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Magnetostriction of bismuth in quantizing magnetic fields
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ExperinMntal data on the longitudinal magnetostriction of two pure and one p-type
bismuth single crystals are reported for fields up to 19 T at temperatures near 2 K. These

data are consistent with a model based on the deformation potential concept used to
compute the magnetostrictive strain components versus field, using the known field-

dependent band structure of bismuth. It is shown that, when elastic and deformation

potential constants are available, the magnetostriction of diamagnetic conducting solids can

be used as a tool to determine the field-dependent band structure above the ultraquantum

limit.

I. INTRODUCTION

Among diamagnetic materials, bismuth exhibits
the largest magnetostriction. This property was
first meaured by Kapitza' above 77 K in pulsed
fields up to 25 T, and soon after by Shoenberg in
stationary fields of moderate intensity. They
analyzed their results in the frame of classical ther-

modynamics, which leads to a quadratic depen-

dence of the induced strain on the magnetic field.
In this approach, the strain tensor components are
given by

efj =~ijkl~k~l '

Magnetostriction is thus described by a fourth-rank
tensor whose structure is determined by the point
group symmetry of Bi. In the usual matrix nota-
tion, Eq. (I) becomes
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Kapitza measured only the longitudinal magneto-
striction, i.e., the strain parallel to the field, in the
trigonal direction and in the perpendicular plane.
He found that m33 was positive (expansion) and

that m» was negative (contraction). The data of
Shoenberg, who measured the entire set of m,&, are
consistent with Kapitza's results at lower fields.

It is worth noting that the expected quadratic
dependence was indeed observed along the trigonal
direction, in the field range up to 25 T, while the
longitudinal magnetostriction in the perpendicular
plane exhibited a more complicated behavior. The
quadratic law was only observed below about 1.5 T.
This value is very close to the actual onset of the ex-
treme quantum regime for electrons for B along the
binary direction, when only the j=0 Landau level is

occupied. This point will be emphasized later.
Three decades later, it was pointed out by Chan-

drasekhar that low-temperature magnetostriction
exhibits de Haas —van Alphen type oscillations.
This effect has been measured on Bi (Ref. 4) and on
other diamagnetic metals. This renewed interest in
magnetostriction was mainly due to the advent of
the very sensitive capacitance method for measuring

very small displacements. More recently,
Michenaud et al. reported longitudinal magneto-

striction measurements on a bisectrix Bi sample,
above the extreme quantum limit in fields up to 5

T. A rough analysis of these results indicated that
the magnetostrictive strain varies like the field-

induced change in density of low-cyclotron-mass
carriers. The approach of these authors was in-

spired by a simplified model for the magnetostric-
tion of Bi proposed by Keyes. Also, for the semi-

metal graphite, Heremans et al. ' showed that the
longitudinal magnetostrictive strain along the c axis
is proportional to the change of carrier density with

field. The proportionality factor in that case was

used to determine a deformation-potential constant.
It was further pointed out that magnetostriction is a
unique tool to gain experimental insight to the car-
rier density above the ultraquantum limit.

The aim of this paper is to present new results of
high-field longitudinal magnetostriction in bismuth

along the binary and trigonal directions, up to 19 T
at low temperature. The data are interpreted in the
frame of a more complete model, taking into ac-
count the specific contributions of electrons and

holes, which are of different character, to the mag-
netostrictive strain.

The paper starts with a theoretical introduction
(Sec. II) in which the electronic magnetostriction
model developed for multivalley semiconductors is
summarized and extended to the case of bismuth.

Section III describes the experimental setup and
data. In Sec. IV, numerical calculations are
presented and experimental and theoretical results
are compared. The last section is devoted to the
discussion of the results.

II. THEORY

In diamagnetic materials the magnetostriction is
due to the charge carriers. From thermodynamic
arguments" it follows that magnetostriction is
directly related to the stress dependence of the mag-
netic susceptibility. In principle, all diamagnetic
solids should exhibit magnetostriction, owing to the
volume dependence of the density of states at the
Fermi level.

If all carriers belong to a single band, the elec-
tronic magnetostriction is very small. However, if
many valleys or bands are present, as for semimet-

als, the magnetostriction is enhanced by the
electron-transfer process. Owing to their different
magnetic susceptibilities, some bands or valleys will

have higher magnetization energies and a strain can
be induced, in a magnetic field, in order to shift the
valley extrema and redistribute the carriers until

minimization of the free energy is reached. This is
the main process of magnetostriction in Bi.

To provide a detailed interpretation of the mag-
netostriction of Bi, we must express explicitly the
induced-strain components versus magnetic field,
taking into account the overlap between the valence
and conduction bands, as well as the multivalley as-

pect of the conduction band. Although we are
mainly concerned with high-field magnetostriction
in the quantum limit, we can still follow the outline
developed in Ref. 8 for degenerated multivalley
semiconductors like Si and Ge in the classical field
range. The reason for this is that, in a first step of
the calculation, we are looking for an expression of
the strain components as a function of carrier-

density changes and band-edge shifts, and that the
mathematical structure of that expression, owing to
its thermodynamic origin, remains the same, what-
ever the band shape, carrier disperion relation, and
field range.

In this approach, the magnetostrictive strain is a
linear function of the field-induced changes hX"'
of the carrier densities in bands or valleys, labeled
with superscript (i). In a second step of calculation,
these hX"s may be determined using the well-
known band structure of Bi in a magnetic field.
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3

~=F,i„„,+ g hN"(W'" —co) .

(3)

FIG. 1. Identification of the ellipsoids (1), (2), and (3)
that represent the I.-point electron Fermi surfaces with
respect to the binary l and bisectrix axis 2. The trigonal
axis points out of the paper.

The actual situation for Bi is more complicated,
owing to the presence of the band overlap. Two
different processes of diamagnetic magnetostriction
must now be considered. In high magnetic field,

the crystal will be strained not only by the electron-
transfer process, already mentioned above, but also

by the induced shift W» of the hole band edge
which involves net changes, b,N and b,P, of electron
and hole densities. From the neutrality condition
hÃ=LP, we have

A. Magnetostrictive coupling for Bi

3

g 5N"=AP (7)

The total coupling term is given by
3

y ~(i) (5)

and the component of the free energy to be mini-
mized for calculating the strain is then

Bi, which belongs to the 3m point group, is a
semimetal containing three electron valleys located
at the I. points of the Brillouin zone and one hole
valley at the T point. The usual crystallographic
axes 1,2,3, already implied in Eq. (2), correspond,
respectively, to a binary, a bisectrix, and to the trig-
onal axis. The electron Fermi ellipsoids, labeled
(1),(2),(3), are schematically represented in Fig. 1. If
electrons only are present, we can simply follow the
outline developed by Keyes for n-type Ge and Si.

As the magnetostrictive strain is very small, the
electronic free energy E,"of the valley (i) can be
found by expanding its statistical expression to the
first order in the strain and to the square of the
magnetic field, according to Stoner. ' This expan-
sion gives rise to a coupling term between elastic
and magnetic energies, which takes the form

(3)

where W,"is the shift of the ith band edge, ro the
shift of the Fermi level, and ~"the field-induced
change of the electronic density. While Eq. (3) has
been derived for classical fields, its structure
remains in quantum fields. The only difference is
that AX" no longer varies as 8 . It is worth em-
phasizing that, in this case, the effect of field is to
redistribute the electrons in the different valleys,
without changing the total density:

(4)

where bN" represents now the total change of elec-

tronic density in the ith valley, in the equilibrium
state.

These quantities are functions of the
deformation-potential constants and the strain com-

ponents. In order to compute the strain com-
ponents versus magnetic field, we must minimize

the coupling term with respect to the strain:

3

~=E,i„„,+ g bN"(W,"—co)

+hP(W»+co),

or
3

~=F,)„.„,+ g b,N" W,"+b.PW» .

B. The band-edge shifts of Bi

Assuming the validity of the deformation-
potential theory originally introduced by Bardeen
and Shockley, ' the shifts 8',"and 8'~ may be re-
lated to the strain component e»i (tensorial notation)

by

~. =LkIekI(i) (i)

and

I ——TI,Ie

where the I.~I' are the components of the
deformation-potential tensor of the ith electronic
valley and TkI the similar components for the hole
band.

Taking into account the 120' layout of the elec-



MAGNETOSTRICTION OF BISMUTH IN QUANTIZING. . . 2555

'I/'v' /

EF

elastic constants in matrix notation, and the e;J, the
strain components in tensorial notation. Taking
into account expressions (9) and (10), the minimiza-
tion of (8) yields the following relations:
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FIG. 2. Schematic representation of the edges' shifts
of electron and hole bands in bismuth. The upper sche-
ma is relative to the zero-field situation, while the lower
one represents the actual situation in magnetic field.
The magnitude of the quantities 8'," and Wq depend
both on field intensity and orientation.

gN(2]+ ~(3]
2

and the coefficients a, b,c,d are given by

(15)

where the upper sign refers to W,' ', and

~1]=T]i(e]]+e22) +T33e33 (12)

for holes. Figure 2 illustrates schematically the
shifts of the band edges.

C. The Bi magnetostrictive strain

The detailed expression of F,]„„,is given by
1 2 1 2 2

Felas]]c C]1( 2 e 11 + 2 e22+e]2)

+C]2(e]]e22 e]2)+2~44(e]3+e23)2 2 2

+C]4(2e]]e23+4e]2e]3 e22e23)

1+ ]3(e]]+e22)e33+ 2 33 33 (13)

for the 3m symmetry of Bi, where the C,J are the

tron Fermi ellipsoids and the tilt angle of the prin-

cipal axis in the mirror planes of the Brillouin zone
(the latter being responsible for the nondiagonal
component L23), we get 14

8', =L11e» +L22e22+L33e33+2L23e23,(1)

(11)

4 (L 11 + 3L 22 )e]1+ 4 (3L 11 +L22 )e22

3
+L33833+ (L 11

—L22)e]2
2

+~3L23e]3 L23e23

L» —L22
(2 =(Sii $12) +$14L23

2

$» +$12
(L ]]+L22+2T]1)

+ ]3( 33+L33)

c —$ ]3(L 1 1 +L 22 +2 Ti 1 )+s 33 ( T33 +L33 )

d =s]4(L]1 L22)+$44L23 —.

(16)

In (16), the parameters s,j are the elastic compli-
ances of Bi. At this stage, it is worth emphasizing
some interesting features:

(i) The shear strain components e]2 and e» van-

ish when hN' ' equals ~' '. Owing to the sym-
metry of the Bi Fermi surface one can already guess
that hN' ]=EN' ' when the magnetic field lies in
the binary or bisectrix direction. However, in these
situations e23 does not vanish.

(ii) The strain e23 is zero when all b,N'" are
equal, i.e., when the magnetic field is parallel to the
trigonal axis. In this case all shear components
vanish.

(iii) The quantity bN' ' hN( ' is only due t—o the
electron-transfer process between the electron pock-
ets, independently of the overlap change, while the
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quantity 5 depends on both multivalley and overlap
processes.

III. EXPERIMENTAL SETUP AND RESULTS
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The longitudinal magnetostriction of two

99.9999%-pure bismuth samples and one tin-doped

bismuth sample have been measured by the capaci-

tance method. The bismuth samples were single

crystals whose length was along the binary and trig-
onal direction, respectively. The tin-doped sample

(Bi 56, as numbered in Refs. 15 and 16) is a bisec-

trix rod containing 27 &( 1O' atoms cm Sn. Since
Sn acts as a monovalent acceptor, ' one may calcu-
late' that this Bi 56 sample has its Fermi level

within the energy gap at the L point and thus only

T holes are present at low temperature.
The capacitance: cell, made of beryllium copper,

has been developed from a design of Brandli and

Griessen. It can contain samples of various

lengths. Two hemispheres are glued to the sample

ends, in such a way that the sample may rotate free-

ly should a torque strain component develop due to
a misalignment in field. %e verified by x-ray
fluorescence that the material used contained no
more than a few parts per thousand cobalt or other
magnetic impurities

The experiment was carried out with the cell im-

mersed in superQuid helium to guarantee thermal

stability. The field was applied along the longitudi-
nal axis of the sample and cell by means of a
water-cooled Bitter magnet. The capacitance be-

tween the electrodes was measured by means of a
General Radio 1615 bridge with a lock-in voltmeter

as detector. The bridge was balanced at zero field.
Then the field was swept (1—10 T/min) and the de-

viation of the lock in recorded versus field. It was

verified that this deviation is proportional to the
change in capacitance. The magnetostrictive strain

was hence computed from this deviation.
The plain curves in Fig. 3 and 4 represent, respec-

tively, the measured longitudinal strain e!t(Bt) and

e33(B3) versus field up to 19 T. Each experimental
curve exhibits the expected oscillatory behavior, as-

sociated with the de Haas-van Alphen effect, in the
low-field range, followed by a monotonic depen-
dence in the extreme quantum range. In Fig. 5, the
flat solid line represents the strain e2q(Bq) measured
on the Bi 56 sample, while the lower solid line is the
corresponding e22(B2) for a pure Bi sample up to 5

T at 4 K taken from Ref. 7. We notice that, for
pure Bi, if we exclude the oscillatory range, e i i and

e2q are negative while e33 is positive, in accordance
with Kapitza's results at higher temperatures.
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Since all the values entering in Eqs. (14)—(16) are
known at least approximately, it has been possible
to compute the values of et~(B!), e2q(B2), and

e33(B3), and compare them to the observed magne-

tostriction curves, without using any adjustable

parameter. The first step is to calculate the
carrier-density changes hX" in a magnetic field in

the hmit of absolute zero temperature. To do this
we use the field-dependent electron band structure
of bismuth, about which more details will be given

later. For the T-point holes, we assume a simple
parabolic dispersion relation that splits up into

equally spaced I.andau levels. From those band
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FIG. 4. Calculated (dashed line) and measured (solid
line) longitudinal magnetostriction along the trigonal axis
e33(83) of pure bismuth vs magnetic field at 1.3 K.

x i ! I ! ! ! ! I

FIG. 3. Longitudinal magnetostrictive strain e ~ i(8 i )

along the binary axis vs magnetic field at 1.3 K. Note

that the strain is negative over most of the field range.

The solid line is the experimental resu1ts; the dashed line

has been calculated according to Eqs. (14).

IV. DISCUSSION



26 MAGNETOSTRICTION OF BISMUTH IN QUANTIZING. . . 2557

FIELD ( tesla )
5 10

1 I
I

I ~ ) i
I

I I I

CQ

CV

Qi

-10

-20

I I I j I I I I I I I j I I I I I

FIG. 5. Longitudinal Inagnetostrictive strain e22(82)
along the bisectrix axis. The dashed curve is the strain

for pure bismuth, calculated according to Eqs. (14); over

most of the range, it is negative. The solid curve that
stops at 5 T represents e22(B2), as measured by
Michenaud et al. (Ref. 7) on pure bismuth. The flat solid

curve near the zero ordinate represents the strain mea-

sured at 1.3 K on a Sn-doped sample with 27)(10"cm '
excess hole density. Such a sample has only one type of
carrier and exhibits a very small magnetostriction.

structures, we calculate the densities of electron and
hole states. To get the Fermi 1evel and the carrier
densities in each band and pocket, we impose the
neutrality condition, which for pure bismuth reads

p g ~(') (17)

The details of the calculations are based on the
following choices for the parameters of the elytron
bands:

(1) We use the effective mass tensor of Dinger
and Lawson. '

(2} When the field is applied in the bisectrix or
binary directions, and is such that only the j=0
Landau level is populated (the ultraquantuin re-
gime), the refined model of Vecchi et al. '9 is used,
but with the effective masses of Dinger and
Lawson' for the sake of consistency. Nevertheless,
it may be easily calculated that the masses of Ref.

and for tin-doped bismuth with an excess hole den-

sity D,

(18}

18 are consistent, within the quoted experimental
errors, with the results of Ref. 19.

(3) When the field is applied in the trigonal direc-
tion, a simple model, the Lax model, has been
shown by Maltz and Dresselhaus ' to describe their
magnetoreflection experiments quite well, and has
therefore been used here.

Two other sets of parameters are required in Eq.
(16): the elastic constants and the deformation po-
tentials. For the former, we used the values report-
ed at 4.2 K by Eckstein et al. The deformation-
potential constants of Bi have been measured from
magnetoacoustic attenuation by Walther, whose
results are summarized in Table I.

The results of the calculations for pure Bi are
shown in Figs. 3, 4, and 5 as dashed curves for
eii(8& ), e33(83), and e22(82), respectively. For the
Sn-doped sample, it has been numerically verified
that as expected no carrier-density change or elec-
tronic magnetostriction occurs at any field. The
same calculations yield information on the other
components of the magnetostrictive strain tensor of
bismuth. These as well as the field-dependent car-
rier densities at four selected values of the magnetic
field in the binary, bisectrix, and trigonal direction
are summarized in Table II. Comparison of the cal-
culated and experimental curves in Figs. 3—5
shows differences of the order of 7%%uo in the position
of the quantum oscillations extrema with respect to
field.

The difference in magnitude between calculated
and measured strain components e~i and e22 can be
ascribed to large uncertainties in the values given in
Table I. See, for example, Katsuki. These com-
ponents, in contrast to e33, depend on the shear de-
formation potential Li3 for which only one experi-
mental value is known. We have noticed that a re-
versal of sign of L23 gives a complete agreement in
magnitude. As we cannot justify this in view of
Walther's discussion, we take it to be probably ac-
cidental.

Magnetostriction is weakly dependent on tem-
perature as observed in the early work of Kapitza.
%hile no experimental data between 4.2 and 77 K
are available, it is possible in a tentative approach to
connect low- and high-temperature results by means
of the empirical dependence of m ii [see Eq. (2)] on
temperature (in units of T 2):

TABLE I. Deformation-potential constants, measured
from magnetoacoustic attenuation (units of eV). m i i ( T)—=12.25(1—2.4X 10

—'T)10—' (19)

Li) =—2.2
L22=5 9

L„=—1.7
T) ) ——1.2
T33 ———1.2

found by Kapitza for 77 & T& 300 K and below 1.5

T, where the strain has a quadratic field depen-

dence. Assuming that Eq. (19) can be extrapolated
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FIG. 6. Comparison between high- and low-

temperature magnetostriction. The thick solid line
represents the longitudinal magnetostriction along the
binary direction at 2 K arid the dashed line the corre-
sponding steady magnetostriction calculated from the
extrapolated relation (20). The thin solid line represents
the longitudinal magnetostriction in the basal plane
measured by Kapitza at 83 K, and the dotted line is the
calculated steady magnetostriction at the same tempera-
ture, according the empirical equation (19). A good fit
is only observed below 1.5 T.

to 2K, we get

eii(Hi )=12.2)& 10 Hi (20)

Equation (20) should correspond to a quadratic or
steady magnetostriction term which must prevail
below the quantizing fields at liquid helium. Un-

fortunately, it cannot be verified experimentally at
low fields owing to the smallness of the effect. At
higher fields, the calculated function (20) lies be-
tween the envelopes of the extrema of the oscillato-
ry magnetostriction, as shown in Fig. 6. This fact
suggests that the extrapolation of Eq. (20) is permis-
sible and gives the right order of magnitude of the

steady magnetostriction at 1ow temperatures. With
increasing temperature, because of the thermal
smearing of the energy levels involved, the oscilla-
tions of the b.N"' and thus of the strain components
decrease and vanish, as is the case for the de
Haas —van Alphen effect. Only the steady magne-
tostriction survives. The departure at 77 K from
the expected quadratic behavior, which remained
unexplained by Kapitza, is mainly due to the quant-
ization of the energy levels and the occurrence of
the ultraquantum limit, above which electrons are
co11ected in the sing1e j=O level. ' While oscilla-
tions disappear in the thermal smear, at sufficiently
high temperature and at moderate quantum field, in
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the extreme quantum range, magnetostriction
remains under quantum influence and the strain
still follows the monotonic changes of carrier densi-
ties. This effect is most pronounced when the field
lies in the basal plane because of the low electronic
cyclotron masses. When B is along the trigonal
direction, the cyclotron masses are greater and no
trace of quantum effects subsists above 77 K, lead-

ing to a classical magnetostriction as observed by
Kapitza.

V. CONCLUSION

The above model of magnetostriction is in a
reasonable agreement with the experimental data on
Bi. It confirms the high-field electronic band struc-
ture as developed by Vecchi et al. ' The model also
includes the role of donors or acceptors in magne-
tostriction. Our experiment on one Sn-doped
bismuth sample, which only contains holes at low
temperature, clearly revealed tiny magnetostriction.
One can also infer that, at low temperature, a Te-
doped Bi sample in which only electrons are present
should exhibit no longitudinal magnetostriction
along the trigonal axis, due to the electron-transfer
process.

A last comment concerns transport properties in
a magnetic field. As pointed out by Keyes, magne-

tostriction is by itself a cause of magnetoresistance,
owing to the electron transfer between valleys of
different mobilities. The usual analysis of transport
properties in a magnetic field does not take this ef-
fect into account. Also, as quantum effects can be
detected for some field directions even at high tem-
perature, the structure of the transport tensors as
derived by Akgoz and Saunders ' for classical
fields could occasionally not be suitable.
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