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The double-Gaussian model, as recently introduced by Baker and Bishop, is studied in

the context of a lattice-dynamics Hamiltonian belonging to the familiar P class. Advan-

tage is taken of the partition-function factorability (into Ising and Gaussian components)

to place bounds on the Ising-class critical temperature for various lattice dimensions and

all degrees of displaciveness in the bare Hamiltonian. Further, a simple criterion for a
noncritical and nonuniversal crossover from order-disorder to Gaussian behavior is

evaluated in numerical detail. In one and two dimensions these critical and crossover

properties are compared with predictions based on real-space decimation renormal-

ization-group flows, as previously exploited in the P model by Beale et al. The double-

Gaussian model again introduces some unique analytical advantages.

I. INTRODUCTION

Structural phase transitions usually have the dis-
tinguishing feature that the order parameter
derives from niicroscopic degrees of freedom
which can take on continuous values (e.g., lattice-
ion displacements), in contrast to spin systems. If
one is unconcerned with any physics except the
critical behavior, then it is now well understood'
that microscopic details are in a sense secondary to
the universality class which dominates the critical
behavior. In fact, however, both real and comput-
er experiments examine properties of systems both
at and away from critical regions, and significant
qualitative changes are observed over the wider re-

gime. It is this broader perspective which has
motivated this and our related prior work. In
particular, we have previously found significant
qualitative (but noncritical) changes in the
statistical-mechanical character of the system, re-
moved from any critical behavior, which is well

determined by application of decimation
renormalization-group (RG) methods in lattice
space and examination of the resulting flow

maps.
Previously [Beale, Sarker, and Krumhansl2's

(BSK)] these questions were studied in the context
of the P model which is described in the static

limit by the lattice Hamiltonian

N
1

HIx-,. j= g V(x-,. )+—,C g (x; —x; )

V(x)($ )=—ziAx +—,Bx

(1.1a)

(1.1b)

1 x xu
PV(x) =—— —ln cosh

Here p=(ktt T) '. The parameters v and w will be
discussed in Secs. II and III. For v ~ w, V in (1.1c)
preserves a degenerate double-well structure. In
the context of lattice dynamics it has become cus-
tomary to refer to "displacive" and "order-
disorder" limits in the bare Hamiltonian (l.la).
These correspond, respectively, to shallow- and

(1.1c)

where jx; I are displacive coordinates, N is the

number of lattice sites, the sum over I i, j J is over
nearest-neighbor pairs, and the main feature of the
local potential V is that it possesses two degenerate
minima. A, 8, and C are positive constants. Re-
cently, though, the very useful observation has
been made [Baker and Bishop (BB)] that another
double-well model, the double-Gaussian weighting
of a spin system, is equivalent to a local potential
V in (1.1a) of the form
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deep-well limits in V compared to the strain ener-

gy; then x variations from site-to-site are, respec-
tively, small or large compared to a lattice spacing.
In (1.1b) for example, the limits are, respectively,
C »2 and C &&A. The choice (l.lc) leads to a
factorizable partition function —it can be expressed
exactly as the product of Ising- and Gaussian-
model partition functions. This notable fact
directly proves Ising-class universal critical proper-
ties. It also allows us to reexamine many questions
we studied numerically only for the P" model, '
and that is the purpose of the study we present here.

We find again the same important characteristic
features (but noncritical and nonuniversal) which
were found for the P model. Near the critical line
a double-well system, which will undergo a struc-
tural phase transition, falls into the Ising universal-

ity class. However, away from the critical line (far
away in 1D, less in 2D, and very near in 3D and
higher dimensions) there is, in addition, a clear
crossover from Ising behavior to an anharmonic
Gaussian behavior. [The crossover occurs closer to
T, as the displaciveness of the bare Hamiltonian
increases but, on universality grounds, the critical
behavior will ultimately always be "order-disorder"
("Ising" ) in character. ] This is seen now both
from flow maps in decimation RG and by deter-
mining the crossover from Ising to Gaussian dom-
ination in the factorized partition function of the
double-Gaussian model. Although not expressed
quantitatively for a specific dynamical quantity, '
we believe that this crossover signals a change
from significant short-range order in the form of
clusters (domains) to more random fluctuations of
a collection of highly anharmonic (effective) oscil-
lators.

Our RG procedure leads only to a quantitative
statement about the single-site-displacement
probability-distribution function, which as Bruce
has pointed out' (in the present context) is not
sufficient to determine critical behavior. This limi-
tation must be emphasized. To truly examine or-
dering structures in the critical region it is neces-

sary to study variables which embrace many sites;
the block-spin variable is such a quantity. ' For
TQT„ independent of displaciveness, the distribu-
tion of the block-spin variable tends to independent
Gaussians ' in the limit of the block size going to
infinity. For T g T, these Gaussians have zero
mean and for T& T, the mean is proportional to
the magnetization. Recently Bruce and Binder
have established the nature of the block-spin
probability-distribution function (pdf) at T, for the

double-mell potential and determined its universal
features. In dimension 1D the block pdf consists
of two 5-function peaks at +xo [well bottoms in

(1.1)]; in 2D the pdf is smeared but still double

peaked; but for 3D it is probably only singly
peaked (and indeed purely Gaussian for d & 4), al-

though an Ising-class phase transition is clearly oc-
curring.

Our results below are consistent with the above
picture, as follows: For both 1D (T, =0) and 2D
(T, =Tt„„s) we find a double-peaked single site-pdf,
not only near T„but in fact, for a significant re-

gion T, & T & T„, where T is the crossover tem-
perature. We reemphasize that in general, our
crossover condition is not expected to be universa.
From preliminary studies for d & 2, we conclude
that T„ is increasingly near to T, as one would ex-

pect from Bruce's and Binder' s' results.
The organization of the remainder of the paper

is as follows: In Sec. II we review the reduction
of the partition function for a double-Gaussian po-
tential to a Gaussian and an Ising factor. In Sec.
III we first parametrize the double Gaussian to
have the same limiting form as we used in the P
model; the two important parameters are the well

depth and either the position of the minima or the
curvature there. We then discuss critical and
crossover conditions for the double-Gaussian

model; in particular, we obtain limiting behaviors
analytically for the displacive (shallow-well) and
order-disorder (deep-well) limits. The crossover re-

gion is discussed. in the context of equal total in-

teraction strengths in the partition function. In
Sec. IV we carry out the decimation RG. '

Delightfully, in 1D this procedure can be carried

through analytically for the double-Gaussian

model; in 2D the procedure of Wilson and of
Casher and Schwartz was used. The RG flow pat-
terns are presented. We are left with one puzzle:
In lD the equal-strength criterion in Sec. III gives
a dependence of the crossover line on temperature
in the displacive limit which does not agree with

the decimation RG result. The latter, however, is
justifiable on physical grounds in terms of the den-

sity of domain boundaries and has been found by a
number of authors. " We suspect this disagree-
ment to be an artifact, but as yet have not been

able to explain it. However, for 2D both ap-
proaches predict the same form of logarithmic
dependence in the displacive limit, and for d ~ 2
the equal-strength criterion yields very plausible re-
sults for both the crossover and critical tempera-
tures.
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II. SEPARATION OF THE PARTITION PUNCrION

26

In this section we give the main details of the partition-function decomposition reported by BB for the
double-Gaussian model. For generality we present the derivation in the form of a conventional continuous-

spin model with spin-weight distribution

2 2

p(x}=-(2mo } exp — +exp
1 z ]yg (x —v} (x +v}
2 2w 2N

2 2 1

=(2nw ) '~ exp( ——,v /w )exp( ,—x —/w )cosh(xv/w ) . (2.1)

Note that p(x) approaches a pure (double 5 function) Ising distribution as the parameter w-+0 and a pure
(single peaked} Gaussian one as v-+0. App1ications in the spin context are, in fact, of interest in their own
right in view of recent high-temperature series analyses, "which attempt to clarify critical properties. We
will not comment on those further here except to note (i) that the decomposition we show below should be a
useful check on series results, and (ii) the decomposition holds generally for arbitrary spin couplings, includ-
ing anisotropic and/or long-range interactions, etc. For the purpose of the application described in Sec. I,
we will present the derivation here for the case of nearest-neighbor, isotropic spin coupling. The partition
function is

Z=(2na } ~ exp( ——,¹ /w ) J . . I gdx-, exp

2
1

u ~x-. x-. -—tx'-. ——+5 i
(s)

Ux ~

X cosh
'

exp(Hx -, )
~ W
1

(2 2)

Here N is the number of lattice sites, I 5 I is half the set of nearest neighbors, and we have included a mag-
netic field (H) term for generality.

The basis of our separation, as for the familiar pure Ising limit w~0, is to use the simple identity

2cosha= g ew', (2 3)

which in (2.2) yields

Z=I —,(2mw ) '/ exp[ ——,(v/w) ]J

00 1gdx-, exp g u gx-, x-, s
—t+ x-,.

00 2wi i I 5I

r

U+ x p-+Hx -.
I 1 I (2.4}

We now introduce Fourier transform variables,
~ ~. .~—1/2~ 2@i q.j x

q

/2 &2ei q.j +
(2.5}

with q restricted to the first Brillouin zone of the reciprocal lattice. It follows from (2.5) that
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-2+i .8-2&q. S g g
i lsl (sl V

d
cos(2nq, ) z-z

&=1q

(2.6a)

(2.6b)

In {2,6b) we have specialized, for simplicity, to a hyper-simple-cubic-lattice of arbitrary dimension d. Equa-
tion (2.4) reduces to (it is straightforward to show that this is a canonical transformation) the following:

Z=[—,(2irw ) '/ exp( ——u /w )]

d
1f .|t gdz exp —g —u gcos2mq, + —,w +t

~=+1I q v=1

2

2 q 2
v +—N H5

l U

q, 0
Z + d

—,'w '+t —u g cos2nq,

v -+N H5-1 v

4 W2 q, O

d

, w —+t—u g cos2nq,

(2.7)

Integrating over z~ and reexpanding v - in terms of Ip -,. j, we find from (2.7) the central result

Z = ( —,exp[ ——,(u lw)i] (~ZoZr,
where

PfH2w2 d

Zo ——exp i ——, gin 1+2w t —u g cos2nq,
2 1 2

1+2iu (t —du)

(2.8a)

(2.8b)

1 ui i+ exp[2niq ( j —i )]ZI= exP —
2 P-, P-, N

1+2w' t —u gcos2uq,

Hv gp-,.

+ ~
. (2.8c)

1+2w {t—du}

We see in (2.8) that the double-Gaussian partition
function has been factored into (i} the partition
function Zo of a conventional Gaussian model' '
with magnetic field Hw and reduced temperature
gT —=uw (1 + 2wzt) ', and (ii) the partition func-
tion Zr of an Ising model with spin interaction
range depending on w. Specifically, the p, -, p- in-

teraction coefficient, J{i —j ), is generally long
ranged but decays exponentially at large distances
according to a familiar nearest-neighbor lattice
Green's function. It is not hard to show that this
Green's function [see {2.$c)] arises from

J(
~

i —
g ~

)- —— (uw ) 'e+"/
2 w

(e —i )/2

Xexp[ —
~

i —j ((uw ) '/]. (2.9)

t

Results (2.9) are valid in all d & 1 for separations
much larger than a lattice spacing; in 1D (an ex-
actly soluble model' ) the decay is a pure exponen-
tial at all nonzero separations. In writing {2.9) we
have also specialized to t =ud for use in the appli-
cation described in Sec. I (see Sec. III). It should
be clear that the separation in (2.8) extends, with
simple modifications, to many other thermo-
dynamic quantities.

On the basis of (2.8) we deduce that there will,
in general, be two critical points for fixed w: A
Gaussian critical point, To(w), determined from
2dw2u =1+2w t, and an Ising-class critical point,
T,(w). We estimate T, (w) in Sec. III. Here it is
appropriate only to note that the method used in
Sec. III leads to the general conclusion T,{w)
& To(w) for all w except the Gaussian limit v=0,
where T, =Tg. For the application described in
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Sec. I the Gaussian critical temperature is precisely
T, =—0 in view of the parametrization (3.3), and
therefore is not germane to this study. The Ising
critical behavior is in this way established for all

v, w of physical interest and applies whether the in-

itial distribution p(x) is singly (U & w) or doubly
(U & w) peaked. In the limit w —+ oo, the Ising in-

teraction range diverges and mean-field theory is
expected to apply, a fact which we use in Sec. III.
The actual forms of T, (w) and TG(w) depend sens-

itively on the particular application, so we now
turn to the specific case which we wish to analyze
here.

P '=ksT=B 'C (1+8)K

8=2/C .

This parametrization preserves a double-well struc-
ture for all T g oo and 8 p O: 8=0 corresponds
to the displacive limit and 8= 00 the pure Ising
limit. To reproduce this feature in (3.1), there are
several possibilities for v and w. The most conven-
tional choices are to match the P -well minima lo-
cation (x =+[8/(I+8)]'~ ) and depth
( —,[Ke /(1+8)]) [(3.3a) and (3.3b)], or local cur-
vature at the minima (2K8) (3.3c). Comparing
with (3.1) we find that these features lead, respec-
tively, to the conditions

III. $ PARAMETRIZATION: CRITICAL
AND CROSSOVER LINES

1/2
v 8=v tanh

w' 1+8 (3.3a)

In the context of the lattice Hamiltonian (1.1) we
see that our double-Gaussian model (2.1) corre-
sponds to a local potential [see (1.1c)]

r

PV(x) =—— —ln cosh . (3.1)
1 x - xv

2 w w

v = 1 —exp
8 8, 1

w +—K8=
1+8 1+8 2

(3;3b)

The temperature dependence introduced in (3.1)
has some specific consequences with regard to the
form of TG and T, (below) and deductions also de-

pend very sensitively on the cho1ce of v and w 1n

(3.1). To be precise, we wish to compare as closely
as possible with the P model, as parametrized in
Refs. 2 and 3, viz. local potential

PV(x) = ——,Eex + —,K(1+8)x

where

2 2 2g8w4+ 1+8 (3.3c)

We note in passing that the necessary and suffi-
cient condition for (3.1) to have a double-well
structure is v ~ w.

In general, we have solved (3.3a) and (3.3b) or
(3.3c) for U and w numerically. However, it is in-
structive to determine several limiting behaviors
analytically. This requires careful and consistent
expansion of Eqs. (3.3). The relevant results are as
follows:

(0 /w)2- = I+(-,'K)'"8 as e O,

-(3K)-'"+—„(3K)'"8 .s e O,

= (3K) ' ——„(3K)' 8 as 8 0,
1/2

as 8—+ (x)

(3.4a)

(3.4b)

(3.4c)

(3.4d)

(U lw)'

=(Ke/2) '~' as e~ao,
= 1+(—,K)' 8(1+8) ' as E 0,

= [3K(1+8)] '~'[I+ —,( —,K)'~'8(1+8)—'~'] as K 0,
= [3K(1+8)] '"[1+0(8')] as K~O.

(3.4e)

(3.4f)

(3.4g)

(3 4h)

The results (3.4) are given for the case (3.3a) solved with (3.3b) (which will also be used in Sec:. Ip). If (3.3c)
is used instead of (3.3b), there are changes in some coefficients but not powers of 8 or K. To complete the
mapping of our general double-Gaussian model (2.1) onto the P model [(1.1) and (3.2)], we identify
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u =K, t=dK,

so that the partition function becomes

Z=I —,exp[ —
2 (0/w) ]] ZGZt,

d

ZG ——exp , NH—io , g——ln 1+2Kw d —g cos(2nq, )

q v=1

2

Zt —— g exp —— g p, p; N
1 v i exp[2n.iq. ( j —i )]

1+2Kw d —g c os 2nq, .
1

+HU g p-,.

(3.5)

(3.6a)

(3.6b)

(3.6c)

We remark that the restriction t =du, Eq. (3.5), is relevant to the lattice model (1.1) which we are consider-

ing, but is of course not necessary in general. If, however, t &du then the range of w s in (2.1) for which
the model (2.2} is defined is restricted, '" and if t & du, then the Gaussian critical point is not as simple as we
find below.

We are now in a position to discuss the interaction strengths per spin ' for the separated Ising and
Gaussian components. (3.6b) and (3.6c). These will be denoted St and SG, respectively. St(8,K) will take a
critical value at the Ising critical line K,(8), and comparing SG and St is one plausible criterion for a non-
critical Ising-Gaussian crossover, which we wish to evaluate quantitatively (other criteria are being studied).
The Gaussian strength So is well known. ' ' ' In the notation of (3.6b) this is

SG dKw (1+——2dKw ) (3.7)

Evaluation of St requires careful evaluation and subtraction of the self-interaction term. From (3.6c) we
find

St ———— [1—f»(2Kw') ],
2 N

(3.8a)

f»(a)=N 'g 1+a d —g cos(2nq, } (3.8b)

1r d
=(2n) f dq~

. . f dq» 1+a d —g cosq,
v=1

(3.8c)

=a ' f dy e «~ [e «Io(y)]», (3.8d)

with Io the modified Bessel function of zero order.
The parametrization (3.3) maps the line of

Gaussian critical points discussed in Sec. II to the
line K= cc (T=O). The Ising critical line remains
at positive T except for 8=0. Experience has
shown' that the ferromagnetic Ising-model critical
point E,(8) is determined by a critical value of the
total strength St', the value of which is only weakly
dependent on lattice structure, range of interaction,
etc. In the Ising limit m~0, e~ oo,
SJ(square) =0.881 37 and SJ(cubic) =0.665 07. In
the opposite limit 6~0, E~ ao, the Ising com-
ponent interaction range becomes infinite [cf. (2.9)
and (3.3)], and the mean-field critical strength'
should apply there (all d): St'(mean field) =—,. In

d= 1, Sq ——00 so that E,= Do. These various criti-
cal strengths will bound St'(8) for arbitrary 8,
since the Ising interaction in our model decays ex-
ponentially with distance for large separations.
Based on this reasoning, it is possible to calculate
upper and lower bounds on the critical coupling
E,(8). The upper bound K, (8) is given by

St'(Ising hmit) =—— [1—f»(2K, w )],2 N

(3.9)

where U and w are determined from Eqs. (3.3}as
before. The lower bound K, (8) is given by
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Sr'(mean field) = —,

'2

[1—f~(2E, rc )] . (3.10)
2 N

The two curves E, (6) and E, (8) are shown in
Fig. 1 for 2D along with three critical couplings

E,(8) determined from molecular-dynamics simu-
lations on the P model. Note that these points lie
between the upper and lower bounds as expected.
(Results for the double-Gaussian model will be
very similar to those for P with the parametriza-
tion adopted here, and identically so in the Ising
limit. 's)

It is possible to calculate E,(8) exactly in the
Ising and displacive limits based on one plausible
assumption: that the critical value of the total
strength Sz is slowly varying near the two limits.
Considering first the Ising hmit (8~ ao,Eic ~0)
we find that equation (3.8d) expands as

f~(a)=1 da+d(d—+ —,)a (3.11)

If Sr' ——Sf(ising limit) + 0 (a ), then we find the
following with the use of Eqs. (3.4d) and (3.4e):

Sr' ———— [2Ew 4E rc d(—d+ —,)] (3.12a)

!.0 ~
O~

0

I
t

t

(I+8) 0.5—

0.0
0.5

(I+ K) i

1.0

FIG. 1. Critical temperature E,(e) as a function of
the displaciveness e for the double-Gaussian model in
two dimensions: K, (———) and K, ( ) are upper
and lower bounds to E, [see Sec. III. As described
there, we expect that E,(e) asymptotically approaches
E, as 8~0 and E, as 8~ao j; E,(8) deduced from
decimation RG methods for the P~ model (Burkhardt
and Kinzel, Ref. 15) is shown for comparison (—), to-
gether with available molecular-dynamics data (k).

=dE, 1 — +O(8 )e
which finally leads to

E,(8)=E,( ) 1+ "+'

(3.12b)

(3.13)

Then with the use of Eqs. (3.3a}—(3.3c) [whose use
is justified by the final forms (3.17) and (3.19)
below] we get

( —,E, )'i 8=f (2( —,E, )' ) . (3.15)

Now we need an asymptotic expansion of f~(a) for
large a (8~0+~ ao. E,~ oo as 8~0, see
below). For 1D, fi(a)=(1+2a) ' . For d &2,

(3.14}

for 8»1 and where X,( Do ) =0.4407 in 2D and
0.2217 in 3D. %e see that the well-known'
nearest-neighbor Ising critical temperature is
correctly reproduced. Furthermore, the order of
corrections (8 ') as 8 decreases from ac are con-
sistent with alternative calculations. ' In addi-
tion, in this "strong-coupling" regime our result
(3.6c) agrees with previous findings' in P models
that in that regime the Ising and Gaussian com-
ponents separate and that the interaction range of
the relevant Ising model increases as 9 decreases
from oo.

Near the displacive limit (6« 1) the Ising in-

teraction is very long ranged near criticality [see
Eq. (2.9)], so we expect SJ—+SJ(mean field). As-
suming' this we find

r 2

[1—fg(2Eur }].1 1 u

2 2 N

fg(a)=2a 'a(d)+O(a '),
a(d)= —, f dy[e i'Iu(y)]~.

Equation (3.16) implies in (3.15)

E,8=3a(d), 6«1, d &2

(3.16)

(3.17)

where C=2.772 59. The critical line is then given
by

K,e=lnK, +5.832 86 . (3.19)

where numerical estimates give a (3)=0.2527,
a(4) =0.1549, a(6) =0.0931, etc. The form (3.17)
agrees with well-established results' for d )2.

For two dimensions we find' (combining
asymptotic and numerical estimates) the following:

fi(a) =(2@a) '(lna+C)+O(a ), (3.18)
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1 1 1
SG ———1 — —K

2 2d 3
8—+0, E—+ oo.

(3.20)

Equating (3.20) with St [Eq. (3.8)] gives

E 8=3a(d)—,d )2, 8 03
2d'

3
8 sc„8=1~„, d=2, e 0.

(3.21a)

(3.21b)

Equations (3.21a) and (3.21b) should be compared
with (3.17) and (3.19). Notice that E„&E,and

E,/E„~ 1+2da (d)~2 as d~ oo. For 1D,
fi(a) can be evaluated exactly as

fi (a)=(1+2a) (3.22)

Equating (3.20) and (3.8b) with the use of (3.22) we
obtain

E„6"'=3(2)-'", d =1, 6-0. (3.23)

The result for E„(d=1) is surprising and possibly
disturbing since it differs from scaling argu-
ments' ' for E„(d=1,8~0) based on the single-

particle probability-distribution function or the
d = 1 kink energy Ett. From (3.1) and (3.4) we find

For sufficiently small 6, the critical line has the
logarithmic correction displayed by Eq. (3.19}.
However, note that the logarithmic term is not im-
portant until lnK, & 6, i.e., for 8 &0.0035,
E, & 400. This is a very low temperature and so
the logarithmic correction might be quite difficult
to distinguish in a molecular-dynamics simulation:
Thus far, such small values have not been investi-
gated. The logarithmic behavior has been predict-
ed before' ' but the sizable constant term in Eq.
(3.19b) has not previously been noticed. The ap-
proximate RG scheme used in Sec. IV also correct-
ly predicts the logarithmic behavior, but not the
value of the constant term in (3.19b) or the coeffi-
cient of E,6.

We now leave the discussion of critical behavior
and turn to the notion of an Ising-Gaussian non-
critical crossover. As discussed in Sec. I, we em-
phasize that a strict or universal criterion is hard
to imagine. However, the criterion determined
from lattice decimation RG flow ' (Sec. IV) is evi-

dently a strength criterion and it seems sensible as
a first approach to compare this with the SG ——SI
line, E,(8). For 8~0, E„~oo, the situation is
quite similar to the previous discussion of E,(8),
except that we need the expansion of So. The use
of (3.4c) in (3.7) gives

—1/2

easily that Ex ~6, as 8~0 (displacive limit), . in
agreement with universal results for this class of
potentials and the RG results deduced in Sec. IV.
This discrepancy is as yet unresolved and may in-
dicate a qualitative difference between "equal in-
teraction strength" and other criteria; however, we
are studying the partition function for the 1D
double-Gaussian model to see if any E8 ~2

behavior can be identified.
The high-temperature (E„—+0) limit of the

equal-strength line is also interesting and must be
handled with care. From the use of (3.4d) and
(3.4e) in (3.7) and (3.8), we might conclude that
E„e~—, as 8~ 00. However, this line is evident-

ly outside the range of validity of (3.4e} (except at
the point E=0,8= ao,' see below). In fact, we
must consider the behaviors of v and w for E~O
but arbitrary 8, i.e., results (3Af) —(3.4h}. These
give

St~—— (2dEw )[1—(1+2d)Ew + . ],
2 N

Sa~dEw (1 2dEw + — ),
(3.24a)

(3.24b)

which, equating and using (3.4fl and (3.4h), yields

(for all d)

sc„=o, all 8 (3.25a)

OI"

8=1 as E„—+0. (3.25b)

The equal-strength crossover line, therefore, Aows
from 8=0 to a finite value (unity here for all d) as
T changes from 0 to Oo. This is in qualitative ac-
cord with the decimation RG results described in
the following section and elsewhere. However, in
view of the differences expected between decima-
tion and block RG flows (see Secs I and V), it is
interesting to see from Eqs. (3.25a) and (3.25b) that
8=1,E =0 is actually a bifurcation point for
equal-strength lines and that flow is quite undeter-
mined at infinite temperature. [The location 8=1
of the bifurcation point is independent of whether
(3.3a) is solved with (3.3b) or (3.3c).] This undeter-
minedness partly reconciles the known block-
spin-high-T fixed-point location (T = 0o ) with de-
cimation flow.

Figure 1 compares the results concluded in this
section for E,(8) with various other predictions
(see Sec. IV). In Fig. 2 we have compared the
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l.o

0.8

the P model is that Eq. (4.2} can be integrated ex-
actly:

G(x,y) = G(0,0)——,(J + —,w )(x +y )

[i+e] '

0.6
+ 2 n cosh + 2 ln cosh

1 XV yu

w W

0g I I

0.0
I I

0.5
(I+ K)

I.O

FIG. 2. Supercritical crossover temperatures E„(e)
deduced from the equal-interaction-strength criterion
(Sec. III) for dimensions d =1,2, 3,4, 6. where

+ —,K w (1+2Ew ) '(x+y)

Eu (x +y)+ln cosh
1+2gw2

' 1/2

(4.3)

equal-strength crossover lines E„(e) (evaluated nu-

merically) for d =1,2,3,4,6.

IV. DECIMATION RENORMALIZATION
GROUP

A decimation RG transformation identical to
the type used by BSK (Ref. 2) and by Beale on
the P model can be applied to the Gaussian
model. In d dimensions, the canonical configura-
tional partition function is defined by

=f dx, f dxN ff exp[6(x-, ,x-}],

G(0,0)= ln
1+2w2E

V2
+

2w (1+2w E)

G can then be decomposed into renormalized site
potentials and nearest-neighbor couplings:

2 2

Ui(x) = E+—,w
2Ew 2X

1+2EW

Xu—ln cosh
W

where
—1

G(x,y)= [U, (x)+ Ui(y)] —U2(x,y),

(4.1a)
2EVX—ln cosh

1+2EW
(4.4a)

1 x XV
Ui(x) =—— —ln cosh

2 w W
I

U2(x,y) = —,K(x —y)2 .

(4.1b}

(4.1c}

(4.1d)

Ew
Uz(x, y}= (x —y)

1+2gw2

Eu (x +y)—ln cosh
1+2SCW'

This partition function has been evaluated in Secs.
11 and 111. Z~ factorizes into a Gaussian-model
partition function and the partition function of an
Ising model with exponentially decaying interac-
tions. In one dimension the RG transformation
consists of generating a renormalized coupling
G(x,y) between the field variables of one sublattice
by integrating over the variables at every site of the
other sublattice. ' This rescales lengths on the lat-
tice by a factor b =2:

e '"'"'=f dt exp[6(x, t)+G(ty)] . (4.2)

The advantage of the double-Gaussian model over

1 2EVX+ —, ln cosh
1+2EW

1+ —, ln cosh
2Euy

1+2Ew2
(4.4b)

A similar procedure can be applied in 20 with a
scale change of b =~2. If we follow the usual
real-space RG methods and truncate the resulting
interactions to single-site and nearest-neighbor site
potentials, we obtain the following for the renor-
malization potentials:
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Ui(x) = 2K+ —,w — x2
1+4EW

xv—ln cosh
W

4Evx—ln cosh
1+2EW

(4.5a}

—Ew
U2(x,y)=, (x —y)

1+4EW
~'

2Ev (x +y)—
4 lncosh

1+4Ew

3 4Evx+ s lncos
1+4EW

3+ —, ln cosh
4Evy

1+4EW
(4.5b)

The RG procedure then consists of the following
steps:

(1) Use Eqs. (3.3a} and (3.3b) to determine v and
w from E and e.

(2) Insert these values into Eq. (4.5a) or (4.5b) to
determine the shape of the renormalized site poten-
tial Ui(x). Find out the value xp where Ui has its
minimum.

(3) If xp ——0, the renormalized potential is of
Gaussian type, i.e., U& has a single-well structure.
If xp+0, then determine the renormalized coupling
constants K and 8 from the equations

E„9 =const

in agreement with earlier results ' and in

(4.7)

point at (E =0,8= oo }. Points on the crossover
line flow to a fixed point at (E =0,6=2). As ex-

plained in BSK, it is plausible that the crossover
line corresponds to the region where the system
crosses over from a phonon-dominated region to a
domain-wall dominated region. In the Ising region
the predominant excitation mode is the formation
of domain walls between oppositely ordered re-
gions. This crossover should be accompanied by
the appearance of a central peak (at co=0) in the
dynamic-response function S(q,co), although mi-

croscopic connections to dynamic quantities have
not yet been made. However, there seem to be de-
finite limitations to the kink-„phonon phenomenolo-

gy in d & 2. The kink-phonon phenomenology for
the central peak in S(q, co) depends crucially on the
appearance of finite clusters of displacements with
the same sign. Such clustering occurs in one and
two dimensions so the phenomenology is reason-
able in low dimensions. However, for dimensional-
ity d & 2 the block-probability-distribution function
is singly peaked for all T) T, . Presumably for
topological reasons, the required clustering does
not occur and the kink-phonon phenomenology is
questionable at best. This picture of the break-
down of the kink-phonon phenomenology is sup-
ported by a recent droplet theory calculation in
1+E' dlmensjons.

The asymptotic form of the crossover line

E„(8)near 6=0 in one dimension is found to be

=—Ui(xp),
4(1+8)
2E9 = Ug(xp, —xp) .
1+e

(4.6a)

(4.6b)

These three steps must be done numerically for
most of the (E,8) parameter space.

This procedure gives the Nelson and Fisher'
(1D) or the Casher and Schwarz9 (2D) values for
the renormalized coupling constants in the Ising
limit. A RG flow pattern for E and 8 can be
developed by iterating the transformation. E and
6 can be fed back into step (1) of the RG pro-
cedure to give scale changes of b,b,b, . . . . Fig-
ure 3 shows the phase diagram for the double-

Gaussian model in 1D.
Points in the Gaussian region flow to a Gaus-

sian-type high-temperature fixed point under the
RG transformation. Points in the disordered Ising
region flow to the Ising high-temperature fixed

IOi & ~ I

d= I

K, (e)

I
i

) I

(I+e) 0.5—

0.0
0.5

(I+K) l

I.O

FIG. 3. Crossover temperature K„(e) in one dimen-
sion for the double-Gaussian model deduced from de-
cimation RG flows (See Sec. IV).
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disagreement with the crossover line derived from
the Gaussian-Ising equal-strength criterion [see Eq.
(3.17) and subsequent discussion].

Near the Ising limit (8—+ oo ) the RG transfor-
mation takes the form

E= , ln c—osh(2E)+
Xe==e+. . .
K

(4.8a)

(4.8b)

Equation (4.8a} is the exact 1D transformation for
the Ising model ' with b =2. Note that E &E for
all E so 8 &8. Therefore, all points near enough
to the Ising limit (8~ 00 } flow to the Ising limit
and infinite temperature.

Figure 4 shows the phase diagram of the 2D
double-Gaussian model. Near the Ising limit the
RG transformation has the form

3E= —, ln cosh(4E) +
K8 6+ 0 0 ~

K

(4.9a)

(4.9b)

Equation (4.9a) is exactly the transformation de-

rived by Casher and Schwartz for the Ising model.
There is a critical fixed point at (E,=0.507,
8= ao). The line E,(8) is the critical line for this
model. Points on this line flow into the critical
fixed point but with the marginal nature displayed

by Eq. (4.9b). Points with E &E,(8) and suffi-

ciently large 8 flow to the Ising limit and infinite

temperture because K &K.
Since points on the critical line flow into the Is-

1.0

(~+8) '0.S

0.0
0.5 l.o

((+K)-'
FIG. 4. Critical and crossover temperatures E,(e)

and E„(e),respectively, for the double-Gaussian model
in tue dimensions deduced from decimation RG flows.
(See Sec. IV.) The expected subcritical crossover tem-
perature (Ref. 21) is not shown.

ing critical fixed point, the critical behavior of the
system is Ising-type. The critical exponents are,
therefore, expected to be the usual Ising exponents
in agreement with the Ising nature of the transition
derived in Sec. II. At large 6 the critical line has
the form

E,(8)=E,( (4.10)

in agreement with Sec. III. The RG calculation
gives a critical line that is fitted well by a function
of the form

K,e=Clm, , (4.11)

K„e=C'lm, , (4.12)

with C' a constant. According to an argument in
BSK (Ref. 2), we expect that as E is increased at
fixed 8 a central peak in S(q,co) first appears near
E=E (8).

So, in 2D as E is increased, at fixed and suffi-
ciently small e, the system shows at least three
types of behavior. At small E the excitations are
primarily large-amplitude phononlike oscillations.
The particles frequently flip from one side of the
double well to the other. There is almost no local
ordering. For K, &K &K„, the system is locally
ordered and the dominant excitations are domain
walls between oppositely ordered domains. The lo-
cal structure is of Ising type but with some phonon
motion superimposed. Near the critical coupling,
long-range ordering sets in, and an Ising-type con-
tinuous phase transition occurs. For E &K, the
system is in an Ising-type ordered phase.

To be complete one should compare the decima-
tion RG scheme used here with the block-spin
RG's used on models of this general type. Block-
spin RG's are universal for all models in a given
universality class. The fixed points of decimation
RG's are not universal because even after most of
the ordering coordinates have been integrated over,
one is still left with single sites of the original lat-
tice. Therefore, the fixed-point potential of a de-

for 8«1. The constant C, however, seems to be
in disagreement with Eq. (3.19) by a factor of
about 10 and the additional constant term is not
present.

The d =2 double-Gaussian model exhibits a
crossover line E„(8)identical in nature to the
crossover line in the 1D case. The crossover line
divides the disordered region above the critical line
into a domain-wall-dominated Ising-type region
and a phonon-dominated Gaussian-type region.
For small 8, the crossover line E„(8)obeys
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cimation RG will depend sensitively on the precise
model in the universality class which is chosen.
Even for a given model there is a spectrum of
high-temperature fixed points which depend on the
parameter (K,e, etc.) chosen at the beginning.
The infinite-temperature fixed point of a block-
spin RG is, however, always a Gaussian model.
Nevertheless, decimation schemes can give univer-
sal quantities such as critical exponents correctly
and can be a sensitive probe of the local nonuniver-
sal behavior of the chosen system. ¹tall interest
ing physical quantities are uniuersal.

V. CONCLUSION

We have presented two alternative ways of inves-

tigating the crossover and critical behavior of a
displacive-phase-transition model in the Ising
universality class. The first method (Secs. II and
III) is based on the exact factorization of the
double-Gaussian-model partition function into a
Gaussian model and an Ising model. From known
properties of the Ising model in several dimensions
we are able to calculate the location of the critical
line near the Ising limit and near the displacive
limit. An equal-strength criterion is then used to
locate the crossover region in the high-temperature
phase. This crossover is from a Gaussian-type re-

gion to an Ising-type region with stronger short-
range order from clusters. The second method
(Sec. IV) is based on a real-space decimation RG
transformation (whose flows are quite different
from those of the block-spin RG transformation ' )

on this same model in one and two dimensions.

We locate the critical and crossover lines by fol-
lowing the trajectories of the renormalized cou-
pling constants. Both calculations give the same
functional behavior for the critical and crossover
lines in two dimensions. In one dimension the two
methods give different functional behaviors for the
crossover line [E,(e)= eo in one dimension], with
the RG method giving the accepted form. Howev-

er, the qualitative structure of the phase diagram
given by the two methods is very similar in the
two dimensionalities in which the methods have
'oeen compared (1D and 2D). Other thermodynam-
ic properties are being studied, using the simplifi-
cations of the double-Gaussian model, and these

may shed further light on the phase-diagram
details ' —we anticipate well-defined but smooth
changes in the character of some thermodynamic
functions in the neighborhood of the equal-strength
crossover.

ACKNOWLEDGMENTS

Thanks are due to A. D. Bruce and M. Kac for
many very useful conversations. Two of us
(A.R.B. and K.F.) acknowledge the hospitality of
the Institute for Theoretical Physics, Santa Bar-
bara, California, where part of this work was un-
dertaken. The work at Los Alamos was supported

by the U.S. DOE Contract No. W-7405-ENG-36.
The work at Cornell was supported by the Nation-
al Science Foundation through Grant No. DMR-
80-20429 to the Laboratory of Atomic and Solid
State Physics at Cornell, No. DMR-79-24008 to
the Cornell Materials Science Center (MSC Report
No. 4672).

E.g., A. D. Bruce, Adv. Phys. 29, 111 (1980).
P. D. Beale, S. Sarker, and J. A. Krumhansl, Phys.

Rev. B 24, 266 (1981).
3P. D. Beale, Phys. Rev. B 24, 6711 (1981).
4G. A. Baker, Jr. and A. R. Bishop, J. Phys. A 15, L201

(1982).
5E.g., T. Schneider and E. Stoll, Phys. Rev. B 13, 1216

(1976), and in Ferroelectrics, edited by R. Blinc (Gor-
don and Breach, New York, 1980), Vol. 24, p. 67, and
references therein,

6A. D. Bruce, Proceedings of Fifth International Meeting
on Ferroelectricity, University Park, Pennsylvania,
1981, edited by G. R. Barsh (Gordon and Breach,
New York, 1981), Vol. 35, p. 43. See also A. D.
Bruce, T. Schneider, and E. Stoll, Phys. Rev. Lett.
43, 1284 (1979).

7G. A. Baker, Jr. and S. Krinsky, J. Math. Phys. 18,

590 (1977); C. M. Newman, Commun. Math. Phys.
74, 119 (1980)~

K. Binder (unpublished).
K. W. Wilson, Rev. Mod. Phys. 47., 773 (1975); A.

Casher and M. Schwartz, Phys. Rev. B 18, 3340
(1978); T. Niemeijer and J. M. J. van Leeuwen, in
Phase Transitions and Critical Phenomena, edited by
C. Domb and M. S. Green {Academic, New York,
1976), Vol. 6, p. 425

E.g. , A. D. Bruce and T. Schneider, Phys. Rev. B 16,
3991 (1977); A. R. Bishop, Physica 93A, 82 {1978).

' J. H. Chen, M. E. Fisher, and B. G. Nickel, Phys.
Rev. Lett. 48, 630 (1982); B. G. Nickel (private com-
munication).

' T. H. Berlin and M. Kac, Phys. Rev. 86, 821 (1952).
3G. A. Baker, Jr. Phys. Rev. : 122, 1477 (1961).

i4However, B. G. Nickel {private communications) has



2608 BAKER, BISHOP, FESSER, BEALE, AND KRUMHANSL

shown that an analytic continuation does exist in this
case.

I5E.g., C. Domb, in Phase Transitions and Critical Phe-
nomena, edited by C. Domb and M. S. Green
(Academic, New York, 1974), Vol. 3, p. 357.
T. W. Burkhardt and %'. Kinzel, Phys. Rev. 8 20,
4730, (1979).

~7E.g., D. Marchesin, J. Math. Phys. 20, 830 (1979); G.
Caginalp, Ann. Phys. (N.Y.) 124, 189 (1980).

I8In fact, in 2D the approach of SI to the mean-field
value is sufficiently slow that the constants in Eq.
(3.19) are modified (8m/3 is reduced), which is in ac-
cord with the rigorous results of Ref. 19. For d & 2,
the corrections to S~ (mean field) are of higher order
and do not change result (3.171. [See work of D. J.
Thouless referred to in Ref. 15, and M. Kac, in Bran-
deis University Summer Institute in Theoretical Phys-
ics, 1966, edited by M. Chretien, E. P. Gross, and S.
Deser (Gordon and Breach, New York, 1968), Vol. 1,
p. 2S6.] The work of Kac is amusing since he arrives

at essentially our double-Gaussian model starting
from a long-range Ising model —the reverse of our
route —and carefully locates the critical temperature

in our "displacive" limit (cf. Ref. 19).
J. Bricmont and J. R. Fontaine (unpublished), and

private communications.
E.g., G. A. Baker, Jr., J. Math. Phys. 16, 1324 (1975),
and unpublished.
D. R. Nelson and M. E. Fisher, Ann. Phys. (N.Y.), 91,
226 (1975).
Other parametrizations of the renormalized potentials
have been tried. They lead to no qualitative differ-
ences in the (E,6) phase diagrams for either 1D or
2D.

23A. D. Bruce and D. J, Wallace, Phys. Rev. Lett. 47,
1743 (1981).

An additional subcritical crossover is found dynami-

cally (Ref. 5) (for d &2) and associated with the
dynamics of clusters defined with respect to a finite
average order parameter. A static criterion based on
competition of flows-strengths (entirely in sympathy
with the criterion for supercritical crossover) is easily
formulated. However, the criterion is more difficult
to implement because of the need to quantify the
mean order parameter. This second crossover will be
addressed elsewhere.


