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The group-theoretical analysis of the hexagonal perovskite structure (3L, space group
P63/mmc), considered as a common prototype phase of most hexagonal or pseudohexago-
nal ABX; compounds, which was initiated recently [Pérez-Mato et al., J. Phys. C 14,
1121 (1981)], is continued in this paper. After discussing, in a general case, the distortion
created by a structural phase transition in terms of symmetry modes of the prototype
structure, the selection rules restricting their presence in the distortion are formulated
stressing the role played by the invariance groups of the prototype-space-group irreducible
representations. Then, restricting the study to the hexagonal perovskite structure, we
have worked out its symmetry modes and their compatibility relations. Finally, as an ex-
ample, the room-temperature phase in KNiCl; is analyzed as a distortion from the ideal
hexagonal perovskite. The possible nine symmetry modes intervening in it are described,
and their relative weight in the actual distortion is calculated. Although the crystal is
separated by about 260 K from the nearest reported phase transition, the distortion is
surprisingly dominated by the two modes corresponding to the necessary order-parameter
symmetry describing the symmetry change between the compared phases, while the am-
plitudes of the remaining “free’” modes are at least 1 order of magnitude smaller.

I. INTRODUCTION

It is well known that many compounds with the
general formula ABX; undergo structural phase
transitions corresponding to slight distortions of
the ideal cubic or hexagonal perovskites (3L or 2L)
structures with Pm 3m or P 6;/mmc symmetries,
respectively. In the case of the cubic-prototype
phase there are some phase-transition sequences
that have been widely and intensively investigated
in the past. See, for example, a short review about
ABCIl; compounds in Ref. 1. In more recent years
interesting phase transitions have also been found
in ABX; compounds with a hexagonal or
pseudohexagonal-prototype phase.?~* It is likely
that in the future new phase transitions will be
discovered. This expectation and the already im-
portant number of known phase transitions in this
group make a wide theoretical study based on sym-
metry arguments desirable.

According to this idea, we recently presented® a
systematic study of the possible phase symmetries
derived from a prototype phase with the P6;/mmc
space group. In that paper all the irreducible rep-
resentations (IR) of the prototype space group that
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belong to symmetry points in the hexagonal Bril-
louin zone were analyzed as possible order-
parameter (OP) symmetries, and all their invari-
ance groups’ were obtained.

In this paper, the symmetry arguments are ex-
tended to the description of the structural charac-
teristics of the low-symmetry phases in the hexago-
nal ABX; compounds. The microscopic variables
(modes) that describe the low-symmetry phase as a
structural distortion of the prototype phase are in-
vestigated. The theory is discussed in a general
form in Sec. II, where the important role that sym-
metry modes play in the formalism is shown. Sub-
sequently the symmetry modes and their compati-
bility relationships have been determined for the
hexagonal perovskite ABX; structure, and the re-
sults are summarized in several tables in Sec. III
and Appendixes A, B, and C. All symmetry
points and lines in the hexagonal Brillouin zone
have been treated. Finally, in Sec. IV, the recently
reported room-temperature structure of KNiCl; is
analyzed as an example, making use of the results
presented in preceding sections and Ref. 6.
Throughout the paper, the employed notation fol-
lows closely that of Bradley and Cracknell® and
Maradudin and Vosko.’
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II. CRYSTAL STRUCTURE DISTORTION
ANALYSIS

Among the set of microscopic variables in a
crystal, the symmetry modes of the prototype
phase are in most cases fundamental for the
description of the phase-transition mechanisms.
They are relevant not only in the case of displacive
transitions, where the softening of a vibrational
mode plays an important role, but also in a general
case, since they can always be used to describe the
idealized structural distortion that relates the low-
temperature phase with the prototype phase. In
this section we shortly develop the mathematical
structure of this description, following similar lines
and notation of those employed in Ref. 9 for the
analysis of crystal vibrational normal modes. In
this way we introduce the equations and notation
that are to be used in Sec. III to determine and ex-

cells and 7 atoms in each can be described by the
displacements from their ideal sites of its Nr
atoms:

ugllk) , (1)

where a=x,y,z,/=1,...,N, k=1, ...,r. These
quantities can be considered as vector components
of a 3Nr-dimensional linear space M, in which a
representation .# of the crystal (without distor-
tions) space group G can be readily defined.

In order to obtain a total reduction of .# and
the bases for the IR, let us consider “Bloch-wave”
distortions of the form

ug(lk)=U,(k | K exp[iK"%(])] . 2)

The transformation properties of Uy (k | K,) can be
expressed in a matrix form. If g={R | V(R)
+X(m)} is an element of G, we have

press the symmetry modes for the hexagonal ABX; U,k [RK1)=Faﬁ(kk' | I_{l;g)Uﬁ(k' | K),
structure. (3)
A distortion in a crystal structure with N unit with
Toglkk’ | K;8) =R op8(k,Fo(k";g))exp{iK - [g ~ % (k)—X (k") @)

where R g is the matrix associated with R in the
vector representation and Fy(k’;g) denotes the
atoms index to which the k' atom transforms by
the action of g.

According to (3), the 3r-dimensional subspace
My, (K, fixed) defined in (2) is invariant for

those elements g €G such that RK, _K1 (little
group G ¢ 1 ), and the matrices (4) describe a repre-

sentation .# g of Gg , init. This representation

can be decomposed ina sum of small irreducible
representations® Dy(K;,n) of G:

M = mmDy(K,n) . (5)

We can represent the corresponding bases in the
form

(E(Knta)}, t=1,...,d(n) (6)

where d(n) is the dimension of DS(Kl,n) and the
index a distinguishes between bases corresponding
to different subspaces that transform according to
the same small IR D (Kl,n) when m (n) > 1. These
symmetry modes transform according to their de-
finition as follows:

[
Coplkk’ | K,;8)Ep(k' | K nta)
=Dy (K,n |g)Eq(k |Knta), (7)

where D,.(K,n) are the matrix elements of the
small IR. They can be determined by the usual
projection operator techniques or from Eq. (7) as
an alternative method. In fact, it is the latter that
has been used in Sec. III. The basis can be readily
extended to the whole G-invariant linear space

M[R']]=M,—(>169MR'2€B GBMR’,

(where K, . . ., K, are the vectors of the [K,]

star):

—

(E(K,nta)}, t=1,...,d(n), p=1,...,0

(8)
These vectors are determined by the property
E(K,nta)=T(K g, )E(K nta) , 9

where g, is an arbitrary but fixed element of G
such that R KI—K For n and a fixed, the vec-
tors (8) oonstltute a basis transforming according
to the IR D(Kl,n) of G, and as a whole, with Kl
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variable, they define a basis in the space M.
Therefore, any distortion can be written

> C(K,,npta)

(K ,n)(pt) a

uy(lk)=

s .3 .—bI
XE,(k |Kpnta)e' Ko Xt

(10)

In the case of Landau-type phase transitions,”

the space group F of the distorted phase!! is a sub-
group of G formed by the set of symmetry ele-
ments which keep the OP displacement invariant.
This displacement is defined in a vector space
transforming according to an IR D, of G. Obvi-
ously the distortion u,(lk) should be compatible
with the new symmetry F. This means that in (10)
only terms corresponding to IR D(I_i,n) of G, such
that they subduce the identity representation in F,
will be present. That is, their subduction index®
S(F | K,n) should be not null.'> We shall call
these IR compatible representations (with F).

In fact, this restriction in (10) is equivalent to
saying, in a manner closer to Von Neumann’s prin-
ciple, that the symmetry modes triggered by the
transition are those belonging to an IR of G that
have invariance groups containing F as a subgroup
(this includes obviously the proper IR D, of the
OP). Also, the relationship between the symmetry
coordinates C (Kl,npta) should be such that the
“displacement” in the IR space takes place along
the subspace corresponding to the invariance group
containing F.

Therefore, in our particular case, where
P6;/mmc is the prototype group, the determina-
tion of the compatible IR relevant in (10) and the
relationships between the coefficients for a given
phase transition is reduced to a search in the tables
from Ref. 6, where the invariance groups of all the
symmetry-point IR were listed, as well as the cor-
responding subspaces.

With respect to the temperature dependence of
the symmetry coordinate C (K,,npta), they can be
considered as “faint variables” (Refs. 13—16) for
which the thermodynamic part of the standard
Landau theory predicts near the phase transition (if
continuous) a behavior proportional to (T —T)/,
where T, is the transition temperature and f the
so-called faintess index of the corresponding IR.” !
The latter is given by the first symmetrized power
of [Do} in which the considered IR appears.

+¥4

FIG. 1. Schematic representation of the hexagonal
perovskite structure ABX; (2L).

III. SYMMETRY MODES IN THE HEXAGONAL
PEROVSKITE STRUCTURE

The hexagonal perovskite structure, which can
be considered the prototype phase for most of the
hexagonal ABX; compounds, is represented in Fig.
1. The atoms in the unit cell are labeled by letters
and numbers. The symmetry modes for this type
of structure, as well as their compatibility relations
for symmetry points and lines of the hexagonal
Brillouin zone, are shown in this section and Ap-
pendixes A, B, and C. Although these calcula-
tions, according to what is stated in Sec. I, have
been performed keeping in mind their application
to the description of phase transitions in the hexag-
onal ABX; structures, it should be noted that the
information presented here can be used in any oth-
er physical situation where the symmetry modes of
this structure are needed. Furthermore, the con-
clusions from this section can be extended to any
other crystal with P6;/mmc symmetry for those
atoms with the same site symmetries as the atoms
of our particular case, which are shown in Table I.

Owing to the properties of the vector representa-
tion and the distinguishability of the atoms, the M
space defined in Sec. II can be divided in our case

TABLE I. Site symmetries in Wyckoff notation for
the hexagonal perovskite (2L).

Point-group

Atom Site symmetry
A a 3m
B d 6m?2
X h mm
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TABLE II. Symmetry modes corresponding to the 4 and B ions along the z axis. The vector components are given
in the order (4,,,4,,) and (B, B;,), respectively.

r- A, 1,0/v2 u r ey 1,1)/vV2 us
By, 1,—1/vV2 Uy By 1,-1/V2 un
M My 1,0/v2 u3 M M3 1,1)/vV2 33
Mi 1,-1/v2 uy My a,-1)/v2 U3
A 4 (1,—i)/vV2 us A 4 (a,—i)/V2 u3s
(—1,—)/V2 ug (—i,1)/V2 36
L L, ©0,1) u; L L 1,-1)/v2 Uz
(1,0 us 1,1)/v2 U3
K K, (1,—1)/‘/5 Uy K K¢ (1,—60*)/‘/_2_ Ujzg
K4 a,0/v2 o G,iw*)/V2 Ui
H H, (1,—1)/v2 un H H, ©,1) Uy
(—i,—i)/V2 Ui (i®,0) "
A A, 1,A)/V2 Uy A A, (1,A)/v2 Ua3
(ei™) B, (],—)»)/\/5 Una (ef™) B, (1,—)»)/‘/5 Uas
U U (1,A)/V2 us U U (1,—A)/V2 Uss
(e'™) U, (1,—A)/V2 Ug (™) U, 1,0)/vV2 g
P P, 1,A)/V2 ) P P; (1,0*A)/V2 Uy
(e') P, (1,—A)/V2 Ui (e™) (—i,iw*A)/V2 tsg
T T, 1,1)/v2 U1 T. T, 1,A)/v2 49
T, 1,-1)/vV2 20 (/2™ Ts (1,—A)/V2 s
S S ©,1) Uy S S, (1,A)/V2 us)
(i,0) Uy (ei2m) G, —ir)/V2 us,
T T3 1,1/v2 U T T a,—A)/V2 Us3
T 1,—-1)/v2 2 (ei2m) T 1,A)/V2 Uss
s ¥ ©,1) U5 s St 1,—2)/V2 uss
(i,0) U2 (ei2m™) G,iN)/V2 uss

b3 3 a,-1/v2 Uy
2 2, (1,0) Usy
2, (0,1) Usg

2, (l,l)/‘/i U
R 'E’ (1,-1/V2 2 R s 0D tsy
g’ 1,1)/vV2 U3 E (1,0) g

into the following invariant subspaces: systematic application of Eq. (7) and are listed in
detail in Tables II—VIL.!7 The matrices used for
M=A4,® B,®B.,®X,®X,, .
:©4y OB, OB, 6 X, & X,y {1n the small IR at the symmetry points were con-
Therefore each subspace can be treated separately. structed from the tables in Ref. 8 and coincide

The symmetry modes have been obtained from a with those used in our previous paper.® The com-
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TABLE III. Symmetry modes for the 4 ions in the xy plane. The vector components are given in the order
(4 15,4 1,4 2,45, except for symmetry lines T and S, where the components are given along the x’ and y’ axes (see Fig.
2).

r E, (1,0,1,0)/\/5 Uey P Vi) (0’1’0’}‘)/1/5 Ug3
0,1,0,1)/V2 Ug (—1,0,—2,0/V2 Uoq
Ex ©0,1,0,—1)/v2 Ues (e'™) P (1,0,—2,0)/v2 uss
(1,0,—1,0)/V2 U ©0,1,0,—2)/V2 Uos
M Mr Eg’}’g’l)x/fzﬂ Hes T T, 0,1,0,1)/V2 s,
L2 s 1Yy Ugs
My (1,0,-1,0/V2 ug L. 1,0, ~1,01/2 on
~ V32 y T 0,1,0,—1)/V2 g
M; (1,0,1,0)7 * T, (1,0,1,00/v2 100
A /_‘3 (l,l —1i, 1)/ Ueo
( 1 l, —1)/2 U S 51 (0’0’1’0) U101
(1,—1,—1,—1)/2 un .
(—1,—i,—i,1)/2 un (—40,0,0) H1oz
§1 (O, 1 ,0,0) U103
L L 0,0,1,0 us ©,0,0,—1) 104
(—1,0,0,0) U7s
L fg’oioil()) o . T T 0,1,0,1)/v2 #1os
’ s 76
I‘Z (1,0,—1,0)/1/5 U106
K Ks 0,1,0,1)/V2 - T 0,1,0,—1)/v2 U107
(—1,0,—1,0)/v2 uzg I (1,0,1,0/v2 108
K ©0,1,0,—1)/vV2 7o
(1,0,—1,0)/V2 Uso
S’ Si (0,0,1,0) U109
H H, (1,i,1,i)/2 us (~1,0,0,0) U110
(i,1,—i,—1)/2 g, Si (0,1,0,0) Ui
H, (1, —i,1,—i)/2 g (0,0,0, —i) Ui
(—1,1,1,—1)/2 Ugy
A E; (1,0,4,0)/V2 s b A (1,0,1,0/V2 s
0,1,0,A)/V2 U b (1,0,—1,0)/V2 "
(eim) E (1,0,—1,0)/V2 U 3 0,1,0,—1)/v2 Uns
©0,—1,0,A)/V2 Ugg A 0,1,0,1)/v2 Uie
U U, (1,0, —A,0)/V2 s R 'E’ (1,0,1,0)/V2 Uy
U, (1,0,A,0)/V2 s 2E (1,0,—1,0)/V2 Ui
(e U, 0,1,0,—1)/V2 Uy 'E” 0,1,0,—1)/V2 Uy
U, 0,1,0,)/V2 Uy g 0,1,0,1)/v2 4120
patibility relations gathered in Appendix B were set (x',y’,z’) is used (see Fig. 2). Each table corre-
used as an auxiliary method and a consistence sponds to a subspace in (11) and the particular de-
check for the calculated symmetry modes. Some tails are explained in the table.
of the relations in Appendix B were previously The vectors have been numbered to facilitate any
given by Kroese'® in a different notation and have later reference. Some modes corresponding to
been included here for the sake of completeness. symmetry lines are stated as a function of A, which
The symmetry vectors in Tables II— VI are is given by the exponential under the letter denot-
described by the atomic displacements in the origin ing the symmetry line. In this exponential, a
unit cell (/ =0). The displacements are given along refers to a particular K, vector along the line. It

the (x,y,2) axes except for T and S lines where the must also be noted that when a representation ap-
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TABLE IV. Symmetry modes of the B ions in the xy plane. Notations: (By,B1,,B,,B,,), except for symmetry
lines T and S, where the components are given along the x’ and y' axes (see Fig. 2).
r Ey, (1,0,1,00/v2 U ™) U 0,1,0,A)/v2 sy
0,1,0,1)/v2 Uz Us (0,1,0,—4)/V2 Uis)
Ea (1,0,—1,0)/V2 U3
(0,—1,0,1)/‘/5 Uis P Bl (1 —l, —Cl)*)\r,—lw*)b Uys3
P, (1, —i,0*A,in*M\) /2 Uysa
M Mi (1,0,1,0)/V2 U135 (e'™) P, (Li, —@*Aiw*A) /2 Uyss
M3 0,1,0,1)/v2 U126 i, —Lio*A,0*\)/2 U1s6
M5 ©0,1,0,—1)/V2 Uiy
Mi (1,0,—1,0)/V2 Uiz T T, (1,0,—A,0)/V2 Uys7
: T 0,1,0,A)/v2 s
A 4; (1,i,—i,1)/2 U129 (") T, (1,0,A,0)/V2 Uys0
(—i,—1,1,—0)/2 U130 T, (0,1,0,—1)/V2 160
(1,-—1,-—1,—-1)/2 U131
(—1,1,1,1)/2 U3z N 51 (1;0,)%0)/‘/5 U161
(—1,0,i1,0)/V2 U162
L __L_] (1,0,—1,0)/‘/5 U133 (el'21ra) Sl (O,—I,O,)\,)/‘/E Ui63
(—1,0,-—1,0)/‘/5 U134 (O,l,oyl}h)/‘/i U164
L, ©0,1,0,—1)/V2 Uss
(0,——1,0,—1)/\/5 U3 T ,_,l (1,0,)\,0)/\/5 Uies
. _; (0,1,0,——}\,)/‘/5 U166
K K, (1, —i, —*, —iw*)/2 U7 (e'2m) T (1,0,—1,0)/V2 U167
K, (1, —i,0*,in*)/2 U138 4 0,1,0,A)/V2 U168
Ks (1,i, —o*,in*)/2 U139
G, —1io*,0*)/2 U140 s’ S (1,0,—1,0)/v2 U169
) (—l,o,—l)\,,o)/‘/i U170
H ﬂz (1,1,0,0)/‘/-2_ U1 (e121m) S.i (0;"1,0,—)\-)/‘/5 um
(0,0,1'(0*,(0*)/‘/5 U4z (0,1,0,—11)/‘/5 uin
H; (1,—1,0,0/v2 Ui
0,0,iw*, —w*)/V2 Uias b 3 (1,0,0,0) Uins
_2_1 (0,0, 1 yo) U4
A E (1,0,A,0)/V2 Unes 2, (0,1,0,0) u1ss
(0,1,0,}\,)/‘/5 U146 2.4 (0,0,0,1) U176
(e“"’) Ez (1,0,-—}\,,0)/‘/5 Uia7
0,—1,0,A)/V2 s R 'E’ (1,0,0,0) uin
’E’ (0,0,1,0) U7
Y U (1,0,1,0)/V2 Uiss 'E” (0,00,1) U1
U, (1,0,—4,0)/V2 U150 2E" (0,1,0,0) igo

pears several times in a subspace, the symmetry
modes have been taken as orthogonal in order to
simplify their use. Furthermore, in those points (L

and M) and lines (R, U, 2, S, T',S,and T)

where the displacement subspace in the xy plane
can be separated into invariant subspaces along the
x and y axes (x’ and y’ for S and T'), each decom-
position appears separately in the table, and the
corresponding modes are constructed according to
this separation. For example, in the M point we

have for the X,,
XVID:

subspace (see Appendix B, Table

X,=2M{ +2M; + M} + M7 ,

and

X,=M{ +M{ +2M7 +2M5

Therefore we can consider a M (x) mode (U,g; in
Table VI) and two M7 (y) modes (Usyg and U s,

also in Table VI).
All modes can be directly taken from Tables

II—-VI, except for those corresponding to the A, U,

and K symmetry lines in the X, subspace. In
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TABLE V. Symmetry modes for the X ions along the z axis. Notation: (Xy;,X,,,X3;,X4z, X5z, Xe,).
tables, for symmetry lines T and S, the vector components are given along the x’ and y' axes. The form of the vectors
in T and T’, S and S’ coincide.

26

As in preceding

r Aoy (1,1,1 ,1,1,1)/1/3 U1s1
BZg (1, ’ ’ 17_19_1)/‘/3 Ui
Elg (0,\/3, Vé 0 ‘/3 ‘/3)/2‘/5 U3
(=2,1,1,2,—1, _1)/21/3 Uigs
Ez,, (0,‘/_, \/3 0 ‘/3,—\/3)/2‘/3 Uigs
(2,—1,—1,2,—1,—1)/2\/3 U 1s6
M My (1,0,0, —1,0,0)/v2 Uig
Mi}— (01 10—1 —1)/2 U188
M ©0,1,—1,0,—1,1)/2 U159
Ml— (01 —101 —1)/2 U190
My (1,0,0,1,0,0) V2 U191
M3y 0,1,1,0,1,1)/2 U192
A A, U,1,1,—i,—i,—i)/V'6 U193
(—i,—i,—i,1,1,1)/V6 U104
/_13 (l,a),a)*,i,ia),ia)*)/\/a U19s
(i,iw*,ia),l,w*,w)/\/g U196
(l,a)“,(o,i,ico*,ico)/l/é U197
(ioio* 1,0,0%)/V6 U198
L L, (1,0,0,1,0,0)/V2 %199
(1,0,0,—1,0,0)/v2 Um0
L, 0,1,1,0,1,1)/2 o1
(0,1,1,0,—-1,-—1)/2 U2
L, 0,1,—1,0,1,—1)/2 U203
©0,1,—1,0,—1,1)/2 U
K K 1,1,1,—1,—-1,—-1)/vV’6 s
K, 1,1,1,1,1,1)/V’6 U206
Ks 1,0,0% —1,—0* —w)/V6 Uo7
(i,iw,im*,i,ia)*,iw)/\/g U208
Kﬁ (1,(1)*,(0,—1,—(0,—60*)/‘/3 U209
(—i, —iw*, —io, —i,—io,—io*)/V6 U0
H H, 0,0,0,1,0,0*)/V3 oy
(—i, —iw*, —i®,0,0,0)/V3 Uiz
H, 0,0,0,1,0*,0)/V3 Ui
,io,io*,0,0,0)/V3 Usia
H; 0,0,0,1,1,1)/V3 Usys
(1,1,1,0,0,0)/‘/3 Urie
A 4, 1,1,1,A,A,1)/V'6 Ui
B, (1,1,1,—A, —A, —A)/V6 Uns
(ei™) E, @,—1,—1,—2A,A,1)/2V3 Usio
0,V3,-1/3,0,—V31,V31)/2V3 U

these cases the modes are obtained from the com- given by

patibility relations and the modes for the I, M,

and K points. For instance, the U;(x) mode, ac-

cording to Table XVII in Appendix B, is compati-

ble with M7 (x), and M7 (x) from Table VI is

U287 2(0,0’ 1’07 - 1709090, - lyO’ 1,0)/2 .

As it is stated in the table, the factor A=e™* must
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TABLE V. (Continued.)
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(e™)

(eim)

T(T")

S(S’)

E, 2,—1,—1,2A,—A,—1)/2V3
(0, _‘/3: ‘/S’O: _‘/3}\,,‘/5},)/21/3
Ui (1,0,0,1,0,0)/v2
U, 0,1,1,0,A,A)/2
U (1,0,0, —1,0,0)/v2
U, 0,1,1,0,—A, —1)/2
Us ©0,1,—1,0,A, —A)/2
Us 0,1,—1,0,—A,A)/2
P, 1,1,1,1,1,1)/vV6
P, a,1,1,-1,—1,—-1)/v6
P, (1L,0,0* A,0*\,0L)/V6
(=i, —iw, —io* i\ io*\,ioh) /V6
Py (1,0* 0,A,0A,0*L)/V6
G,io*io, —ik, —io\, —io*A)/V6
T(T3) (1,0,0,1,0,0)/V2
To(T5) 0,1,0,0,1,0)/v2
TH(T}) (0,0,1,0,0,1)/v2
T5(T%) (1,0,0,—1,0,0)/v2
T5(T%) 0,1,0,0, —1,0)/v2
Ts(T%) (0,0,1,0,0,—1)/V2
51(87) (1,0,0,1,0,0)/v2
(1,0,0, —i,0,0)/v2
S1(S7) (0,1,0,0,0,1)/V2
(0,1,0,0,0, —i)/V2
Si(S1) (0,0,1,0,1,0)/V2

(0,0,i,0, —i,0)/V2

3 (1,0,0,0,0,0)

3, (0,0,0,1,0,0)

p A 0,1,1,0,0,0)/v2
3, (0,0,0,1,1,0)/v2
3, ©,1,—1,0,0,0)/v2
3 (0,0,0,0,1,—1)/v2
E’ (0,0,0,1,0,0)

L) o (1,0,0,0,0,0)

g’ (0,0,0,0,1,1)/V2
g’ (,1,1,0,0,0)/V2
E" ©,1,—1,0,0,0)/v2
g (0,0,0,0,1, —1)/v2

Ui
Uz

U
U
U2s
U226
Uy
Uog

U9
U3
U231
Uz3z
U233
Uz34

U235(247)
U236(248)
U237(249)
U238(250)
U239(251)
U240(252)

U241(258)
U242(254)
U243(255)
U 244(256)
U245(257)
U246(258)

Uzs9
U260
U261
U262
U263
U264

U2es
U266
U267
U268
U269
Uz

multiply the displacements of atoms 4, 5, and 6.
Therefore, the U;(x) mode is

U358 =(0,07 170r - 1,070,0’ —A,O,}\«,O)/2 ’
where the subindex is given by (287 —283)

+355=358, as it follows from the labels given to
the M modes (283 —294) and those reserved for the
U modes (355—366) (see Table VI).
Finally, it must be noted that the displacements
in the tables refer to the / =0 unit cell. For other
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TABLE VI. Symmetry modes for the X ions in the xy plane. Notation: (XX 1y,X5,X2, . . ., Xgy). Modps in A,
U, and P have the same form as those corresponding to I', M, and K, respectively, except for the factor A=e'"*, which

should multiply the vector components of ions, 4, 5, and 6. The notation reserved for these modes is as follows. A:
U3z —Usss. Us Uzss—U3es. P: U3gy—u3zg. In lines T and S the x’ and y’ axes are used again.

r

RRRRRREKR

K

BPRP RO OL D ey Gy ey oy oy g

B RKI

B

B

I~
~N

2,0,—1,V/3,—1,-1V3,-2,0,1,—V'3,1,v/3)/2V'6
©0,2,—V3,—1,V/3,—1,0,—2,v'3,1,-V/3,1)/2V’6
2,0,—1,V3,—1,—-v73,2,0,—1,V3,—1,—-V3)/2V6
0,2, —V3,—-1,v3,-1,0,2,—V3,—1,V3,-1)/2V6
(1,0,1,0,1,0,1,0,1,0,1,0)/V'6
0,1,0,1,0,1,0,1,0,1,0,1)/V'6
2,0,—1,—V3,—1,V3,2,0,—1,-V3,-1,V3)/2V6
0,—2,—v3,1,V3,1,0,—2,—V'3,1,V3,1)/2V6
1,0,1,0,1,0,—1,0,—1,0,—1,0)/V6
0,—1,0,—1,0,—1,0,1,0,1,0,1)/V'6
2,0,—1,—V3,—1,V3,-2,0,1,V/3,1,—V'3) /2V6
0,2,V3,—1,—V3,—-1,0,—2,—V'3,1,V3,1)/2V6

(1,0,0,0,0,0, —1,0,0,0,0,0) /v 2
(0,0,1,0,1,0,0,0, —1,0, —1,0) /2
(0,0,0,1,0, —1,0,0,0, —1,0,1) /2
(0,1,0,0,0,0,0, —1,0,0,0,0) /V2
(0,0,1,0,—1,0,0,0, —1,0,1,0) /2
0,0,0,1,0,1,0,0,0, —1,0, —1)/2
0,1,0,0,0,0,0,1,0,0,0,0)/V2
0,0,1,0,—1,0,0,0,1,0, —1,0)/2
0,0,0,1,0,1,0,0,0,1,0,1)/2
(1,0,0,0,0,0,1,0,0,0,0,0) /V2
(0,0,1,0,1,0,0,0,1,0,1,0)/2
(0,0,0,1,0,—1,0,0,0,1,0, — 1) /2

(
(
(
(

2,0,—1,V3,—1,—V3,2i,0, —i,V/3i, —i, —V'3i) /2V'6
(24,0, —i,V3i, —i, —V/3i,2,0, — 1,13, —1,—V/3) /2V'6
0,2, —V3,—1,V3,—1,0,2i, —V/3i, —i,V/3i,— ) /2V'6
0, —2i,V/3i,i, —V/3i,i,0,—2,V3,1,—V3,1) /2V'6
(1,i,1,i,1,i, —i,1, —i,1,—i,1)2/V3
(—iy—1,—i,—1,—i, —1,1,—i,1, —i, 1, — ) /2V3

(1, —i,1, —i) 1, —i, —i, — 1, —i, — 1, —i,—1)/2V'3
(—i1,—i,1,—i,1,1,i,1,i,1,i)2V3

(1’ '—i)w*’ ——ia)*,a), —i(l), —i9— 17 ——iCt)*, —w*, "“'im, —'C‘))/z‘/3

(—i,1, —iw,0, —io* o* 1,i,0,i0,0%io*)/2V3
(L,i,0,io,0*%io* —i,1, —io,0, —io*o0*)/2V3
(

—iy—1,—ie* —0* —iv, —0,1, —i,o* —io* o, —in)/2V3

(1,0,0,0,0,0,1,0,0,0,0,0) /v 2
(—1,0,0,0,0,0,1,0,0,0,0,0) /2
(0,0,1,0,1,0,0,0,1,0,1,0)/2

0,0, —1,0,—1,0,0,0,1,0,1,0)/2
0,0,0,1,0, —1,0,0,0,1,0, —1) /2
(0,0,0,—1,0,1,0,0,0,1,0, —1) /2
(0,1,0,0,0,0,0,1,0,0,0,0)/V2
©,—1,0,0,0,0,0,1,0,0,0,0)/V2
(0,0,0,1,0,1,0,0,0,1,0,1)/2
(0,0,0, —1,0, —1,0,0,0,1,0,1) /2
(0,0,1,0,—1,0,0,0,1,0, — 1,0) /2
(0,0,—1,0,1,0,0,0,1,0, —1,0)/2

U
Uz
Uz73
Uz74
Uzrs
Uz76
Uz77
Uas
Uzr9
U0
Uzt
Uzgr

U2g3
Ujgs
U2gs
U2se
U7
U8
Ugg
Uz90
U291
U9,
U393
U294

Uz9s
U296
U297
U29s
U299
U300
Uson
U302
U303
U304
U305
U3

U307
U 308
U309
Usio
Ui
Usnz
Us3
Usg
Usys
U3
Uz
Uszg
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TABLE V1. (Continued.)
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2,0,—1,v3,—1,—V3,-2,0,1,—V3,1,v3) /26
©0,2,—v3,-1,V3,-1,0,2,— V3, -1,V3,-1)/2V6
2,0,—1,v3,-1,-1/3,2,0,—1,V3,—1,-V3)/2V6
©0,2,—V3,-1,V3,-1,0,—2,V'3,1,—V3,1)/2V’6
4,0,1,—v3,1,v/3,-4,0,—1,V3,—1,—-V3)/2V’6
0,0,—v/3,3,/3,3,0,0,V/3, —3, —V/3,-3)/2V'6
0,0,V/3,—3,-1/3,-3,0,0,V/3,—3,—-V3,-3)/2V6
4,0,1,—V'3,1,V/3,4,0,1,—V'3,1,V'3) /2V6
0,4,V3,1,—V'3,1,0,4,V3,1,—V3,1)/2V6
©0,0,—3,—v3,-3,V/3,0,0,—3, —V3,—3,V3) /2V6
(0,0,3,V/3,3,-1'3,0,0,—3, —V'3,—3,v/3)/2V'6
©0,4,V3,1,—V'3,1,0,—4, V3, —1,V3,-1)/2V6

2,0, —w,0V 3, —0* —0*V/3,0,0,0,0,0,0) /213
(0,0,0,0,0,0, —2i,0,ic*, —iw*V 3,iw,ioV3)/2V3
0,2, —0V3, —0,0*V3,—©*,0,0,0,0,0,0) /2V3
(0,0,0,0,0,0,0,2i, —iw*V'3, —io*ioV 3, —iw)/2V3
2,0, —0*V'3, —w, —©V'3,0,0,0,0,0,0) /2V3
(0,0,0,0,0,0,2i,0, —iw,i0V 3, —iw* —iw*V'3)/2V3
0,2, —*V3, —w*0V3,—v,0,0,0,0,0,0)/2V3
(0,0,0,0,0,0,0, —2i,iwV/3,iw, —iw*V 3,in*)/2V3
2,0,—1,v/3,—1,—-173,0,0,0,0,0,0)/2V'3
(0,0,0,0,0,0,2i,0, —i,V/'3i, —i, —V/3i) /2V3

0,2, —v'3,—-1,v/3,—1,0,0,0,0,0,0) /23
(0,0,0,0,0,0,0, —2i,V 3i,i, —V'3i,i) /2V3

(1,0,0,0,0,0,0,0,0,0, —1,0) /V2
(0,0,1,0,0,0,0,0, —1,0,0,0) /V2
(0,0,0,0,1,0, — 1,0,0,0,0,0) /V2
(©,1,0,0,0,0,0,0,0,0,0,1) /V2
(0,0,0,1,0,0,0,0,0,1,0,0) /V'2
(0,0,0,0,0,1,0,1,0,0,0,0) /v2
(1,0,0,0,0,0,0,0,0,0,1,0)/v2
(0,0,1,0,0,0,0,0,1,0,0,0)/V2
(0,0,0,0,1,0,1,0,0,0,0,0) /2
©,1,0,0,0,0,0,0,0,0,0, — 1)V"2
(0,0,0,1,0,0,0,0,0, —1,0,0)/V2
(0,0,0,0,0, 1,0, —1,0,0,0,0) /V"2

(1,0,0,0,0,0,0,0,0,0,1,0) /V2
(—1,0,0,0,0,0,0,0,0,0,i,0) /V2
(0,0,1,0,0,0,0,0,1,0,0,0) /2
(0,0, —1,0,0,0,0,0,,0,0,0) /V'2
(0,0,0,0,1,0,1,0,0,0,0,0) /V2
(0,0,0,0, —i,0,,0,0,0,0,0) /2
(©,1,0,0,0,0,0,0,0,0,0, —1)/V2
(0, —1,0,0,0,0,0,0,0,0,0, —i) /V'2
0,0,0,1,0,0,0,0,0, —1,0,0)/V2
0,0,0, —i,0,0,0,0,0, —i,0,0) /V"2
0,0,0,0,0,1,0, —1,0,0,0,0)/V"2

(
(
(
(0,0,0,0,0, —i,0, —i,0,0,0,0) /V'2

Usgg
U320
Ui
U3
Ui
U3
U3zs
U3e
U327
U3g
U39
U3z

, U3

Uiz
U333
U3
U33s
U336
U337
U33g
U339
U340
Uz
U3

U39
U3s0
U3st
U3g
U3g3
U3ga
U3gs
U3ge
U3g7
U3gs
U3gy
U390

U391
U392
U393
U394
U39s
U396
U3g7
U39
U399
U 00
Uaso1
U402
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TI

(1,0,0,0,0,0, —1,0,0,0,0,0) /V'2
(0,0,1,0,0,0,0,0,0,0, —1,0)/V2
(0,0,0,0,1,0,0,0, —1,0,0,0) /V2
0,1,0,0,0,0,0,1,0,0,0,0) /V2
(0,0,0,1,0,0,0,0,0,0,0,1)/v2
(0,0,0,0,0,1,0,0,0,1,0,0) /v2
(1,0,0,0,0,0,1,0,0,0,0,0) /V"2
(0,0,1,0,0,0,0,0,0,0,1,0)/V2
(0,0,0,0,1,0,0,0,1,0,0,0)/V2
(0,1,0,0,0,0,0, —1,0,0,0,0)/V2
(0,0,0,1,0,0,0,0,0,0,0, — 1) /V2
(0,0,0,0,0,1,0,0,0, —1,0,0) /V2

(1,0,0,0,0,0,1,0,0,0,0,0) /V2
(—1,0,0,0,0,0,i,0,0,0,0,0) /2
©,0,1,0,0,0,0,0,0,0,1,0) /V2
(0,0, —,0,0,0,0,0,0,0,i,0) /2
(0,0,0,0,1,0,0,0,1,0,0,0) /v2
(0,0,0,0, —i,0,0,0,4,0,0,0) /V2
©,1,0,0,0,0,0, —1,0,0,0,0)/V2
(0, —1,0,0,0,0,0, —#,0,0,0,0) /2
(0,0,0,1,0,0,0,0,0,0,0, —1)/V2
(0,0,0, —i,0,0,0,0,0,0,0, —i) /V'2
(0,0,0,0,0,1,0,0,0, —1,0,0) /2
(0,0,0,0,0, —i,0,0,0, —i,0,0) /V2

(1,0,0,0,0,0,0,0,0,0,0,0)
(0,0,0,0,0,0,1,0,0,0,0,0)
(0,0,1,0,1,0,0,0,0,0,0,0) /V2
(0,0,0,0,0,0,0,0,1,0,1,0) /v2
(0,0,0,1,0, —1,0,0,0,0,0,0) /V2
(0,0,0,0,0,0,0,0,0,1,0, — 1) /V2
(0,1,0,0,0,0,0,0,0,0,0,0)
(0,0,0,0,0,0,0,1,0,0,0,0)
(0,0,0,1,0,1,0,0,0,0,0,0) /v2
(0,0,0,0,0,0,0,0,0,1,0,1)/V2
(0,0,1,0, —1,0,0,0,0,0,0,0) /2
(0,0,0,0,0,0,0,0,0,1,0, — 1) /V/2

(1,0,0,0,0,0,0,0,0,0,0,0)
(0,0,1,0,1,0,0,0,0,0,0,0) /V2
(0,0,0,1,0, —1,0,0,0,0,0,0) /2
(0,0,0,0,0,0,1,0,0,0,0,0)
(0,0,0,0,0,0,0,0,1,0,1,0)/V2
(0,0,0,0,0,0,0,0,0,1,0, —1) /V2
(0,0,0,0,0,0,0,1,0,0,0,0)
(0,0,0,0,0,0,0,0,0,1,0,1) /v2
(0,0,0,0,0,0,0,0,1,0, —1,0)/V2
(0,1,0,0,0,0,0,0,0,0,0,0)
(0,0,0,1,0,1,0,0,0,0,0,0)/v2
(0,0,1,0, —1,0,0,0,0,0,0,0) /V2

U403
Uaos
Uaos
Uaos
Uso7
U408
U409
Uaro
Usn
Usn2
Us3
Usls

Uais
Uste
U7
Usg
Uare
Uso
U421
Ua
Ugs
Usos
U42s
Use

Ug7
Usg
U9
Ua30
Usg3y
Usz
U433
Uazs
U43s
U6
U437
Ug3g

U439
Uss0
Uss
Ussy
Uaa3
U
Usas
Uasse
Usar
Usag
Uasag
Uss0
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Xn

FIG. 2. Relative orientation of the axes x,y,z and
x',y",z" used in the text with respect to the hexagonal
axes.

cells the displacements are given by
u (IR)=E,(R |I_i1nta)exp[iﬁ1'3(‘(l)] . (12)

The tabulated symmetry modes correspond to
the small IR of the different stars. To obtain the
symmetry-adapted modes for the corresponding IR
of P6;/mmec, it is only required to make use of Eq.
(9). The generators of the star arms are listed in
Appendix A and coincide with those chosen for
the symmetry points in Ref. 6. The matrices T for
these generators to be used in (9) are shown in Ap-
pendix C.

Xn

FIG. 3. Relationship between the Bravais lattice (T')
for the KNiCl; at room temperature and the prototype
lattice (T") corresponding to the hexagonal perovskite
structure. «, B, and y are the origin of the three cells
included in the high-temperature cell. The relations be-
tween coordinates are X, =x —2y and Y, =2x —y,
where x and y are the reference frame for the low-
symmetry phase.

TABLE VII. Symmetry modes of the hexagonal
perovskite structure (2L) compatible with the symmetry
P6;cm (Ty) of the KNICL; room-temperature structure.

K K, 1 1
K, 1 2
F Alg 1
Ay 1 1 1

IV. DISTORTION ANALYSIS OF THE KNiCl,
STRUCTURE AT ROOM TEMPERATURE

The crystal structure of KNiCl; at room tem-
perature has been recently determined by x-ray
single-crystal diffraction techniques.’ It can be
considered as a slight modification with symmetry
P 63cm of the hexagonal perovskite (2L) structure,
which is the usual arrangement of this type of
compounds at high temperatures. A first-order
structural phase transition is known to occur in
KNiCl; at 753 K, and there is probably another
one at 560 K.> Both high-temperature phases are
hexagonal, but their structures have not been re-
ported yet. It is most likely that hexagonal
perovskite is one of them. In any case, as with
other compounds of the same family, it is reason-
able to consider hexagonal perovskite (CsNiCl,) as
the prototype phase structure for the KNiCl,
room-temperature arrangement.

In order to see a practical use of the results from

/Mr/ / /)

7 /t

L
AT AP
/R

FIG. 4. Schematic representation of mode ¢5 with
symmetry K(1,1) for the B ions (K in KNiCls).
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FIG. 5._’Schematic representation of displacements (a)
€ and (b) b for the X ions mentioned in the text.

the previous sections and the tables in Ref. 6, in
this section we shall study the distortion that re-
lates these two phases. The different symmetry
modes present in the distortion are determined and
described. Afterwards we discuss their relative
weight in the actual distortion, making use of the
published room-temperature structural data.

The relationship between the prototype (7°) and
distorted phase (T;) hexagonal lattices, in this par-
ticular case, is shown in Fig. 3. A triplication of
the unit cell takes place and their orientation
differs by an angle of 90°. According to Tables 2
and 3 in Ref. 6, the T, lattice is associated with
the symmetry point K of the hexagonal Brillouin
zone and IR K, should be the symmetry of the OP
[being its displacement along the (1,— 1) direction],
if P6;cm is to be the symmetry of the low-
symmetry phase.

According to what has been stated in Sec. II
there are other IR’s compatible with the low-
symmetry phase. They are those which have, as
invariance groups, subgroups of P6;/mmec contain-
ing the group P6;cm (T,). They can be readily

FIG. 6. Distortion in the free volumen surrounding
the X ions created by mode ¢s [symmetry K (1,1)] of
the B ions.

TABLE VIII. Displacement vectors in the three
relevant unit cells (1=0,1,2) for modes ¢¢ and ¢; of
symmetry K;(1,1).

X u(0) u(l1) u(2)
b 2% % %
é7 0 b —b

sorted out in Table 3 of Ref. 6. Apart from the
trivial representation, they are A4,, with invariance
group P6;mc (T) and K [direction (1,1)] with in-
variance group P6;/mcem (T,) (Ref. 6). This
means that only modes with symmetry K, (1,—1),
K,(1,1), A,,, and 4, will be present in the crystal
distortion. The number of modes with these sym-
metries and their corresponding subspaces, as ob-
tained from Appendix B, are shown in Table VII.
From this table we can see that nine degrees of
freedom are involved in the problem. We shall
now describe the atomic displacements correspond-
ing to each of them. We first present the explicit
calculation for the mode K in the B,, subspace, as
an example of the use of the tables introduced in
the preceding section.

The basis vectors for the IR K are as follows
(Table IV):

E(K,K;,1,1)=Uy3 ,
(13)

E(K,K1,1,1)=T(k;{I | 000} E(K,,K;,1,1),
where E:(—%,%,O) and E2=(—;—,——%,0) are the
two arms of the k star (Table XIII, Appendix A).
The matrix I in (13), according to Appendix C, is

TABLE IX. Description of the symmetry modes ¢g
and ¢y of symmetry K4 (1,—1) for the three relevant
unit cells.

u(0) u(l) u(2)

®s Ay, 2 -1 —1
A,, 2 —1 —1

¢9 Xlz 2 —1 _.1
X, 2 —1 —1

XSZ 2 —1 -1

X, 2 —1 —1

X5, 2 —1 —1

X, 2 —1 —1
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TABLE X. Distortion of the room-temperature
structure with respect to the ideal hexagonal perovskite
structure (2L). The axes used are the orthogonal ones
introduced in Sec. III. The numbers in parentheses be-
sides 4, B, and X labels indicate the unit-cell label from
the prototype Bravais lattice in which the ion is situated.
The numbers in parentheses besides K, Ni, and Cl labels
follow the notation used in Ref. 5.

b'¢ Y Z
Bi(2) V73 3 794 K

A4,(0) Ni(1)
A4,(2) 123 Ni2)
X,(0) (V3/2)(319.6—2x) 10.4 CI1)

Xy(1)  (V3/2)(x—162) —2402+3x 1352 CIQ)

given by

T(k ;{1 |000})=As(k;) , (14)

I

where A3(K;)=exp(—2mi/3)=w*. Using (13) and
(14) we obtain

E(Kp,K 1, 1,1) =7 (0,io,—0*io*) . (15)

The displacements corresponding to the (1,1) sub-
space in K are then (for /=0 unit cell):

U(0)=E(K,K;,1,1) +E(K,,K;,1,1)
=s0*(—1,V3,-2,0).

As the transition triplicates the unit cell, dis-
placements of three adjacent unit cells in the proto-
type phase must be considered in order to describe
the distortion. Using Eq. (12) with X(1)=(1,0,0)
and X(2)=(1,1,0), we find in an analogous way to

(16)

1
=ty =—~=(2,0,—1,V3,—1,—v3,-2,0,1—-v3,1,v3) .
da=1usm 2‘/3( 0, 3,1,V3)

263

u(0):

(1)=50*(2,0,1,—V3),
(17)
1(2)=30*(—1,V3,1,V3).

In Fig. 4 the K, distortion ¢5s=4d(0) + W(1)
+ W(2) in the b,, subspace is schematically shown.
In this figure, more than three cells are included in
order to see the distortion effect. We observe that
the B ions try to “tighten up” around the lattice
site axes that are kept in the low-symmetry phase.
When the amplitude mode is negative, the effect
will be reverse. It can be considered a breathing
mode of the octahedra columns of B ions around
the lattice site axes which are conserved. Note
that in fact no lattice site is “privileged” if the an-
tiphase domain structure is considered.®!® The
remaining eight modes are obtained in a similar
way. A short description of them is given below.

1. Ay, modes

The three A,, modes correspond to movements
of all the atoms along the z axis. In this case the
IR belongs to the I' point; all unit cells in the T’
lattice are in phase and the IR is one-dimensional.
Therefore, the corresponding atomic displacements
can be easily read in the tables:

d1=uy, dr=uz, $3=uyg , (18)

It is important to note that in this distortion, the
relative displacements between different groups of
atoms could induce a spontaneous polarization.

2. Aj, modes

There exists a unique 4, mode that corresponds
to displacements of the X atoms on the xy plane:

(19)

TABLE XI. Amplitudes of the nine modes intervening in the room-temperature distor-

tion of KNiCl,.

Mode Symmetry Subspace Amplitude Faintness index
& A, Ay, —5.5 3
é> B, Ay —8 3
&3 X, Ay +6 3
4 Xy Ay unknown 2
&5 B,, K, (1,1) —-1.7 2
ds Xy K, (1,1) —0.5 2
7 Xy K, (1,1) —1.4 2
s A, K, (1,—-1) —41 1
o X, K, (1,—-1) —41.6 1
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TABLE XII. Reciprocal-lattice vectors of the hexagonal Bravais lattice and their
transformation properties by application of the chosen generators.

— 2 -
E gi=""(1/V3,-1,0) gz=za—7r(2/‘/§,0,0) :=27(0,0,1)
a
cé gz —Ei1+2: 23
Cz —gl —EZ EB
I — g -2 -2

It corresponds to a “breathing” of the X octahedra
columns around the z axis, while keeping the
P6;/mmc symmetry. It is schematically shown in
Fig. 5(a). This type of distortion for a unit cell
will be in what follows indicated by the symbol €.

3. K; modes

Apart from the K; mode, which was determined
above, there are two others assoicated to X,, dis-
placements. They are shown in Table VIII. Vec-
tors € and b of this table are shown in Fig. 5. It
is interesting to analyze the distortion under the
action of the three modes together. In Fig. 6 we

show a schematic representation, for the three
relevant lattice sites, of the distortion created by
mode @5 in the surrounding of the X ions. The €
displacements in ¢4 (Table VIII) can be considered
as expansions and contractions of the X octahedra
columns, in order to adequate themselves to the
volume change of the surrounding free space. The
same occurs with the b displacement in ¢;, which
can be interpreted as a result of the geometric
change of these surroundings. Note that for /=0,
no displacement is present in ¢, in agreement with
the fact that the point symmetry of the surround-
ing B ions is maintained by mode ¢s for this unit
cell, as can be seen in Fig. 6. From this “mechani-
cal” point of view, it is expected that the ¢¢ ampli-

TABLE XIII. Symmetry points and lines of the hexagonal Brillouin lattice studied in this
paper. The number of arms in the star and chosen generators are also indicated. The vector

components are shown in the basis g;,g,,83-

Point or line k, components Arms Generators
r (0,0,0) 1
M 0,5,0 3 ory
4 0,0,5) 1
L ©,5,3) 3 cé
T2
K (5,50) 2 I
1 2 1
H (57) 2 I
A(4) 0,0,a) 2 I
U(ML) 0,5,@) 6 C#,I
P(KH) (3.3, 4 Gl
T(I'K) @,2a,0) 6 c¢
S(4H) @2a,5) 6 c
T'(MK) (2@, +a,0) 6 cé
S"(LH) Qa,5+a,3) 6 cé
S(T'M) (0,a,0) 6 lors
R(AL) ©0,a,7) 6 lors
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TABLE XIV. Compatibility relations for the symme-
try modes corresponding to the A ions in the hexagonal

perovskite structure (2L).

[ A B R L U ™ E r Axis
Hm H \R/t\ /L.!A_M, gu.. 2
BB ¥ Uit 24 B
E F, E\ /Li M —2
bk \ féE/ w —zi\\Ew X
E / B —U—M; —
Ee—F, \_"/L \U4—MZ~— S/Eu Y
r T x P H S H
Wl k R\H'—S 2
By TA*Kr—Pz T
/T\ x
\ / \H
-1-3 /~ \’ / 3 N
Eul Ks —=,
N}/
L& H M T K
Mi— T K, 2
Me—Tr—K:
L—S—h,  MiTey x
P{\'/‘;—T%<
—H ‘ Y
Ll_Si Mz T/ H

TABLE XV. Compatibility relations for the symme-
try modes corresponding to the B ions in the hexagonal
perovskite structure (2L).

P A B R N N D A Axis
Ba— %a\q/P\L/U, Il\ﬂ/st R
:L___ / \lt/ i\u MT/LLZ\HM

£ P— U;—T"',\ _

Eu EZ\/E/|‘<LJ, Sls—ky »
3\ _
Em—Ea/ \\AE‘>L <H MJ\2§4—tm v
i—

T kK P H S R
;3 ;3\1«—% H— S—h, :
E:x§<<._i—_ u >< =
14 —t
AN, 3!
AV
L S H M T K
L—s—t VT, :
LM
| §—H M{—T;_Ki x
N el
L—sf—H, M .
Mi—T.—¥

TABLE XVI. Compatibility relations for the symme-
try modes along the z axis corresponding to the X ions
in the hexagonal perovskite structure (2L).

et ;:\; ZLE‘\ /”‘i M~ 2/"‘
3 Bz/"??:?/”\’u# e By
- 1r 1

Cow E:\ELL t” L,/u" M, \\2§ Ezu
E:q Ei/‘ANE‘/ :\” M/ 23 Eﬁ\(

. LM1\ 1/K3
Zh\SS’éHz P /NS\ZK
O 6

Ny UsenC
> My~ Ky

tude has a sign opposite to that of ¢s, while ¢, has
the same sign.

4. K4 modes

The two K, modes are indicated in Table IX.
In this case the atoms A4, in the center of the B oc-
tahedra columns, show displacements with ampli-
tude twice as large as that for atoms between
columns. Moreover, both displacements have op-
posite directions.

Since K, (1,—1) is the symmetry of the OP, if
the phase transition is of the displacive type, the
soft mode will be given by a linear combination of
these two K, modes. Furthermore, its amplitude
will be proportional to (T —T)!/?> when a second
character is shown.

In summary, the structural distortion of the hex-
agonal perovskite structure corresponding to a
P6;cm(T,) symmetry can be schematically
represented as

u= ici¢i ’

i=1
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TABLE XVII. Compatibility relations for the symmetry modes in the xy plane corre-
sponding to the X ions in the hexagonal perovskite structure (2L).

S

M

F A Ij’ R L U £ I 41_5
. Hi—q Uy M, A
¥ 3 it 45 g
BB\, L. T UM /Bﬁ -
/:)E W 2 E'I\La /UQ""‘M;\Z s 651\
ZEiu—z Ed\-) PQ\ LE“/ : \L]z'—‘—M:/ ":’ 24
LEr—1E g e F~y LMo 26
9 mEn :)Eu - La/ 4 3 271 3
: : JE+ i \UZ—M‘,/ 6§q<
2 I\H Z:E”\z }-Z/Z U3_2 M‘;\4 2 Hz y
Bz'u Bz/ : 1E \2 Ul.—Z M;/ A \Bzi
[ T K_P H S A
ki Z Ki—2P, A: x!
n 37& /M cn ?)g /
Ds%}an W 2hy ‘
an< kAP s i (SR,
R %W/ \
7 !
R / L \2 KT“Z 2 351 H. 7
Bad
L S ) M T K
I~ M
39, 2 He 1 (T X
L / Mgy
A R +/3Tl1 \
N s/
/ 35 H, ¢ _7' gTz, 7

where ¢; are the modes discussed above. In our
particular case the distortion # can be obtained
from the experimental structural data.’ for this
purpose, it is only necessary to operate with the
asymmetrical unit in the room-temperature struc-

ture of KNICl;. The results are shown in Table X.

The atom displacements with respect to their ideal
position in the hexagonal perovskite structure are
indicated as fractions of the corresponding cell
parameters, along the orthogonal axes used in pre-
vious sections (see Fig. 2). The displacements of
the Cl ions are indeterminable owing to the fact
that their position is not fixed by symmetry condi-
tions in the prototype phase (see Fig. 1).

The subsequent determination of the amplitudes

¢; intervening in (20) is straighforward owing to
the orthogonality between the different modes ¢;.
We summarize the results in Table XI, where the
faintness index for every mode is also indicated.

In order to be able to make a meaningful compar-
ison of the amplitudes, the usual normalization
factors shown in Tables I -1V for the different
modes have not been considered. Hence the metric
chosen in this way is therefore, in some sense, arbi-
trary, but it allows a qualitative indication of the
relative weight of their contributions to the total
atomic displacements, since the atomic displace-
ments intervening in any mode are of the same or-
der of magnitude. Obviously, no mass-dependent
normalization has been used. It is important to
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note that the amplitude of the 4, modes in Table
XI remains unknown. This indetermination for
Ay modes will be usual in any analysis of this type
when the actual parent phase structure is unknown
with respect to those atomic positions that are not
fixed by symmetry conditions. It should be also
pointed out that in the case of 4,, modes, the am-
plitudes have been calculated considering the center
of mass of every proton-type unit cell at rest for
this type of mode.

Some important points can be deduced from
Table XI. First, the predominance of modes K, in
the distortion is evident, being at least 1 order of
magnitude stronger. Although these modes corre-
spond to the OP symmetry for the assumed phase
transition, their strong contribution to the total
distortion at a temperature separated by about 260
K from the nearest suggested phase transiton® is
rather significant, and suggests that the OP contri-
butions to the structural distortion created in a
phase transition remain much stronger than those
produced as a coupling effect even for tempera-
tures rather distant from the transition point. This
suggestion is more significant if we consider that,
from a group-theoretical point of view, all the
modes listed compatible with the new symmetry
have the same importance in describing the final
distortion. ’

SYMMETRY MODES AND DESCRIPTION OF DISTORTED . ..

267

On the other hand, the contribution of modes
with faintness index 2 seems to have less impor-
tance than those having faintness index 3, in con-
tradiction to what it should be if we consider that
the faintness index is a measure of the coupling
strength with the OP.

Finally, with respect to the sign correlation be-
tween modes ¢s, ¢g, and ¢, which was suggested
above from geometric considerations, the sign of ¢g
is in agreement with it, but not the one for ¢;. In
any case the amplitude of the three modes are not
sufficiently significant to allow a clear test.

APPENDIX A

In this appendix the characteristics of the hexag-
onal reciprocal lattice and its Brillouin zone are
summarized in Tables XII and XIII following Ref.
8, and we indicate the generators we have chosen
for every k star.

APPENDIX B

In this appendix the compatibility relations for
the modes corresponding to the different ions are
shown in Tables XIV —XVII.

APPENDIX C

In this appendix we indicate the matrices I" defined in

1 T1,C) t,C&
I ACy
Aatom A C,
1 AsC,
Batom I AC,
I ACy
! AC
I
XatomA, I c,
I C,
I C,

The vectorial representations for I, C,, and C & are

(4) (Sec. II) for the generators chosen in Table XII.

Ay
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1 V3
s ——— 0
2
v3 oo
2o o
0 0 1

and A;=exp(iKT;), with T;=(0,0,—1), T,=(0,0,1), T3 =(—1,—1,—1), T4=(—1,—1,0),

Ts=(—1,—1,1), T¢e=(—1,0,1).
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