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Symmetry modes and description of distorted phases in hexagonal ABX3 compounds.

Application to KNicl3 room-temperature structure
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The group-theoretical analysis of the hexagonal perovskite structure {3L,space group

P63/mme), considered as a common prototype phase of most hexagonal or pseudohexago-

nal ABX3 compounds, which was initiated recently [Perez-Mato et al., J. Phys. C 14,
1121 (1981)],is continued in this paper. After discussing, in a general case, the distortion

created by a structural phase transition in terms of symmetry modes of the prototype

structure, the selection rules restricting their presence in the distortion are formulated

stressing the role played by the invariance groups of the prototype-space-group irreducible

representations. Then, restricting the study to the hexagonal perovskite structure, we

have worked out its symmetry modes and their compatibility relations. Finally, as an ex-

ample, the room-temperature phase in KNiC13 is analyzed as a distortion from the ideal

hexagonal perovskite. The possible nine symmetry modes intervening in it are described,

and their relative weight in the actual distortion is calculated. Although the crystal is

separated by about 260 K from the nearest reported phase transition, the distortion is

surprisingly dominated by the two modes corresponding to the necessary order-parameter

symmetry describing the symmetry change between the compared phases, while the am-

plitudes of the remaining "free" modes are at least 1 order of magnitude smaller.

I. INTRODUCTION

It is well known that many compounds with the
general formula ABX3 undergo structural phase
transitions corresponding to slight distortions of
the ideal cubic or hexagonal perovskites (3L or 2L)
structures with Pm 3m or P63/mmc symmetries,
respectively. In the case of the cubic-prototype
phase there are some phase-transition sequences
that have been widely and intensively investigated
in the past. See, for example, a short review about
ABCls compounds in Ref. 1. In more recent years
interesting phase transitions have also been found
in ABX3 compounds with a hexagonal or
pseudohexagonal-prototype phase. It is likely

that in the future new phase transitions will be
discovered. This expectation and the already im-

portant number of known phase transitions in this

group make a wide theoretical study based on sym-

metry arguments desirable.
According to this idea, we recently presented a

systematic study of the possible phase symmetries
derived from a prototype phase with the P63/mmc
space group. In that paper all the irreducible rep-
resentations (IR) of the prototype space group that

belong to symmetry points in the hexagonal Bril-
louin zone were analyzed as possible order-
parameter (OP) symmetries, and all their invari-

ance groups were obtained.
In this paper, the symmetry arguments are ex-

tended to the description of the structural charac-
teristics of the low-symmetry phases in the hexago-
nal ABX3 compounds. The microscopic variables

(modes) that describe the low-symmetry phase as a
structural distortion of the prototype phase are in-

vestigated. The theory is discussed in a general
form in Sec. II, where the important role that sym-

metry modes play in the formalism is shown. Sub-

sequently the symmetry modes and their compati-
bility relationships have been determined for the
hexagonal perovskite ABX3 structure, and the re-

sults are summarized in several tables in Sec. III
and Appendixes A, B, and C. All symmetry
points and lines in the hexagonal Brillouin zone
have been treated. Finally, in Sec. IV, the recently
reported room-temperature structure of KNiC13 is
analyzed as an example, making use of the results
presented in preceding sections and Ref. 6.
Throughout the paper, the employed notation fol-
lows closely that of Bradley and Cracknell and
Maradudin and Vosko.

26 250 1982 The American Physical Society



26 SYMMETRY MODES AND DESCRIPTION OF DISTORTED. . . 251

II. CRYSTAL STRUCTURE DISTORTION
ANALYSIS

Among the set of microscopic variables in a
crystal, the symmetry modes of the prototype
phase are in most cases fundamental for the
description of the phase-transition mechanisms.
They are relevant not only in the case of displacive
transitions, where the softening of a vibrational
mode plays an important role, but also in a general
case, since they can always be used to describe the
idealized structural distortion that relates the low-

temperature phase with the prototype phase. In
this section we shortly develop the mathematical
structure of this description, following similar lines

and notation of those employed in Ref. 9 for the
analysis of crystal vibrational normal modes. In
this way we introduce the equations and notation
that are to be used in Sec. III to determine and ex-

press the symmetry modes for the hexagonal ABX3
structure.

A distortion in a crystal structure with 1V unit

cells and r atoms in each can be described by the
displacements from their ideal sites of its Nr
atoms:

u (lk),

where a=x,y,z, l=1, . . . , X, k=1, . . . , r. These
quantities can be considered as vector components
of a 3¹dimensional linear space M, in which a
representation M of the crystal (without distor-
tions) space group G can be readily defined.

In order to obtain a total reduction of M and
the bases for the IR, let us consider "Bloch-wave"
distortions of the form

u (lk)=U (k ~K])exp[iK] x(l)] . (2)

The transformation properties of U (k
~
K]) can be

expressed in a matrix form. If g = {R
~

v(R)
+x(m) J is an element of G, we have

U (k
~
&K])=I p(kk'

~
K],'g)Up(k'

~
K]),

(3)
with

f' p(kk'
~

K]',g) =& p5(k, FO(k', g))exp{iK] [g 'x(k) —x(k')] j, (4)

where R ~ is the matrix associated with R in the
vector representation and Fo(k', g) denotes the
atoms index to which the k' atom transforms by
the action of g.

According to (3), the 3r-dimensional subspace
M x (K] fixed) defined in (2) is invariant for

those elements g&G such that RK]=K] (little
group G K ), and the matrices (4) describe a repre-

sentation M of G - in it. This representationKi Ki
can be decomposed in a sum of small irreducible
representations D, (K],n) of G:

Mg = g m(n)D, (K],n) .

I' p(kk'
~

K„'g)Ep(k'
~

K]nta )

=D«(K],n ~g)E (k ~K,nta), (7)

where D«(K],n) are the matrix elements of the
small IR. They can be determined by the usual
projection operator techniques or from Eq. (7) as
an alternative method In fac. t, it is the latter that
has been used in Sec. III. The basis can be readily
extended to the whole G-invariant linear space

M =M SM 8 . SM
t K)] K) K2 K

(where K], . . . , K are the vectors of the [K]]
star):

We can represent the corresponding bases in the
OHIl

{E(inta)], t =1, . . . , d(n), p = 1, . . . , a' .

(8)

{E(K]nta)], t= 1, . . . , d(n)

where d (n) is the dimension of D, (K],n) and the
index a distinguishes between bases corresponding
to different subspaces that transform according to
the same small IR D, (K],n) when m (n) p 1. These
symmetry modes transform according to their de-
finition as follows:

These vectors are determined by the property

E(inta) =I'(K„g~ )E(K]nta ), (9)

where g& is an arbitrary but fixed element of 6
such that RrK] ——Kr. For n and a fixed, the vec-
tors (8) constitute a basis transforming according
to the IR D(K],n) of G, and as a whole, with K]
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variable, they define a basis in the space M.
Therefore, any distortion can be written

I
I

I

'a

tt (Ik)= g g QC(K„npta)

)(E (k
~ inta)e

(10)

FIG. 1. Schematic representation of the hexagonal
perovskite structure ABX3 {2L).

III. SYMMETRY MODES IN THE HEXAGONAL
PEROVSKITE STRUCTURE

The hexagonal perovskite structure, which can
be considered the prototype phase for most of the
hexagonal ABX3 compounds, is represented in Fig.
1. The atoms in the unit cell are labeled by letters
and numbers. The symmetry modes for this type
of structure, as well as their compatibility relations
for symmetry points and lines of the hexagonal
Brillouin zone, are shown in this section and Ap-
pendixes A, B, and C. Although these calcula-
tions, according to what is stated in Sec. II, have
been performed keeping in mind their application
to the description of phase transitions in the hexag-
onal ABX3 structures, it should be noted that the
information presented here can be used in any oth-
er physical situation where the symmetry modes of
this structure are needed. Furthermore, the con-
clusions from this section can be extended to any
other crystal with P63/mmc symmetry for those
atoms with the same site symmetries as the atoms
of our particular case, which are shown in Table I.

Owing to the properties of the vector representa-
tion and the distinguishability of the atoms, the M
space defined in Sec. II can be divided in our case

TABLE I. Site symmetries in %yckoff notation for
the hexagonal perovskite {2L).

Point-group
symmetrySiteAtom

3m
6m 2

A

B
X

In the case of Landau-type phase transitions, '

the space group F of the distorted phase" is a sub-
group of G formed by the set of symmetry ele-
ments which keep the OP displacement invariant.
This displacement is defined in a vector space
transforming according to an IR Do of G. Obvi-
ously the distortion u (Ik) should be compatible
with the new symmetry F. This means that in (10)
only terms corresponding to IR D(K,n) of G, such
that they subduce the identity representation in I",
will be present. That is, their subduction index
S(F

~
K,n) should be not null. ' We shall call

these IR compatible representations (with F ).
In fact, this restriction in (10) is equivalent to

saying, in a manner closer to Von Neumann's prin-
ciple, that the symmetry modes triggered by the
transition are those belonging to an IR of G that
have invariance groups containing I' as a subgroup
(this includes obviously the proper IR Do of the
OP). Also, the relationship between the symmetry
coordinates C(Ki, npta) should be such that the
"displacement" in the IR space takes place along
the subspace corresponding to the invariance group
containing F.

Therefore, in our particular case, where
P63/mmc is the prototype group, the determina-
tion of the compatible IR relevant in (10) and the
relationships between the coefficients for a given
phase transition is reduced to a search in the tables
from Ref. 6, where the invariance groups of all the
symmetry-point IR were listed, as well as the cor-
responding subspaces.

With respect to the temperature dependence of
the symmetry coordinate C(Ki,npta), they can be
considered as "faint variables" (Refs. 13—16) for
which the thermodynamic part of the standard
Landau theory predicts near the phase transition (if
continuous) a behavior proportional to (T To) f, —
where To is the transition temperature and f the
so-called faintess index of the corresponding IR. '
The latter is given by the first symmetrized power
of [Do]f in which the considered IR appears.
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TABLE II. Symmetry modes corresponding to the A and B ions along the z axis. The vector components are given

in the order (A 1„A2,) and (B1„82,), respectively.

A 2Q

B1ll

M3
M4

(1,1)/W2
(1, —1)/V 2

(1,1)/V 2

(1,—1)/V 2

Q1

Q2

Q3

Q4

A 2Q

B2g

M2+

M3

(1,1)/V 2

(1,—1)/V 2

(1,1)/V2
(1,—1)/V 2

Q31

Q32

Q33

Q34

(1,—i)/V 2

( —1, i)I—V 2
Qs

Q6

(1,—i)/V 2
( i, 1—)/V2

Q3S

Q36

L 1 (0,1)
(1,0)

Q7

Q8

(1,—1)/V2
(1,1)/V2

Q37

Q38

(1,—1)/V 2

(1,1)/V 2
Q9

Q1p

(1,—co~)/V 2

(i,iso~)/V 2 Q4p

H3 (1,—1)/V 2

( i, —i)/V—2
Q11

Q12

Q41

Q42

(e l&CX)

A 1

B1
(1,1I,)/V 2

(1,—A, )/V2
Q13

Q14 (~ l7TCX)

A 1

B1

(l,k)/V 2

(1,—A, )/V 2
Q43

Q44

U
(eisa)

1U

2U
{1,)t, )/V 2

(1,—A, )/V2
Q1S

Q16

U

(e l7PCX)

1U

2U
(1,—A, )/V 2

(1,A, )/V 2
Q4s

Q46

P
(~ l 1TCX)

P1
P2

(l,k)/V 2

(1,—A, )/V 2
Q17

Q18

P
(e l7l'CX)

P3 (l, co~A, )/V 2

( —i, iso ~A, ) /V 2
Q47

Q48

2T
4T

(1,1)/V 2

(1,—1)/V 2
Q19

Q2p

T
(e l2$CX)

2T
3

(1,A, )/V 2

(1,—A, )/V2
Q49

Qsp

S1 (0,1)

(i,O)

Q21

Q22

S
(e l 21TCX)

(1,A, )/V 2

(i, —iA)/V2
Qs1

Qs2

2
Tl

4T'
(1,1)/V 2
(1,—1)/V 2

Q23

Q24

T'
{el 21TCX)

2
Tl

3Tt
(1,—A, )/V 2

(1,A. )/V 2
Qs3

Qs4

S1 (0,1)

(i,O)

Q2S

Q26

S'
(e l 21TCX)

S1 (1,—A, )/V 2

{i,iA, )/W2
Qss

Qs6

Q27

Q28

2X
2X

{1,0)
(o,1)

Q57

Qss

1El

2E
(1,—1)/V2
(1,1)/V 2

Q29

Q3p

1Ee

2EI
(0,1)
(1,0)

Qs9

Q6p

into the following invariant subspaces:

M=A, SA„y $8, 88„y SX, SXy .

Therefore each subspace can be treated separately.
The symmetry modes have been obtained from a

systematic application of Eq. (7) and are listed in
detail in Tables II—VI.' The matrices used for
the small IR at the symmetry points were con-
structed from the tables in Ref. 8 and coincide
with those used in our previous paper. The com-
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TABLE III. Symmetry modes for the A ions in the xy plane. The vector components are given in the order

(A 1 A 1&,A~, A2&) except for symmetry lines T and S, where the components are given along the x' and y' axes (see Fig.

2).

E1u (1,0, 1,0)/v 2

(0, 1,0, 1)/1 2

(0, 1,0, —1)/V 2

(1,0, —1,0)/v 2

Q61

Q62

Q63

Q64

P3

P3

(0, 1,0,i, )/V 2

( —1,0, —A, ,O)/W2

(1,0, —A, ,o)/V 2

(0, 1,0, —1(,)/V 2

Q93

Q 94

Q95

Q96

M1
M2
M3
M4

L 1

2L

H1

(0, 1,0, —1)/v 2

(0, 1,0, 1)/v 2

(1,0, —1,0)/v 2

(1,0, 1,0)/v 2

(l,i, —i, 1 )/2
( —l,i, —i, —1)/2
(1,—t', —t', —1)/2
( —1, —i, —i, 1)/2

(0,0,1,0)
(-'1',0,0,0)
(0,0,0,1)'

(0, —1,0,0)

(0, 1,0, 1)/V 2

( —1,0, —1,0)/V 2
(0, 1,0, —1)/v 2

(1,0, —1,0)/v 2

(l,i, l, i)/2
(i, 1,—i, —1)/2
(1,—i, 1, —i)/2
(—i, l,i, —1)/2

Q65

Q66

Q67

Q68

Q69

Q7p

Q71

Q72

Q73

Q74

Q75

Q76

Q77

Q78

Q79

Q8O

Q81

Q82

Q83

Q84

1T
2T
3T
4T

S1

S1

1
T'

2
Tl

3
T'

4
Tt

S1

S1

{0,1,0, 1)/v 2

(1,O, —1,O)/v 2

(0, 1,0, —1)/v 2

(1,0, 1,0)/V 2

(0,0,1,0)
(—i,0,0,0)
(0,1,0,0)
(0,0,0, —i)

(0, 1,0, 1)/V 2

(1,0, —1,0)/v 2
(0, 1,0, —1)/v 2
(1,0, 1,0)/v 2

(0,0,1,0)
(—i,0,0,0)
(0,1,0,0)
(0,0,O, -i)

Q97

Q98

Q99

Q 1OO

Q 1O1

Q 102

Q 103

Q 1OS

Q 1O6

Q 107

Q 108

Q 109

Q 110

Q 112

(1,0, A, ,O)/V2
{0,1,0, A, )/v 2

(1,0, —A, ,o)/V 2
(0, —1,0,A, )/V 2

Q85

Q86

Q87

Q88

1X

~X

—3X

(1,0, 1,0)/v 2

(1,0, —1,0)/v 2
(0, 1,0, —1)/v 2
(0, 1,0, 1)/v 2

Q 113

Q»4

Q11S

Q 116

1U

2U

3U

4U

(1,0, —A, ,O)/v 2

(1,0, A,,O)/V 2
(0, 1,0, —A, )/V 2

(0, 1,0,3, )/V 2

Q 89

Q9p

Q91

Q92

1EI

2E
1Ell
2Etl

(1,0, 1,0)/v 2

(1,0, —1,0)/v 2

(0, 1,0, —1)/V 2

(0, 1,0, 1)/W2

Q 117

Q 118

Q 119

Q 120

patibility relations gathered in Appendix B were
used as an auxiliary method and a consistence
check for the calculated symmetry modes. Some
of the relations in Appendix B were previously
given by Kroese' in a different notation and have
been included here for the sake of completeness.
The symmetry vectors in Tables II—VI are
described by the atomic displacements in the origin

unit cell (I =0). The displacements are given along
the (x,y,z) axes except for T and S lines where the

set (x',y', z') is used (see Fig. 2). Each table corre-
sponds to a subspace in (11) and the particular de-

tails are explained in the table.
The vectors have been numbered to facilitate any

later reference. Some modes corresponding to
symmetry lines are stated as a function of A, , which
is given by the exponential under the letter denot-
ing the symmetry line. In this exponential, a
refers to a particular K& vector along the line. It
must also be noted that when a representation ap-
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TABLE IV. Symmetry modes of the 8 ions in the xy plane. Notations: (8]„,8]~,82„,82~), except for symmetry
lines T and S, where the components are given along the x' and y' axes (see Fig. 2).

(e isa)

M]+
M3+

Mz
M4

3

1L

E]
Ez
Es

H3

E]

1U

2U

(1,0, 1,0) /')/2

(0, 1,0, 1)/V 2

(1,0, —1,0)/V 2

(0, —1,0, 1)/V 2

(1,0, 1,0)/V 2

{0,1,0, 1)/V 2
(0, 1,0, —1)/v 2

(1,0, —1,0)/V 2

(l, i, —i, 1)/2
(—i, —1, 1,—i)/2
(1,—i, —i, —1)/2
(—i, 1, 1,i)/2

(1,0, —1,0)/V 2
(—1,0, —1,0)/V2
(O, 1,O, —(I'D Z

(O, —1,O, —1)/VZ

(1,—i, —co*,—l'co*)/2

(1,—i,co*,iso*)/2
(1,l, —co*,i~*)/2
(l', —1,leo, co*)/2

(l,i,o,o)IV 2

(O, o,i co*,co ~ )/~2
(1,—i, , 0)0/V2
(O, o, ice*, —co~)/V 2

(1,0,A, ,O)/V 2

(0, 1,0, A, )/W2
(1,0, —A, ,O)/V 2

(0, —l,o,k)/V 2

(l, o, i,,o)/V 2
(1,0, —A„o)/v 2

ll 121

ll 122

ll 123

ll 124

ll 125

ll 126

ll 127

& 128

li 129

ll 130

& 131

li]32

ll 133

ll 134

& 135

ll 137

ll 138

ll 139

ll 140

ll ]4]
ll 142

ll 143

& 14S

& 146

ll 147

li]48

ll 149

&]S0

(eisa)

p

( izna)

(e l zma)

(e l 21')

S'

(e i 2~a)

3U

4U

P]
Pz
P3

1T
—1T

4T
4T

1
Tt

1
Tt

4
T'

4T'

S]

S]

1X

1X
4X

4X

'E'
2Et

2Ett

(0, 1,0, A, )/V 2
(0, 1,0, —A, )/V 2

(1,—i, —co *, —iso*A, )/2
(1,—,*A,, *A)/2
(1,l t —co A, ~ l N A )/2
(l, —1,l co A, , Q) 1,)/2

{1,0, —A, ,o)/V 2

(0, 1,0, A, )/V 2
(1,0, A, ,o) /W2
(0, 1,0, —){,)/V 2

(1,0, A, ,O)/V 2
( i, o,i—A, ,O)/V 2
(0, —1,0, A, )/V 2
(O,i, o,il)/V 2,

(1,0, A,,O)/V 2

(0, 1,0, —A, )/V 2
(1,0, —A,,o)/V 2
(0, 1,0, A, )/V 2

(1,0, —X,O)/v 2
(—i,o, —i 1L,, O)/V 2
{0,—1,0, —k)/')/2
(O, i,o, i A)/V 2— ,

(1,0,0,0)
(0,0,1,0)
(0,'1,'0,'0)

(0,0,0,1)

(1,0,0,0)
(0,0,1,0)
(0,0,0, 1)

(0, 1,0,0)

ll ]5]
ll 152

ll 153

ll ]S4

ll ]ss
ll ]S6

ll 157

li 158

ll 159

ll ]60

Q ]62

ll 163

ll 164

ll ]6s

ll 167

~ 168

Q ]69

ll 170

ll 171

ll 173

l 174

ll 175

~ 176

ll ]77

~ 178

l 179

&]80

pears several times in a subspace, the symmetry
modes have been taken as orthogonal in order to
simplify their use. Furthermore, in those points (L
and M) and lines (R, U, X, S', T', S, and T )

where the displacement subspace in the xy plane
can be separated into invariant subspaces along the
x and y axes (x' and y' for S and T ), each decom-
position appears separately in the table, and the
corresponding modes are constructed according to
this separation. For example, in the M point we
have for the X~ subspace (see Appendix B, Table
XVII):

X„=2M&++2M4 +M3++M2

and

Xy ——M)++M4++2M3 +2M2

Therefore we can consider a M3+ (x) mode (U2s7 in
Table VI) and two M3+ (y) modes (U2sq and U2ss
also in Table VI).

A11 modes can be directly taken from Tables
II—VI, except for those corresponding to the 6, U,
and E symmetry lines in the X„~ subspace. In
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TABLE V. Symmetry modes for the Xions along the z axis. Notation: (X1„X2„X3„X4„Xs„X6,). As in preceding

tables, for symmetry lines T and S, the vector components are given along the x' and y' axes. The form of the vectors

in T and T', S and S' coincide.

A—2Q

B—2g

(1,1, 1, 1, 1,1)/V 6
(1,1,1,—1,—1, —1)/V 6

(O, V 3, —V 3,0, —V 3,V 3)/2V3
( —2, 1,1,2, —1, —1)/2V 3
(O, V"3,—V 3,O, V"3, —V 3)/2V 3

(2, —1,—1,2, —1, —1)/2V 3

~181
~ 182

~ 1S3

~1S4

~1SS

~ 186

M2+
M+
M4+

M1
M3
M3

(1,0,O, —1,O, O)/V 2

(0, 1, 1,0, —1,—1)/2
(0, 1,—1,0, —1, 1)/2
(0, 1,—1,0, 1,—1)/2
(1,0,0, 1,0,0)/V 2
(0, 1, 1,0, 1,1)/2

~187

~1SS

~ 189

~ 191

~ 192

A 1

A 3

(1,1, 1, i, —i, ——i)/V 6

( i, —i, —i, 1, 1—, 1)/V 6
(1,co,co, l, leo, leo )/V 6

(i,ico,ico~, l, co,co~)/V 6

~ 193

~ 194

~ 195

~ 196

~ 197

~ 198

1L

L2

(1,0,0, 1,0,0)/V 2
(1,0,0, —1,0,0)/V 2

(0, 1, 1,0, 1,1)/2
(0, 1, 1,0, —1,—1)/2
(0, 1, —1,0, 1,—1)/2
(0, 1, —1,0, —1, 1)/2

~ 199

~2OO

~ 201

~202

~203

~ 204

L3
L4
E6

(1,1, 1,—1,—1, —1)/V 6
(1,1,1, 1, 1,1)/V6
(l, co,co*,—1, —co~, —co)/V 6
(l, l co, l co, l, l co, E co ) /V 6
(1,co ~,co, —1, —co, —co ~

) /V 6
( —E, —Eco, —Eco, —l, —leo, —ico )/v 6

~ 205

~206

~ 207

~ 208

~ 209

~ 210

H3

(0,0,0, l, co,co~)/V 3

( i, i co ~,—i co,o,—o,o—) /V 3

(0,0,0, l, co~, co)/V 3

(i,ico, ico~, , 0, 0)0/V 3

(0,0,0, 1, 1,1)/V3
(i,i,i, , 0, 0) 0/V 3

~ 211

~213

~214
~215

A 1

B1

E,

(1,1, 1,A, , A, , A. )/V6
(1,1, 1, —Z, —X, —X)/v 6
(2, —1,—1,—214„A,,A, )/2V 3

(O, V 3, —V 3,0, —V 3A, ,V 3k, )/2&3

~217

~21S

Q 219

~ 220

these cases the modes are obtained from the com-
patibility relations and the modes for the I, M,
and K points. For instance, the U3(x) mode, ac-
cording to Table XVII in Appendix B, is compati-
ble with M3+(x}, and M3+(x} from Table VI is

given by

2sv =( ~ »o, —1,0,0,0, —1,0, 1,0}/2 .

As it is stated in the table, the factor A, =e'" must
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TABLE V. (Continued. )

E,

1U

2U

I/2

3

4U

(2, —1,—1,2A, , —A, , —A )/2V 3
V»V»0 —V 3&,V3A)/2V 3

(1,0,0, A, ,o,o)/V 2
(0, 1, 1,0,, A, )/2
(1,0,0, —A, , O, O)/V 2
(0, 1, 1,0, -A, , -Z)/2
(0, 1,—1,0, A, , —A, )/2
(0, 1,—1,0, —A,,A, )/2

~221

0222

~223

~224

~225

~227

~22S

P1
P2
P3

P3

(1,1, 1,1,1,1)/V 6
1)/V 6

(1~~,~,)( «Q7 A,,COL )/V 6
(--g, —g~, leg+, lk,—leo A, leo~)/V 6
(1&~ &~&g&Q)){&Q) )I, )/W6
(i i~ ~~& —)g& —f)& (—f/) A )/W6

&229

~230

~232

Q 233

Q 234

5(S')

T,(T,')
T2(T2 )

T2(T2 )

T3(T3 )

T3(T3 )

Z3(T'3 )

gi(SI )

gi(SI )

$((S) )

(1,0,0, 1,0,0)/V 2

(0, 1,0,0, 1,0)/V 2
(0,0, 1,0,0, 1)/V 2

(1,0,0, —1,0,0)/V 2

(0, 1,0,0, —1,0)/V 2

(0,0, 1,0,0, —1)/V 2

(1,0,0, 1,0,0)/V 2

(1,0,0, —i,o,o)/V 2

(O, 1,O, O, O, 1)/V 2

(O, i,o,o,o, —i)/V 2
(0,0, 1,0, 1,0)/V2
(O, O, i, O, —i,O)/&2

&235(247)

~ 236(24S)

~237(249)

~ 23S(250)

~239(251)

~240(252)

~241(25S)

~242(254)

~ 243(255)

~ 244(256)

~245(257)

& 246(25S)

(1,0,0,0,0,0)
(0,0,0,1,0,0)
(0, 1,1,0,0,0)/V 2

(0,0,0, 1,1,0)/V 2

(0, 1,—1,0,0,0)/V 2

(O, O, O, O, 1, —1 )/V 2

~259

~260

~261

~262

~ 264

1Et
2E~

lE
ZEi

lan
28II

(0,0,0,1,0,0)
(1,0,0,0,0,0)
(0,0,0,0, 1, 1)/V 2

(0, 1,1,0,0,0)/V 2
(O, 1,—1,O, O, O)/V 2
(0,0,0,0, 1,—1)/V 2

~ 265

~266

~267

~ 26S

~269

~270

multiply the displaeements of atoms 4, 5, and 6.
Therefore, the U3(x) mode is

U35s —(0,0, 1,0, —1,0,0,0, —A,,O, A, ,O}/2

where the subindex is given by (287—283)

+355=358, as it follows from the labels given to
the M modes (283—294} and those reserved for the
U modes (355—366) (see Table VI}.

Finally, it must be noted that the displacements
in the tables refer to the I =0 unit cell. For other
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TABLE VI. Symmetry modes for the X ions in the xy plane. Notation: (Xj„,X»,Xz„,X». . . , X6~). Modes in 5,
U, and P have the same form as those corresponding to I, M, and K, respectively, except for the factor A, =e', which

should multiply the vector components of ions, 4, 5, and 6. The notation reserved for these modes is as follows.
Q 343 Q 354 U Q 355 Q 366 P: Q 367 Q 378 In lines T and S the x' and y' axes are used again.

1g

A—2g

Bju

Bzg

Ej

Ez

Ez

(2,0, —1,V 3, —1,—~3, —2,0, 1, —V 3, 1,V 3)/2V 6
(0,2, —V 3, —1,V 3, —1,0, —2, V 3, 1,—V 3, 1)/2V 6
(2,0, —1,V 3, —1, —V 3,2,0, —1, }/ 3, —1, —V 3)/2~6
(0,2, —)/3, —1,&3,—1,0,2, —V 3, —1,V 3, —1)/2&6
(1,0, 1,0, 1,0, 1,0, 1,0, 1,0)/V 6
(0, 1,0, 1,0, 1,0, 1,0, 1,0, 1)/V 6
(2,0, —1,—V 3, —1,V 3,2, 0, —1,—V 3, —1,V 3)/2'
(0, —2, —V 3, 1,V 3, 1,0, —2, —V 3, 1,V 3, 1)/2V 6
(1,0, 1,0, 1,0, —1,0, —1,0, —1,0)/V 6
(0, —1,0, —1,0, —1,0, 1,0, 1,0, 1)/V 6
(2,0, —1, —~3,—1,~3, —2,0, 1,~3, 1,—V 3)/2V 6
(0,2, V 3, —1, —V 3, —1,0, —2, —V 3, 1,V 3, 1)/2&6

Qz71

Q 272

Q 273

Qz74

Q 275

Q 276

Q277

Q 278

Q 279

Qzso

Q 281

Qzsz

M+1

M+j

Mj+
M3+

M3+

M3+

Mz
Mz
Mz
M4
M4
M4

(1,0,0,0,0,0, —1,0,0,0,0,0)/V 2

(0,0, 1,0, 1,0,0,0, —1,0, —1,0)/2
(0,0,0, 1,0, —1,0,0,0, —1,0, 1)/2
(0, 1,0,0,0,0,0, —1,0,0,0,0)/~2
(0,0, 1,0, —1,0,0,0, —1,0, 1,0)/2
(0,0,0, 1,0, 1,0,0,0, —1,0, —1)/2
(0, 1,0,0,0,0,0, 1,0,0,0,0)/V 2
(0,0, 1,0, —1,0,0,0, 1,0, —1,0)/2
(0,0,0,1,0,1,0,0,0,1,0,1)/2
(1,0,0,0,0,0, 1,0,0,0,0,0) /V 2
{0,0,1,0,1,0,0,0,1,0,1,0)/2
(0,0,0, 1,0, —1,0,0,0, 1,0, —1)/2

Qzs3

Qzs4

Q 285

Q 286

Q 287

Q 288

Q 289

Q 291

Q 293

Q 294

A 3

A 3

(2,0, —1,V 3, —1, ~3,2i, 0, i, V 3i, —i, %—3i)/—2V 6
(2i 0, i, )/3i, i,—V3—i, 2,—0, —1,V 3, —1, —V 3)/2V 6
(0, 2, —V 3, —1,V 3, —1,0,2i, V3i, —i, //3i, i)/2V—6—

(0, 2i, V 3i—,i, — 3}/i,i,0, —2,~3, 1,—V 3, 1)/2V 6
(l,i, l, i, l,i, i, 1, i, 1, i—, 1)2/—V—3

(1, i 1, i—1, i—, i, ——1, —i, —1, i,——1)/2V3-
( i, 1, i, 1,—i, 1, l, i, l,i—, l, i)2—V3
(1,—/, co

&

—//// &co& —/co& —/, —1,—/co
&

—co
&
—/N& —co)/2~3

( —/& 1, —/N&///& —/co &/0 & 1,/, co&////&co &/co )/2V 3

( i, —1, —iar", ro", iso& ———co&1,—i,co*, i/—0 &/0& ice—)/2~3—

Q 295

Q 296

Q 297

Q 298

Q 299

Q 300

Q 301

Q3oz

Q3O3

Q 304

Q 305

Q 306

2L

L2

{1,0,0,0,0,0, 1,0,0,0,0,0)/V 2
(—1,0,0,0,0,0, 1,0,0,0,0,0)/V 2
{0,0,1,0,1,0,0,0,1,0,1,0)/2
(0,0, —1,0, —1,0,0,0, 1,0, 1,0)/2
(0,0,0, 1,0, —1,0,0,0, 1,0, —1)/2
(0,0,0, —1,0, 1,0,0,0, 1,0, —1)/2
(0, 1,0,0,0,0,0, 1,0,0,0,0)/V 2

{0,—1,0,0,0,0,0, 1,0,0,0,0)/V 2

(0,0,0,1,0, 1,0,0,0,1,0,1)/2
(0,0,0, —1,0, —1,0,0,0, 1,0, 1)/2
(0,0, 1,0, —1,0,0,0, 1,0, —1,0)/2
(0,0, —1,0, 1,0,0,0, 1,0, —1,0)/2

Q3O7

Q 308

Q 309

Q31O

Q 311

Q31Z

Q 314

Q 315

Q316

Q 318
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TABLE VI. (Continued. )

K1
K1
K2
K2
K5

(2,0, —1,~3, —1, —V 3, —2, 0, 1, —V 3, 1,V 3)/2V 6

(0,2, —V 3, —1, }/ 3, —1,0,2, —~3,—1,V 3, —1 )/2'}/6

(2,0, —1,V 3, —1,—V 3,2,0, —1,03,—1,—V 3)/206
(0,2, —V3, —1,V 3, —1,0, —2, V 3, 1,—V 3, 1)/2V 6

{4,0, 1, —~3,1,~3, —4,0, —1,~3, —1, —V 3)/2V 6

(0,0, —V 3, 3,W3, 3,0,0, V 3, —3, —W3, —3)/2V 6
(OQ, V 3, —3, —V 3, —3,00,V 3, —3, —V 3, —3)/2@6
(4 0, 1,—~3, 1,V 3,4 0, 1, —V3, 1,V 3)/2V 6
(0,4, V 3, 1, —&3,1,0,4, V 3, 1,—V 3, 1)/2V 6
(0,0, —3, —~3, —3,V 3,0,0, —3, —0 3, —3,V 3)/2~6
(0,0, 3,V 3,3, —V 3,0,0, —3, —V 3, —3,V 3)/2~6
(04,V 3, 1, —V 3, 1,0, —4, —V 3, —1,~3,—1)/2V 6

u 319

u 32o

u 322

u 323

u 324

u325

u 326

u 327

u32s

u 329

u33o

H3

H3

(2,0, —co, coV 3, —co*, —co»V 3,0,0,0,0,0,0)/2V 3

(0,0,0,0,0,0, 2i, o,—ico», ico»~—3,ico, icoV 3) /2~3
(0,2, —co~3, —co,co»~3, —co», 0,0,0,0,0,0)/2~3
(0,0,0,0,0,0,0, 2i, ico»—V 3, ico»,—icoV 3, ico)/2—V 3

(2,0, —co»V 3, —co, —coV 3,0,0,0,0,0,0)/2V 3

{0,0,0,0,0,0,2i, o, ico, ico—V 3, i co», i co»V 3—)/—2V 3

(0,2, —co»V 3, —co», co~3, —co,0,0,0,0,0,0)/2~3
(0,0,0,0,0,0,0, 2i, ico—V 3,ico, ico»V 3,ico—»)/2V 3

(2,0, —1,V 3, —1,—~3,0,0,0,0,0,0)/2V 3

(0,0,0,0,0,0,2i, o, i, V 3i, —i, V3—i)/2—V 3

(0,2, —V 3, —1,W3, —1,0,0,0,0,0,0)/2V 3

(0,0,0,0,0,0,0, 2i, ~3i—,i, —V 3i, i)/2V 3

u 332

u333

u 334

u335

u 336

u 337

u33s

u 340

u 341

u 342

1T
1T
1T
1T
1T
1T
4T
4T
4T
4T
4T
4T

(1,0,0,0,0,0,0,0,0,0, —1,0)/V 2

(0,0, 1,0,0,0,0,0, —1,0,0,0) /V 2

(0,0,0,0, 1,0, —1,0,0,0,0,0)/V 2

(0, 1,0,0,0,0,0,0,0,0,0, 1)/V 2
(0,0,0, 1,0,0,0,0,0, 1,0,0)/V 2

(0,0,0,0,0, 1,0, 1,0,0,0,0)/V 2
(1,0,0,0,0,0,0,0,0,0, 1,0)/V 2

(0,0, 1,0,0,0,0,0, 1,0,0,0)/V 2
(0,0,0,0, 1,0, 1,0,0,0,0,0)/V 2

(0, 1,0,0,0,0,0,0,0,0,0, —1)V 2

(0,0,0, 1,0,0,0,0,0, —1,0,0)/V 2
(0,0,0,0,0, 1,0, —1,0,0,0,0)/V 2

u 380

u 381

u3s2

u3s3

u 384

u 385

u 386

u3s7

u 388

u 389

u 390

S1

S1

S1

S1

S1

(1,0,0,0,0,0,0,0,0,0, 1,0)/V 2

( i, o,o,o,o,—o,o,o,o,o,i,o)/V 2

(O, O, 1,0,O, O, O, O, 1,O, O, O) W 2

(0,0, i,0,0,0,0,0—,i,o,o,o)/V 2
(O, O, O, O, 1,O, 1,O, O, O, O, O) W 2
(0,0,0,0, —i,o,i,0,0,0,0,0)/V 2
(O, 1,O, O, O, O, O, O, O, O, O, —1)/V 2
(0, i,0,0,0,0,0,0—,0,0,0, —i)/~2
(0,0,0, 1,0,0,0,0,0, —1,0,0)/V 2
(0,0,0, i,o,o, o,o, o,——i, , 0)/0V 2
(0,0,0,0,0, 1,0, —1,0,0,0,0)/W2
(0,0,0,0,0, i, o, i,o, o—, , 0) 0~/2—

u 391

u 392

u 394

u 395

u 396

u 398

u400

u 402
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TABLE VI. (Continued. )

—1
T'

1
Tt

1
T'

1
Tt

1
T'

1
Tt

4T'

4
T'

4T'

4
T'

4T'

4
Tt

S1

S1

S1

S1

S1

S1

(1,0,0,0,0,0, —1,0,0,0,0,0)/V 2
(0,0, 1,0,0,0,0,0,0,0, —1,0)/')/2
(0,0,0,0, 1,0,0,0, —1,0,0,0)/W2
(O, 1,O, O, O, O, O, 1,O, O, O, O)/V 2
(0,0,0, 1,0,0,0,0,0,0,0, 1)/V 2
(0,0,0,0,0, 1,0,0,0, 1,0,0)/W2
(1,0,0,0,0,0, 1,0,0,0,0,0)/V 2

(0,0, 1,0,0,0,0,0,0,0, 1,0) /V 2
(0,0,0,0, 1,0,0,0, 1,0,0,0)/~2
(0, 1,0,0,0,0,0, —1,0,0,0,0)/V 2
(0,0,0, 1,0,0,0,0,0,0,0, —1)/V 2

(0,0,0,0,0, 1,0,0,0, —1,0,0)/~2

(1,O, O, O, O, O, i,0,0,0,0,0)/~2
(—i,o,o,o, o,o, i,0,0,0,0,0)/&2
(0,0, 1,0,0,0,0,0,0,0, 1,0)/V 2
(0,0, —i,0,0,0,0,0,0,0, i,o)/V 2
(0,0,0,0, 1,0,0,0, 1,0,0,0)/V 2
(0,0,0,0, i,o,o,—,oi, o,o, 0) /V2

(0, 1,0,0,0,0,0, —1,0,0,0,0)/V 2

(0, —l, O, O, O, O, O, —i, O, O, O, O)/V 2
(0,0,0, 1,0,0,0,0,0,0,0, —1)/V 2
(0,0,0, i,0,0,0—,0,0,0,0, i)/V 2—

(0,0,0,0,0, 1,0,0,0, —1,0,0)/V 2
(0,0,0,0,0, —i,o,o,o, —i,o,o)/V 2

u 403

u40s

u 407

u 408

u410

u411

u 412

u 413

u414

u41s

u416

u 417

u 418

u 420

u 421

u 422

u 423

u424

u 425

u 426

1X
IX
1X
1X
1X
1X
4X

~X

~X

4X

~X

1Et

1E
lE
2E
2E
2Et

1Etr

1Ert

2E
2Elt

2E

(1,0,0,0,0,0,0,0,0,0,0,0)
(0,0,0,0,0,0,1,0,0,0,0,0)
(0,0, 1,0, 1,0,0,0,0,0,0,0)/V 2
(0,0,0,0,0,0,0,0, 1,0, 1,0)/V 2
(0,0,0, 1,0, —1,0,0,0,0,0,0)/V 2
(0,0,0,0,0,0,0,0,0, 1,0, —1)/V 2
(0,1,0,0,0,0,0,0,0,0,0,0)
(0,0,0,0,0,0,0,1,0,0,0,0)
(0,0,0, 1,0, 1,0,0,0,0,0,0)/V 2
(0,0,0,0,0,0,0,0,0, 1,0, 1)/V 2
(O, O, 1,O, —1,O, O, O, O, O, O, O)/V 2
(0,0,0,0,0,0,0,0,0, 1,0, —1)/V 2

(1,0,0,0,0,0,0,0,0,0,0,0)
(0,0, 1,0, 1,0,0,0,0,0,0,0) /V 2
(0,0,0, 1,0, —1,0,0,0,0,0,0)/V 2
(0,0,0,0,0,0,1,0,0,0,0,0)
(0,0,0,0,0,0,0,0, 1,0, 1,0)/~2
(0,0,0,0,0,0,0,0,0, 1,0, —1)/V 2
(0,0,0,0,0,0,0,1,0,0,0,0)
(0,0,0,0,0,0,0,0,0, 1,0, 1)/&2
(0,0,0,0,0,0,0,0, 1,0, —1,0) /V 2

(0,1,0,0,0,0,0,0,0,0,0,0)
(0,0,0, 1,0, 1,0,0,0,0,0,0)/V 2
(0,0, 1,0, —1,0,0,0,0,0,0,0) /V 2

u427

u 428

u 429

u 430

u 431

u 432

9433

u 434

u 435

u 436

u437

u 438

u 439

u 442

u 443

u44s

u 447

u448

u 449

u4so
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&x' TABLE VII. Symmetry modes of the hexagonal
perovskite structure (2L) compatible with the symmetry
P63em (T~) of the KNiCL3 roon-temperature structure.

ys

/
/

I/
I

K4

Ki

A„y X, X„y

A)
A2s

FIG. 2. Relative orientation of the axes x,y, z and
x',y', z' used in the text with respect to the hexagonal
axes.

IV. DISTORTION ANALYSIS OF THE KNiC13
STRUCTURE AT ROOM TEMPERATURE

cells the displacements are given by

u (IR)=E (R
~
K&nta) exp[iK~ x(l)] . (12)

iiy

The tabulated symmetry modes correspond to
the small IR of the different stars. To obtain the
symmetry-adapted modes for the corresponding IR
of P63/mmc, it is only required to make use of Eq.
(9). The generators of the star arms are listed in
Appendix A and coincide with those chosen for
the symmetry points in Ref. 6. The matrices I for
these generators to be used in (9) are shown in Ap-
pendix C.

The crystal structure of KNiC13 at room tem-
perature has been recently determined by x-ray
single-crystal diffraction techniques. It can be
considered as a slight modification with symmetry
P63cm of the hexagonal perovskite (2L) structure,
which is the usual arrangement of this type of
compounds at high temperatures. A first-order
structural phase transition is known to occur in
KNiC13 at 753 K, and there is probably another
one at 560 K.' Both high-temperature phases are
hexagonal, but their structures have not been re-
ported yet. It is most likely that hexagonal
perovskite is one of them. In any case, as with
other compounds of the same family, it is reason-
able to consider hexagonal perovskite (CsNiC13) as
the prototype phase structure for the KNiC13
room-temperature arrangement.

In order to see a practical use of the results from

FIG. 3. Relationship between the Bravais lattice (Tq)
for the KNiC13 at room temperature and the prototype
lattice {T) corresponding to the hexagonal perovskite
structure. a, P, and y are the origin of the three cells
included in the high-temperature cell. The relations be-
tween coordinates are XI, ——x —2y and Yq ——2x —y,
where x and y are the reference frame for the low-
symmetry phase.

FIG. 4. Schematic representation of mode P5 with
symmetry K&(1,1) for the 8 ions (K in KNiC13).
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TABLE VIII. Displacement vectors in the three
relevant unit cells (1=0,1,2) for modes P6 and P7 of
symmetry K&(1,1).

Xxy u(0} u(1) Q (2)

2e
0

—e
b

—e
—b

FIG. 5. Schematic representation of displacements (a)
e and (b) b for the X ions mentioned in the text.

the previous sections and the tables in Ref. 6, in
this section we shall study the distortion that re-
lates these two phases. The different symmetry
modes present in the distortion are determined and
described. Afterwards we discuss their relative
weight in the actual distortion, making use of the
published room-temperature structural data.

The relationship between the prototype (T) and
distorted phase (T~) hexagonal lattices, in this par-
ticular case, is shown in Fig. 3. A triplication of
the unit cell takes place and their orientation
differs by an angle of 90'. According to Tables 2
and 3 in Ref. 6, the T~ lattice is associated with
the symmetry point E of the hexagonal Brillouin
zone and IR E4 should be the symmetry of the Op
[being its displacement along the (1,—1) direction],
if P63cm is to be the symmetry of the low-

symmetry phase.
According to what has been stated in Sec. II

there are other IR's compatible with the low-

symmetry phase. They are those which have, as
invariance groups, subgroups of P63/mme contain-
ing the group P63cm (T ). They can be readily

sorted out in Table 3 of Ref. 6. Apart from the
trivial representation, they are Aq„with invariance

group P63mc (T) and E~ [direction (1,1)] with in-

variance group P63/mcm (T~) (Ref. 6). This
means that only modes with symmetry E4 (1,—1),
E~ (1,1), A2„, and A &s will be present in the crystal
distortion. The number of modes with these sym-
metries and their corresponding subspaces, as ob-
tained from Appendix 8, are shown in Table VII.
From this table we can see that nine degrees of
freedom are involved in the problem. We shall
now describe the atomic displacements correspond-
ing to each of them. We first present the explicit
calculation for the mode E~ in the B„~ subspace, as
an example of the use of the tables introduced in
the preceding section.

The basis vectors for the IR E& are as follows
(Table IV):

E(k),Kt, 1,1)= U)37

(13)

E(kt,Et, 1, 1)=I (k i, II i
000] )E(k„E„1,1),

1 2 1 2
where k~ ——( ——,, —,,0) and k2 ——( —,, ——,,0) are the
two arms of the k star (Table XIII, Appendix A).
The matrix I in (13), according to Appendix C, is

TABLE IX. Description of the symmetry modes $8
and P9 of symmetry E4 (1,—1) for the three relevant
unit cells.

u (0) u(1) u (2)

A),
A2z

FIG. 6. Distortion in the free volumen surrounding
the X ions created by mode $5 [symmetry E& (1,1)] of
the 8 ions.

X„
X2,
X3,
X4,
Xg,
X,.
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X

B)(2)
A, (0)
A, (2)
Xl (0) (V 3/2)(319.6—2x)
X3(1) (V 3/2)(x —162)

V3 3 79.4 E
Ni(1)

123 Ni(2)
10.4 Cl(1)

—240.2+
2
x 135.2 Cl(2)

given by

I
r(k, ;[I ~000))=A,(k, ) I

where A&(ki)=exp( —27ri/3)=co~. Using (13) and

(14) we obtain

(14)

E(kq, Ki, 1, 1)= 2 (ro,iro, co~,—iro~} .

The displacements corresponding to the (1,1) sub-

space in K are then (for l=0 unit cell):

U(0) =E(k, ,IC„I, I)+E(k,,Z, , 1, 1)

= —,ro*( —1,V 3, —2,0} . (16)

As the transition triplicates the unit cell, dis-
placements of three adjacent unit cells in the proto-
type phase must be considered in order to describe
the distortion. Using Eq. (12) with x(1)=(1,0,0)
and x(2) =(1,1,0), we find in an analogous way to

TABLE X. Distortion of the room-temperature
structure with respect to the ideal hexagonal perovskite
structure (2L). The axes used are the orthogonal ones
introduced in Sec. III. The numbers in parentheses be-
sides A, B, and X labels indicate the unit-cell label from
the prototype Bravais lattice in which the ion is situated.
The numbers in parentheses besides K, Ni, and Cl labels
follow the notation used in Ref. 5.

u(0):

u(1) =-, co~(2,0, 1,—i/3),

u(2)= —,ro*( —1,v 3, 1,v 3) .
(17)

In Fig. 4 the Ki distortion lI)q ——u(0) + u(1)
+ u(2) in the b~ subspace is schematically shown.

In this figure, more than three cells are included in
order to see the distortion effect. We observe that
the 8 ions try to "tighten up" around the lattice
site axes that are kept in the low-symmetry phase.
When the amplitude mode is negative, the effect
will be reverse. It can be considered a breathing
mode of the octahedra columns of 8 ions around
the lattice site axes which are conserved. Note
that in fact no lattice site is "privileged" if the an-
tiphase domain structure is considered. ' The
remaining eight modes are obtained in a similar
way. A short description of them is given below.

1. Ag„modes

The three A2„modes correspond to movements
of all the atoms along the z axis. In this case the
IR belongs to the I point; all unit cells in the T
lattice are in phase and the IR is one-dimensional.
Therefore, the corresponding atomic displacements
can be easily read in the tables:

41 l~ 42 u31~ 03 u181

It is important to note that in this distortion, the
relative displacements between different groups of
atoms could induce a spontaneous polarization.

2. Agg modes

There exists a unique A ~g mode that corresponds
to displacements of the X atoms on the xy plane:

Ijfl4 —927i
—— (2,0, —1,W3, —1,—W3, —2,0, 1 —W3, 1,V 3)

1

TABLE XI. Amplitudes of the nine modes intervening in the room-temperature distor-

tion of KNiC13.

Mode Symmetry Subspace Amplitude Faintness index

04
47

A,
Bz
X,
X„y
B„y
X„y
X„y
A,

A2„
A2u

A2u

A 18

SC, (1,1)
E, (1', 1)
Ej (1,1)
E4 (1,—1)
E. (1', -1)

—5.5
—8

+6
unknown

—1.7
—0.5
—14

—41
—41.6
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TABLE XII. Reciprocal-lattice vectors of the hexagonal Bravais lattice and their
transformation properties by application of the chosen generators.

g 1
—— —(1/V 3, —1,0) g2= (2/V 3,0,0) g, = (oo l)

9

C+
C2
I

g2
—

g&
—gi

—gi+g2
—g2
—g2

g3

g3
—g3

It corresponds to a "breathing" of the X octahedra
columns around the z axis, while keeping the
P63/mme symmetry. It is schematically shown in

Fig. 5(a). This type of distortion for a unit cell
will be in what follows indicated by the symbol e.

3. Ei modes

Apart from the Ei mode, which was determined
above, there are two others assoicated to X„„dis-
placements. They are shown in Table VIII. Vec-
tors e and b of this table are shown in Fig. 5. It
is interesting to analyze the distortion under the
action of the three modes together. In Fig. 6 we

show a schematic representation, for the three
relevant lattice sites, of the distortion created by
mode $5 in the surrounding of the X iona. The e
displacements in $6 (Table VIII) can be considered
as expansions and contractions of the X octahedra
columns, in order to adequate themselves to the
volume change of the surrounding free space. The
same occurs with the b displacement in P7, which

can be interpreted as a result of the geometric
change of these surroundings. Note that for l=0,
no displacement is present in P7, in agreement with

the fact that the point symmetry of the surround-

ing B ions is maintained by mode Ps for this unit

cell, as can be seen in Fig. 6. From this "mechani-
cal" point of view, it is expected that the P6 ampli-

TABLE XIII. Symmetry points and lines of the hexagonal Brillouin lattice studied in this
paper. The number of arms in the star and chosen generators are also indicated. The vector

components are show'n in the basis g&,g2,g3.

Point or line ki components Arms Generators

A

b(A)

U(ML)

P(EH)

T(I E)
S(AH)

T'(ME)

S'(LH)

X(I M)

R (AL)

(0,0,0)

(0,—,0)

(0,0,—)

(0 ——)
1 1

(——0)1 2

1 2 1

(———)3' 3'2
(o,o,a)
(0, —,a)

1 2
(——a)

(a,2a, o)

(a,2a, —)
1

(2a, —+a,o)

(2a, —+a, —)
1 1

(O,a,O)

(o,a, —,
'

)

C+

C+

I
C+,I
C2,I
C+
C+

C6+

C+

C+
C+
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TABLE XIV. Compatibility relations for the symme-

try modes corresponding to the A ions in the hexagonal
perovskite structure (2L).

TABLE XVI. Compatibility relations for the symme-

try modes along the z axis corresponding to the X ions
in the hexagonal perovskite structure (2L).

P.
P.«

~2

5~E,,

Vg
».

zA

I

7)I
I ~ n

I
u$

I

L5;

z

z 3

n

I'
K P H 5 R K P H 5 R

Rz, Tz Kz
—P»~

k
T~
—i(,

—Pi~ '

xi

yl

h -.o
C

z&C
r)

k, ;
T~

i (( &P~~

rR
s5»~

Rg

Ls' M X

g~)T(~K)

6

Zsz~)- Z

Lz 5»—&
M»

Mt,

TABLE XV. Compatibility relations for the symme-

try modes corresponding to the B ions in the hexagonal
perovskite structure (2L).

tude has a sign opposite to that of I|)5, while p7 has
the same sign.

Axis

4. K4 modes

T5~X P

E,4~~

Hg 5, R&

5»

K P k S Fl

xl

The two K4 modes are indicated in Table IX.
In this case the atoms A, in the center of the 8 oc-
tahedra columns, show displacements with ampli-
tude twice as large as that for atoms between
columns. Moreover, both dispIacements have op-
posite directions.

Since K4 (1,—1) is the symmetry of the OP, if
the phase transition is of the displacive type, the
soft mode will be given by a linear combination of
these two K4 modes. Furthermore, its amplitude
will be proportional to (T To)'~ when a se—cond
character is shown.

In summary, the structural distortion of the hex-
agonal perovskite structure corresponding to a
P63crn(T~) symmetry can be schematically
represented as

L:
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TABLE XVII. Compatibility relations for the symmetry modes in the xy plane corre-
sponding to the X ions in the hexagonal perovskite structure (2L).

2 E~)

3z)
EI;-

I

nJEt)q?-i

7. E~~g

h2-ii Wa

R,~p,

l. l~1L~L 1

2'E'~ '~ZLI,

r

'E'~ ~LI,
'E'~
2'tE "~2I,~2 LI)

Z'E'~ ~2 Ug

R lg

n 37~

r~jo Ti

3 I )

y2 Kg

(T~

ZH

gP., ZII,—&5, ,

Ii,!
2P, 35'

(5(—2 IIs

2 I. ,~~3s',

Lg
'('s,'—

Z H3

pk,
.(T,

'

Hs~
& T&~

where p; are the modes discussed above. In our
particular case the distortion u can be obtained
from the experimental structural data. 5 for this
purpose, it is only necessary to operate with the
asymmetrical unit in the room-temperature struc-
ture of KNIC13. The results are shown in Table X.
The atom displacements with respect to their ideal
position in the hexagonal perovskite structure are
indicated as fractions of the corresponding cell
parameters, along the orthogonal axes used in pre-
vious sections (see Fig. 2). The displacements of
the Cl ions are indeterminable owing to the fact
that their position is not fixed by symmetry condi-
tions in the prototype phase (see Fig. l).

The subsequent determination of the amplitudes

c; intervening in (20) is straighforward owing to
the orthogonality between the different modes P;.
We summarize the results in Table XI, where the
faintness index for every mode is also indicated.
In order to be able to make a meaningful compar-
ison of the amplitudes, the usual normalization
factors shown in Tables II—IV for the different
modes have not been considered. Hence the metric
chosen in this way is therefore, in some sense, arbi-
trary, but it allows a qualitative indication of the
relative weight of their contributions to the total
atomic displacements, since the atomic displace-
ments intervening in any mode are of the same or-
der of magnitude. Obviously, no mass-dependent
normalization has been used. It is important to
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note that the amplitude of the His modes in Table
XI remains unknown. This indetermination for
A &s modes will be usual in any analysis of this type
when the actual parent phase structure is unknown

with respect to those atomic positions that are not
fixed by symmetry conditions. It should be also
pointed out that in the case of A2„modes, the am-

plitudes have been calculated considering the center
of mass of every proton-type unit cell at rest for
this type of mode.

Some important points can be deduced from
Table XI. First, the predominance of modes J 4 in
the distortion is evident, being at least I order of
magnitude stronger. Although these modes corre-
spond to the OP symmetry for the assumed phase
transition, their strong contribution to the total
distortion at a temperature separated by about 260
K from the nearest suggested phase transiton is
rather significant, and suggests that the OP contri-
butions to the structural distortion created in a
phase transition remain much stronger than those
produced as a coupling effect even for tempera-
tures rather distant from the transition point. This
suggestion is more significant if we consider that,
from a group-theoretical point of view, all the
modes listed compatible with the new symmetry
have the same importance in describing the final
distortion.

On the other hand, the contribution of modes
with faintness index 2 seems to have less impor-
tance than those having faintness index 3, in con-
tradiction to what it should be if we consider that
the faintness index is a measure of the coupling
strength with the OP.

Finally, with respect to the sign correlation be-
tween modes $5, P6, and P7, which was suggested
above from geometric considerations, the sign of Pq
is in agreement with it, but not the one for P7. In
any case the amplitude of the three modes are not
sufficiently significant to allow a clear test.

APPENDIX A

In this appendix the characteristics of the hexag-
onal reciprocal lattice and its Brillouin zone are
summarized in Tables XII and XIII following Ref.
8, and we indicate the generators we have chosen
for every k star.

APPENDIX B

In this appendix the compatibility relations for
the modes corresponding to the different ions are
shown in Tables XIV—XVII.

APPENDIX C

In this appendix we indicate the matrices I defined in (4) (Sec. II) for the generators chosen in Table XII.

I T~C2 taC6

A2C2
diatom

Batom

AiI C2

A4Cp

ASC2

C+
A6c,

XatomA~

A2C2

A2C2

A2C2

C+
A2C6+

A,C6+

A2c 6

C2 C+

The vectorial representations for I, C2, and C6+ are
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v3
2 2

C2 ——
v3
2

0

1

2
0

0 1

and AJ ——exp(ikl J), with T~ ——(0,0, —1), T2 (——0,0, 1), T3 ——( —1,—1,—1), T4 ( ——1—, —1,0),
T5 ——( —1,—1,1), T6=( —1,0, 1).
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