin-one configuration

04f ——Hip+ 0)
with

H~i2=Etl T & & T I+Ell l & & l I
(4)

The model is based on two basic assumptions:
(a) The peculiar magnetic properties of Tm IV ions

are determined by the availability of two magnetic
configurations and not by their detailed structure.
This allows us to model them in the simplest way:
the two magnetic configurations are represented by
spin-one states I + ), I0), and

I

—) and by spin-one-
half states

I T ) and I J, ). We will simplify them fur-
ther below in order to render the Hamiltonian exactly
solvable.

(b) We will study, in this paper, the one impurity
problem. All possible effects arising from Tm-Tm
correlations are then ignored. Many of the magnetic
properties of the paramagnetic phases of IV Tm com-
pounds are also found in dilute IV Tm alloys. '

The dynamic of the system is given by a Hamil-
tonian that hybridizes the two configurations through
the promotion of an electron from the spin-one con-
figuration to the conduction band leaving the 4f shell
in the spin-one-half configuration. The full Hamil-
tonian can be expressed as

Hband +04f +Hhyb

where, in the usual notation

Notice that operators of the type I
+ ) ( T I correspond

to creation of an electron in the 4f shell and conse-
quently they anticommute with Ck . %e have as-
sumed that the highest spin configuration contains
one electron more than the other contrary to the situ-
ation in Tm. However, the results are the same if
electrons are exchanged by holes for band as well as
local states. ' '

The bra and ket notation describes highly correlat-
ed states corresponding to two consecutive occupa-
tion numbers of the 4f shell. Thus, the Coulomb in-
teraction between localized electrons is implicitly as-
sumed to be infinite. "

The parameters in the Hamiltonian can be chosen
according to the point symmetry of the problem or to
simulate different situations.

(i) Eo = E +5 and V' = V/v 2 corresponds to the
rotationally invariant situation. This choice of param-
eters has been used by the present authors' to study
spin fluctuations in TmSe, and by Schlottmann and
Falicov, "in a periodic version, to study the zero
temperature phase diagram of TmSe. Anisotropy can
be included in the model by a different choice of ei-
ther E+b, Eo or Vor V'.

(ii) Letting 4 go to infinity projects out states
I
+ )

and
I

—) rendering the 4f' configuration nonmag-
netic and leads to a Hamiltonian formally equal to
the U infinite Anderson Hamiltonian. '

The alternative that we are going to use here, that
retains the most important feature for IV Tm, i.e.,
fluctuations between two magnetic configurations, is
to let Eo go to infinity (or similarly V'=0). The
motivation for this alternative is not based on physi-
cal grounds, but because of the fact that it renders
the Hamiltonian easily solvable.

Clearly, when Eo goes to infinity, state IO) can be
projected out of the subspace of interest and H~ is
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left,

H, =E,l+) &+ I+E-I —
& &

—
I

and its hermitian conjugates (anihilation) operators.
The equation

while Hh„b reduces to
[H rkt] ='ktrkt (13)

Hhyh Xv(l +) & 1 lckt+ckt I ] & &+I

+
I

—
& & [ I ckt+ ck'l l [ & &

—I)

Had we chosen V'=0, Hh„b mould look exactly as
in (10) and H~ would include the uncoupled state
10). Both possibilities lead to similar results. They
cut off spin-flip scattering which is mediated by state
10). However, as in (i) the ground state is still de-
generate' leading to the correct physics of valence
fluctuations between magnetic configurations.

(E+ Et)a—kt+ X Vkakkl=kktakt
k

~ka I)+&ka lkt &)E)a A,kt

(14)

(15)

From (14) and (15) we obtain the secular equation

~k'
e„t=E+ Et+ $—

t 6k)

Normalization requires

(16)

can be satisfied due to the particular structure of the
Hamiltonian and yields two coupled equations for the
coefficients a], ,a],k

III. DIAGONALIZATION AND
PARTITION FUNCTION

I~.ll'+ gl~kktl'=I . (17)

The Hamiltonian defined in Sec. II can be diago-
nalized by introducing the "creation" operators

r'I="tl+ & &] I

+ X~kktckl (11)& f I
+ I + ) &+ I) 1 I

mP (kkt —E++Et) +I' (18)

This allows to determine a],t, a&kt and e],I in terms
of the parameters of the Hamiltonian. The calcula-
tions are exactly the same as in Ref. 19 and yield,
for a constant density-of-band-states p

and

r'kt = ~ ktl
-

& & ] I

+ g'ksjkCkt ( I ] & & ] I
+

I

-
& &

-
I ) (12)

where I =m'pV.
Equivalent formulas hold for a&~ and ak], f.
The I & operators satisfy the following anticommu-

tation relations

I + & &+ I
+ It & & ] I

for ~ = ~' ] and

[rk, I'„, ,]+='
I
—) &

—I+ I [)& [ I for cr = cr'= j and &=it'

0 otherwise

Clearly,

[r„., r„, ,],=0 .

The fact that operators I do not satisfy fermion commutation relations is a consequence of the correlations
between the local states.

In terms of these operators the Hamiltonian is diagonal and reads

t

fr f+ X tc tc I+El (I t ) & [ I+I+& &+I)
k

+ X tr tr I+ X ktcklckt+Et (I l & & l I+ I
—

& &
—I) .

k
i

(20)

As can be seen from (20) the Hamiltonian
separates into two spinless, Anderson Hamiltonians.
However, they are mutually excluding as a conse-
quence of the highly correlated local states involved.

The eigenstates of the Hamiltonian are obtained by
repeated application of the creation operators on the

I

"vacuum" states I [) or I ] ). For example,

t t ty„=r„,,r„,t. . . r„„,c„,,c,,, c lit)

is an N +M particles eigenfunction of (20) with

(21)
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eigenvalue

Ejt(t+~ CX1t+ 6A' t+ + 6A'Nt+ ~k1~

+6k )+ ~ ~ ~ +6k (22)

Similar states can be built operating with I &~, Ckt
on

~ J ). In the absence of external magnetic fields,
the two sets of states form a doubly degenerate set.

Defining the zero of energy at E and taking the
Fermi energy equal to zero, the partition function can
be written as

Z=zt+Zl '

where

(23)

Inzl= pp, OH+2 Xln(1+e ")
k

Z =e Q(1+e " ) g(1+e "), (24)
JL k

o = t or J, P = (ks T) ', and we take for simplicity
&k~= &k.

The fact that the partition function (23) cannot be
expressed as a product of partition functions is again
a consequence of the correlations implicit in the
Hamiltonian.

To give an explicit and more transparent expres-
sion for Z, it is necessary to consider the spectrum of
eigenvalues ~& . Following Ref. 19 it is easy to
show from Eq. (16) that the eigenvalues e), t are shift-
ed from ek, to order 1/N, by

S„l= e&l
—ek = tan (r/5 p, B —ek) .—(25)1

7TP

Here p, = p, )
—p,o. To the same order in I/N we can

write

band (Zo) and an impurity partition function

Z Zo (est(s)+ear( s))— (29)

IV, PHYSICAL PROPERTIES

The different physical properties described by the
model Hamiltonian depend essentially on four param-
eters: b, and I, the energy and width of the resonant
level, and p,0 and p, 1 the magnetic moments associat-
ed to each configuration. For the following calcula-
tions it is convenient to introduce the average occu-
pation probability of each of the local states
P((i =+, —, t, or J). They are obtained from Z
through

1 BlnZP.=——
P BE;

A straightforward calculation using (16), (24), and
(29) then gives

(30)

where

e(a, r, T) = J d.f(.)—f&OO
1 I

OO ~ (.-a)'+r'
1 1 1 I= ———Im(l) —+ +I
2 m 2 2mT 2mT

(31)

In Sec. IV we will use this partition function to cal-
culate the different thermodynamical quantities corre-
sponding to the model Hamiltonian.

or

—X,.1
tan (r/4 —p,B —ek)

-1

k+ 1 KPO

(26)

Imp is the imaginary part of the digamma function.
Notice that 4 goes monotonically from 1 to 0 as 6

goes from —~ to ~, ' and that the P s satisfy the
following equalities. 'P++P +Pt+P~=1 and

z =zo

where

(27)
p~(a)

+ t p~(&) + cps(-&) (32)

z,',„,= g(1+e '")'
k

is the partition function corresponding to a free-
electron band, and

1f'(B) = — de f(e)tan '(I /LL —pB —e) + p()B
m ~-

(28)

Here f(e) =(1+e ~') is the Fermi function. Zt is
obtained by changing B by —B in (28).

The partition function factorizes then into a free

The resonant character of the model is reflected again
in Eq. (30): the average occupation of the local
states is given by an integral over occupied states of
their spectral densities which are proportional to a
Lorentzian function. The prefactor to the Lorentzian
in (30) (P++Pt) results from the highly correlated
character of the localized states and leads to the pecu-
liar magnetic properties resulting from the model.

In what follows we will calculate the different phys-
ical properties using p,o= (4.58/v 3)ps and
p, )

= (7.3/J3) p, s. These values are chosen such as to
reproduce the susceptibilities of Tm'+ and Tm'+ ions,
respectively.
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A. Valency

Intermediate valence of the 8 -E ions can be
detected through XPS intensities, lattice parameters,
x-ray absorption spectroscopy, Mossbauer isomer
shifts, etc. Often, the results do not show qualitative
agreement. For example, the valencies of Tm in
TmSe inferred from lattice constant and magnetic
susceptibility are 2.77 and 2.46, respectively.

If we identify i + ) and
i

—) states with the 4f"
configuration of Tm, the valence predicted by the
model is given by

0.5

E

v =2+P++P

which, according to (30) is for 8 =0:
(33)

100
T(K)

200

u =2 + $(5, I', T) (34) FIG. 1. Specific heat per Tm ion as a function of tem-
perature for 8 =0, I" =27 K, and 4 =80 K (k& =1).

Sw = p,B[1—2f (—2p, ,rrB) ]
t)$

(35)

The application of an external magnetic field favors
the highest p, configuration giving rise to a magneto-
dilation effect. The change in occupation can be cal-
culated from (32). For pB/I(( 1', we find that the
change in v can be written as

Using these expressions for the internal energy, we
derive the impurity contribution to the specific heat

9E+ i)E
C; s= (Pi+Pl) -+(P +Pl)

where

p,,„„=p, ,y(/J„I', T) + p, [1s—y(A, I,T)] . (36)

As will be seen below, this magnetodilatation effect is
connected with a Van Vleck term in the magnetic
susceptibility. Using our choice of parameters p, )0,
(35) would lead to a volume decrease with external
field. The T =0 valence change is given by

rSv=- p,8~ b2+r2

which, for 5 and I —10 eV leads to a very small
valence change at reasonable magnetic fields.

+, (P,+P,)(P +P,)(E, Z)' . -
T2 (39)

The first term depends weakly on 8, and is essen-
tially the contribution to the specific heat of a
resonant level. It gives rise to a linear temperature
dependence for T « 5, 1, and a Schottky-type peak
at T —(52+ I'2) t/~. The second term gives rise to a

Schottky anomaly at T —p.,ff8 and vanishes for 8 =0.
Figures 1 and 2 show the temperature dependence

of the specific heat for Tm ions for 5 =80 K and

B. Specific heat

The low-temperature specific heat of TmSe shows
again dual features; On one side a large linear term

7
—350 mJ/K2 indicates a high density-of-states

characteristic of resonant levels and on the other
side, a Schottky anomaly corresponding to level split-
ting in the presence of external fields (which degen-
erates into a discontinuity at the ordering temperatures).

The impurity internal energy derived from Z, can
be written in the form

0.5-

S, ,=(P,+Pt)h, +(P +P,)B (37)
0

0 5
T (K)

10 15

where

b+ = + peB +—'I d ef(s) e
I

(.-a+&8)'+r'
(38)

FIG. 2. Low-temperature specific heat per Tm ion, ~ and
I' as in Fig. 1, psB =2 K and pa = (4.58/J3) ps and

pt = (7.3/v 3)ps. Curve 1 is the total specific heat. Curve
2 corresponds to the field-independent term. The difference
fits a spin-one-half p, = pcff Schottky anomaly (kq =1).
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I =27 K. Figure 1 corresponds to the first term in

Eq. (39). We use ks = l. Figure 2 is the total low-

temperature specific heat for an external magnetic
field 8 = 2E/Il. s.

I

4 (K)

C. Static magnetic susceptibility

(40)

As in the specifc heat, we find dual features in Tm
intermediate valence compounds, a large Van Vleck-
like term characteristic of resonant levels on one side
and a Curie-like term on the other.

The susceptibility derived from (24) is

2

x= ~ y(a, r, T) .

0
E

E

0
300

t I

g (K)
-300

Clearly, the first term represents the Curie suscepti-
bility. The second term depends more weakly on
temperature and at low temperatures it is proportion-
al to the local density of states r/m(h'+ I'). The
change in valence Sv induced by a magnetic field is
proportional to this last term.

A plot of the inverse susceptibility as a function of
temperature is given in Fig. 3(a) for different values
of 5 and r =27 K. Figure 3(b) shows the variation
of p,,ff with temperature. It can be seen that curva-
ture in X

' appearing at low temperatures is due in

20

FIG. 4. Magnetic susceptibility as a function of 4 for dif-

ferent temperatures. Other parameters as in Fig. 3. Curve

1, T =4 K; curve 2, T = 7 K; curve 3, T = 10 K; curve 4,
T =15 K.

this model to the variation of JM,,ff with temperature
which in turn is due to temperature-induced valence
changes in the Tm ion.

In Fig. 4 we show the variation of the susceptibility
as a function of 4 for I" =27 K and different tem-
peratures.

At moderate magnetic fields, the magnetization as
a function of magnetic field at different temperatures
follow a spin- —, Brillouin law with p, = p,,ff.

D. Magnetoresistivity

O
E

(b)

A large magnetoresistance has been detected in
TmSe and in Tm„Y„~Se. ' This effect is contained
in the model presented here.

To calculate the magnetoresistance, we proceed as
follows: The scattering cross section for spin-up con-
duction electrons of energy ~~ is proportional to the
square of the sine of the phase S~t, which can be
identified with the quantity defined in Eq. (25).
Since the spin-up conduction electrons can only be
scattered by going into the

~ t ) states to produce

~
+ ) (or vice versa), we can write for the relaxation

time of the spin-up conduction electron at the Fermi
level

V 3—
[st(0) ) =const — (P++ P&)

1 I
m LE+I

Similarly,

[rt(0)] =const — (Pt+P )1 I"

m 6+I

(4l)

(42)

2
0

I I

50 T (K) 100

FIG. 3. (a) inverse susceptibility and (b) JM,eff as a func-

tion of temperature for different values of Ll. Other param-
eters as in Figs. 1 and 2. Curves 1, 4 =—80 K; curves 2,
b, =0; curves 3, b, = 80 K and curves 4, 4 =200 K.

The conductivity, then, is proportional to the inverse
of the occupation probabilities

o. =const +1

I,+I, I +I,
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Using (30) we obtain, for p,8/I" « I,

Mt ——I —2f(2p,,ff8)

Figure 5 shows the ratio R (8)/R (0) as a function of
8 for different temperatures.

I

I—
C/I

44k
sse

5

0 M A 6 NETIC F lELO (k0e) 25

FIG. 5. Normalized magnetoresistance R (N)/R (0) as a
function of external magnetic field 8 for different tempera-
tures. po, p, ~, I, and 6 as in the other figures.

E. Dynamical magnetic
susceptibility

The inelastic neutron scattering spectrum of TmSe
described in Sec. I, paragraph (g) is connected to the
Fourier transform of the local spin-correlation func-
tion G(t) = [Mz(t)Mz(0)]. The spin operator Mz
can be expressed in our notation as

Mz = vo(11) & t I

—
I l ) & l I)

R =o '=const(1 —M~') (44)

~here the main field dependence is contained in the
P&'s. By defining Mt = (P++Pt) —(P +Pl), we can
write

Here again it is possible to calculate exactly the
desired quantity G(cu). The detailed derivation of
M(co) will be presented in a future paper. We will

give here only the resulting expression

2

G(~) = p,,frg(cu) + —» coth Imp ——
~ + Re f ——

~
p 1 2r ~ 1 . 5 —~+ir 2r 1 . 5 —~+ir

. a+ir—
Q

——I
2 2' T

—(Ol ~—CO) (47)

O. 972 T=0 ~0 969 T =15

T =300

which is plotted as a function of co for 5 =80 K and
I' =27 K at different temperatures in Fig. 6.

As can be seen, G(ao) contains a broad Lorentzian
function at high temperatures that becomes a broad
inelastic peak at low temperatures. This feature is
the most peculiar behavior found in the neutron
spectra of TmSe. "' The width of the elastic peak at
finite temperature cannot be obtained from this
model, where spin-flip scattering arising from V' in
our Hamiltonian (8) is taken to be zero. Even con-
sidering this shortcoming, the model presented here
offers a simple explanation of the origin of the ine-
lastic peak and its evolution with temperature,
without having to invoke strange crystal fields that
disappear when the temperature is raised. A calcula-
tion of the charge dynamical susceptibility leads, in
this case, to exactly the same analytical dependence
as the spin dynamical susceptibility, in agreement
with the conclusion of Ref. 16.

100 w 200 (K) 0 & o o v 200 (t&) 3oo
V. DISCUSSION

FIG. 6. Fourier transform of the spin-spin correlation
function G(cu) as function of eo. Parameters as in Fig. 1.

We have shown that the peculiarities found in the
magnetic properties of Tm IV compounds can be ex-
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plained naturally by a simple model that describes
valence fluctuations between two magnetic configura-
tions.

In order to describe in a transparent way the physi-

cal origin of the dual (resonant and free-spin) charac-
teristics of systems that fluctuate between two mag-

netic configurations, we have made drastic simplifica-
tions in the description of the 4f shell electronic
structure. However, since our aim is to understand
the origin of the qualitative differences between the
properties of IV systems like TmSe and SmS for ex-
ample, this is not a serious shortcoming. The essen-
tial feature, i.e., that both configurations are magnet-
ic, is mantained.

The point is that for valence fluctuations between
two magnetic configurations, the ground state has to
be degenerate to give rise to a Curie-like susceptibili-

ty at low temperatures, and yet, the resonant charac-
ter of the local levels has to be retained to lead to a
large linear term in the specific heat, for example.
This is achieved in this model by considering highly

correlated ionic states which can hybridize through
promotion of an electron to a continuum of states.
By choosing V' =0 [Eq. (g)], we can write a Hamil-

tonian that separates into two exactly equal parts,
both resonant, correlated between themselves to mu-

tually exclude each other. The degeneracy occurs be-
cause the ground states of both of them have the
same energy.

Several aspects relevant to a quantitative theory of
IV Tm ions have been left out for the sake of clarity.
In our point of view the two most important are:

(a) The full degeneracy of the J= —, and J =61

ground-state configurations of Tm + and Tm', and its

lifting by crystal fields. '

(b) For TmSe or other concentrated compounds,
the periodicity effects leading to intersite correlations.

These effects are indeed important below the order-
ing temperature. Magnetic interactions arising from
the IV character of the Tm ions play a dominant role
in the ordered phases of TmSe." Gaps can open up
in the density of states and lead to insulating ground
states for stoichiometric TmSe.

Concerning point (a) we would like to remark that
even for our simple initial Hamiltonian with Vand V'

different from zero, it is possible to make a different
choice of parameters which can lead to a singlet

ground state. This is easy to see because by now tak-

ing Vinstead of V' equal to zero the Hamiltonian
reduces to a form equivalent to the U infinite Ander-
son Hamiltonian.

However, we have shown that even in the rotation-
ally invariant case V = J2 V' the ground state is de-

generate. ' In any case, this shows that unlike the
magnetic-nonmagnetic case, anisotropy can play an
important role here.

Concerning point (b), the model studied here can
be extended to consider a periodic lattice. Assuming
any ordered magnetic structure, the Hamiltonian can
again be solved exactly and it is possible to determine
the energetic stability of the given structure. This
will be the subject of a forthcoming paper.
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