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Critical fan in the antiferromagnetic three-state Potts model
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The three-state Potts model on a square lattice with general nearest-neighbor interaction

and ferromagnetic second-neighbor interaction is studied. At zero temperature the model

with antiferromagnetic nearest-neighbor interactions is mapped to the I' model. By com-

paring the excitations generated at nonzero temperature to those that lead to the eight-

vertex model we obtain an explicit expression for the critical index describing such excita-

tions and demonstrate the existence of a critical fan for ferromagnetic second-neighbor in-

teractions. The model with purely nearest-neighbor interactions is critical only at zero tem-

perature. Explicit expressions for the scaling indices of the color-color correlation function

in the critical phase are also obtained. Phenomenological renormalization-group methods

are applied to determine the general boundaries of the critical fan and to verify our expres-

sions for critical indices. A physical system which might be expected to undergo a transi-

tion in the same universality class as that of the above model and to exhibit a critical phase
is proposed: an equal mixture of krypton and xenon adsorbed on graphite.

I. INTRODUCTION

There has been considerable interest recently in
the antiferromagnetic three-state Potts model on a
square lattice due to the possibility that it might ex-
hibit a rather interesting phase transition. The idea
that the nearest-neighbor model would undergo any
transition is somewhat surprising in view of the
lack of an obvious ground state. In fact it is known
that the zero-temperature entropy of the system is
extensive and is simply related to the entropy of the
exactly soluble "square-ice" problem. ' Neverthe-
less, it was suggested by Berker and Kadanoff that
models such as this could exhibit an entropy-driven
transition to a critical phase characterized by a
power-law decay of correlations. Such behavior in
the antiferromagnetic three-state Potts model at
zero temperature could already be inferred from the
fact that the square-ice model is critical, as it is a
particular point of the six-vertex model ' within its
critical region. However, the above suggestion
would imply this behavior at nonzero temperature
as well. Cardy showed that any transition of the
antiferromagnetic Potts model would be in the
universality class of the six-state clock model. This
model is believed to exhibit two different behaviors
depending on the parameters of the model: It un-

dergoes either a simple first-order transition to an
ordered phase or a sequence of two infinite-order
Kosterlitz-Thouless transitions, the first to a criti-
cal phase, the second to an ordered phase. Cardy
claimed that the Potts model exhibits a transition of

the latter type at finite temperatures. Monte Carlo
simulations of this Potts model were carried out
but were inconclusive. Recent phenomenological
and Monte Carlo renormalization-group calcula-
tions strongly indicate that the system exhibits a
transition only at zero temperature.

The introduction of a second-neighbor ferromag-
netic interaction breaks the infinite ground-state de-

generacy and brings about a transition to a phase
with six equivalent ordered states, each character-
ized by two sublattices which are occupied by dif-
ferent Potts "colors." The two-component order
parameter characterizing these states can be written

where j is a site index on one sublattice, k an index
on the other, and the variables 8 located on the sites
can take the three "colors" 0, +2m. /3. We consider
in this paper such a three-state Potts model with ar-
bitrary first-neighbor interaction E =Inu and
second-neighbor interaction L =lnu. In general we
take L ferromagnetic. We show that this model
does indeed exhibit a critical phase for antifer-
romagnetic first-neighbor interactions. This is done
in Sec. II by noting that in the limit u =0, the sys-
tem is isomorphic to the exactly soluble I' model
with the parameter b, =1—u /2. From the fact
that the F model is critical for all

~
6

~
~ 1 and ex-

hibits an infinite-order transition at 5=—I to a
phase with long-range order we infer that, for u =0,
the Potts model is critical for all u & uz ——2 and un-
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dergoes a Kosterlitz-Thouless transition at Uz to the
ordered phase. Next the effect of a finite but strong
antiferromagnetic interaction (u «1) is investigat-
ed by examining the vortex excitations which arise
when the constraint u =0 is relaxed. We find that
these excitations introduced into the Potts model
near the F-model limit are characterized by a vorti-
city which is —, that of the excitations introduced

into the eight-vertex model near its F-model limit.
Because of the universality connection between the
six-vertex and the Gaussian models, ' ' the criti-
cal indices of different vortex operators obey ex-
tended scaling relations; in particular,

sn= 2'
with

(1.3)

2 1

p=cos ——1 ~ 04' +~ ~

U

2

The vortex excitations in the Potts model are ir-
relevant for

v )vi ——(2+2 cos5n. /9)'i =1.29,
so that for small fixed values of u the Potts model
exhibits an infinite-order transition into a critical
phase at v =vi. The second transition from this
phase to the ordered phase at v =vz is unaffected by
these irrelevant excitations. Thus the presence of a
critical phase for small u is established. We also

(2 —yx)=( —, ) (2—ys ) (1.1)

where the singular part of the free energy behaves
as

f(u, v) -u, 0 & v & v i . (1.2)

From Baxter's solution of the eight-vertex model'
we obtain

obtain the scaling indices in the critical phase of the
color-color correlation function

(cos(eo —8; ) )= +A B
(1 4)

D S

Here r is the distance between sites i and 0, and the
sign of the second term depends upon whether the
two sites are on the same sublattice. We find

xa =«s (1.5)

xs(2 —yx) = (1.6)

The phase boundaries for nonzero u are obtained
in Sec. III by the application of a phenomenological
renormalization-group procedure. ' In particular
the finite-size scaling behavior of the interfacial free
energy is used to determine the temperatures at
which the system is critical. The resulting boun-
daries of the ferromagnetic and antiferromagnetic
phases are shown in Fig. 1. As shown there, the
special case of the model with nearest-neighbor in-
teractions is critical solely at T=0. This follows
from Eq. (1.3) with v =1 from which the vortex ex-
citations are relevant. Near zero temperature the
singular part of the free energy behaves as
f(u, l)-u =exp(4E). In addition to the phase
boundaries the critical exponent yz is calculated
and Eq. (1.3) is verified. The scaling indices xD and

xs are also calculated on the boundaries of the criti-
cal fan, and the results are in good agreement with
(1.5) and (1.6).

We conclude in Sec. IV with a brief discussion of
a physical system which might be expected to un-

dergo a transition in the same universality class as
that of the antiferromagnetic Potts model and to ex-
hibit a critical phase: an equal mixture of krypton
and xenon adsorbed on graphite.
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FIG. 1. Phase diagram of three-state Potts model with nearest-neighbor interaction E and next-nearest-neighbor in-
teraction I. as determined by finite-size scaling. Solid lines are extrapolated values. Dashed lines in (a) are the asymp-
totes of the critical fan in the limit of infinitely negative K. Details in this region are shown in (b). Results are shown
from pairs of strips of widths —(triangles), —(squares), —(circles). Arrows indicate exact values.
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II. THEORY

The reduced Hamiltonian (4 = —H/kii T) of the three-state Potts model on a square lattice can be written
in terms of angle variables 8; at site i:

4 = g —,E[cos(8;—81)+—,]+ g —,L[cos(8;—81)+—,]
(ij)

+As g cos8; —g cosH) +An g cos8;+ g cos8J (2.1)

where 8;=0, +2m./3. The first and second sums are over nearest- and next-nearest-neighbor pairs, respective-

ly, of the square lattice. In the third and fourth terms the square lattice has been decomposed into two sublat-
tices of next-nearest-neighbor sites with index i ranging over all sites of one sublattice and j over the other.
Thus hs is a staggered field that favors different angles, or "colors," on the two sublattices, and hD is a direct
field favoring the same color on the sublattices. For the case of the antiferromagnetic Potts model for which
E & 0, it is convenient to make the change of variable

0;~8;, i on sublattice 1

8;~8;—m, i on sublattice 2

which leads to

P'= $ ( ——,E)[cos(8;—81)——,]+g , L [co—s(8;—8J )+ —,]
&j& (ij)

+hs gcos8;+ g cos8J +hn g cos8; —g cos8J. (2.2)

5=1—v /2. (2.3)

FIG. 2.
weights.

V V

F-model vertices and their Boltzmann

For the antiferromagnetic Potts model the interac-
tion is now ferromagnetic between nearest-neighbor
variables.

We first consider the system in the absence of
fields and in the limit E~—co. The difference be-
tween nearest-neighbor variables, modulo 2m, is
thereby restricted to the values +m/3. A three-to-
one mapping to an I' model on the dual lattice is
obtained by assigning arrows to the links of the dual
lattice according to the following rule: As one
looks from the tail to the tip of the arrow, the
difference between the angle on the left and the an-

gle on the right, modulo 2~, is m/3. The six config-
urations of the resulting Ii model with their
Boltzmann weights in terms of u =e are shown in

Fig. 2.
The single parameter 5 of the E model is defined

in terms of a temperaturelike variable R, the ratio
of the Boltzmann weight of the first four configura-
tions to that of the other two, or 6=1—1/2R .
With the weights given in Fig. 2 we have

I

From the exact solution we know that the Fmodel
is critical for

~

5
~

& 1 corresponding to 0(u & vq,
where vq

——2. For 6 g —1 corresponding to u & uq,
the F model undergoes an infinite-order
(Kosterlitz-Thouless) transition to an antiferroelec-
tric ordered state. The two states of the antifer-
roelectric correspond in the three-to-one mapping to
the six states of the Potts model in which one color
occupies one sublattice and another color occupies
the other The p.articular F model obtained for the
value 6= —, is called the "square-ice" model and
corresponds to the antiferromagnetic Potts model
with infinite nearest-neighbor repulsion only. This
correspondence has been known for some time. '

We now relax the restriction of infinite-strength
nearest-neighbor interactions. With E finite,
nearest-neighbor angles can differ by +m. corre-
sponding to the same Potts color occupying adja-
cent sites. This configuration can be indicated in
the vertex model by an impurity or zero occupying
the link of the dual lattice. In this way the Potts
model is mapped to a 27-vertex model. The kinds
of allowed vertices, the number of each, and their
Boltzmann weight are shown in Fig. 3, where
Q =8

To determine how the syminetry of the F model
is broken by the temperature field in the limit
u «1 it is sufficient to consider only the three
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FIG. 5. The excitations of Figs. 4(d) —4(g) are bound
pairs of vertices shown.
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FIG. 3. 27-vertex representation of the three-state

Potts model: the vertices, their Boltzmann weights, and

the number of each.

kinds ofbound pairs of vortex states [Figs. 3(d) and

3(e)], which are shown in Figs, 4(a) —4(c) together
with thenumber of each.

Note that the first two excitations shown have a
net flux of arrows and thus violate the ice rule,
whereas the third excitation does not. These bound
pairs which involve an impurity can be placed in
one-to-one correspondence with the more usual ex-
citations of vertex models by the convention of re-

placing an impurity on a vertical bond by an
upward-pointing arrow and an impurity on a hor-
izontal bond by a right-pointing arrow, as shown in
Figs. 4(d}—4(g}. From this figure it is seen that the
excitations are equivalent to bound pairs of vortices
with a net fiux of four arrows [Figs. 5(a) and 5(b)]
or two arrows [Figs. 5(c) and 5(d)].

The former are excitations of the F model which
enlarge it to the eight-vertex model while the latter
enlarge it to the more general 16-vertex model. The
scaling indices of the operators which create these
excitations are known through several studies relat-
ing the I' model and its excitations to the Gaussian
model and its excitations. ' ' The scaling indices
of the latter can be calculated directly. ' For our
purposes the most convenient of these studies is
that of Knops, ' who considers the renormalization
of the body-centered solid-on-solid (BCSOS) model
to the Gaussian model. The former is equivalent to
the F model. The vertices of Fig. 5, which

represent screw dislocations in the BCSOS model,
and the operators of the Gaussian model to which

they correspond, are considered explicitly by

Knops. The results are straightforward. Consider
first the vertices of Figs. 5(a} and 5(b). From our
rule that the angles of Eq. (2.2) increase by m/3
when crossing an outward-pointing arrow from
right to left it can be seen that these configurations
correspond to vortices of strength + —, in units of
2n. Similarly the configurations of Figs. 5(c) and

1

5(d} correspond to vortices of strength + —,. In the
notation of Kadanoff' they correspond to the
Gaussian operators S02/3 and Sp ~/3 with scaling
indices xp 2/3 and xp ~/3 As noted above, the exci-
tations of the F model which lead to the antifer-
romagnetic Potts model can be considered to be
bound pairs of these configurations. Thus the exci-
tations of Figs. 4(d} and 4(e) have vorticity of + I
corresponding to Sp ~ with scaling index xp &. The
scaling indices x„canbe calculated explicitly in
terms of the strength of the coupling of the Gauss-
ian model E& as'

2
(o)

Plx„~= +Pl KEG
6

(24)

2 2 2 2
(d) (e) (f ) (g)

FIG. 4. (a)—(c) The possible bound pairs of vertices
in Figs. 3(d) and 3(e). The number of each is shown.
(d) —(g) Same bound pairs after replacement of the zero
by an arrow. The number of each is shown.

9
+0, 1 4+0,2/3 ' (2.5)

Fortunately, for the case of the F model the scaling
index of the oPerator Sp p/3 which enlarges its sPace

A priori, one does not know the value of the cou-
pling of the Gaussian model to which one renormal-
izes so that absolute values of these indices cannot
be obtained. Nevertheless, very useful relations fol-
low between indices, such as
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to that of the eight-vertex model are known from
Baxter's solution of that model. ' Thus

X0,2/3 2 y8V ~ (2.6)

ysy =—cos ( —b, ),2
'li

(2.7)

with 0&ysq&2. We combine Eqs. (2.5)—(2.7) to
obtain the critical index y~ =2—xp ~ as

oi

9 i u 5
cos —1

2~ 2 2' (2.8)

in which ——, &yx &2, where Eq. (2.3) has been

used.
In the limit u~0 the free energy f(u, u) will

behave as

f ( )
2/yx ( u )

in the range of u where these excitations are
relevant. From Eq. (2.8) this is seen to be for all

u & ui ——(2+2 cosset /9) '

which is approximately 1.29. Thus the line u =0 is
unstable with respect to these excitations for all

u &u~ and the Potts model is disordered for any
nonzero value of temperature. In particular this is
true for the model with nearest-neighbor interac-
tions only (u =I). We see that this model has a
transition only at zero temperature and that its free
energy behaves like f(E)-e

For small u the antiferromagnetic Potts model
undergoes a Kosterlitz-Thouless transition to a crit-
ical phase at u=ui, where the excitations become
marginal. The critical phase persists until
u=u2 ——2. Thus the presence of the critical phase in
the antiferromagnetic Potts model is established. In
the critical phase the excitations of Figs. 4(a) and
4(b) occur only in bound pairs, with total vorticity
zero. For completeness we remark that excitations
in Fig. 4(c), having no vorticity, do not affect the
renormalization Aow of the I' model to the Gauss-
ian model except for a trivial renormalization of the
Gaussian coupling constant. We also note that the
excitations of Figs. 3(a) —3(c), heretofore neglected,
do not affect the leading singular behavior of the
free energy. This can be seen from the fact that the
excitations obey the ice rule (zero flux of arrows) so
that any aggregate of them has no topological
consequence. Only the vertices of Figs. 3(d) and

3(e) are impurity sources, or sinks, and must be
present in pairs in any island of excitations. Such
an island must have a net flux of arrows of zero or
a multiple of six corresponding to integer vorticity.
However, the scaling indices x„~increase with in-
creasing vorticity, indicating that the most relevant
excitation is that with unit vorticity, which we have
treated. Further, excitations with smaller vorticity
cannot be created by pulling apart the bound pairs
of Figs. 4(a) —4(c), for in doing so one generates (at
least) a string of zeros. Thus the pair is confined
with a linear potential.

The power-law decay of the Potts color-color
correlation function in the critical region can be ob-
tained by considerations similar to those leading to
y~. The correlation function can be written

(cos(8; —81 ) }— +
2xD 2xs

P l'

which identifies xs ——x~ p. The direct field ha cou-
ples to the staggered operator

S~ p = g cos8& —g cos8&
S

Under renormalization this generates the operator
S20 from which xz ——x2p. From the general ex-
pression for x„~in (2.4) we obtain the following re-
sults:

XD =X2 p

X1,0

and

XD =4XS

1

Xi,OXp, &
=

4 ~

(2.9)

from which

1

xs(2 —yx)= ~ (2.10)

with yx given by (2.8). In the critical fan,
5 1 1 2 1

2 —yx &0, so that 18 —xs & 8 a d 9 —xa —2 '

In particular, at the ice point, y~= —,', so that

xD 3 in agreement with the exact results of
Baxter at this point.

where r is the distance between sites i and j and the
sign of the second term depends on whether i,j are
on the same or different sublattices. The scaling in-
dex xs of the staggered field is obtained by noting
from Eq. (2.2) that the staggered field hs couples to

S~ 0
——g cos8;+ g cos8J,
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Note that not only the staggered field but also the
direct field is relevant. The favoring of one color
by such a field causes a crossover from the univer-
sality class of the six-state clock model to that of
two nondegenerate Ising models with four-spin cou-
pling. Of the six original ground states, the four
containing the favored color are reached by a se-

quence of two Ising transitions. If the direct field
disfavors one color, then, of the original six states,
the two which do not contain this color dominate
and a single Ising transition to them takes place.

The phase boundaries of the system are now
known along the line e =0. Two other points on
the phase boundaries in the (E,L) plane are known
exactly. They are the transition temperature of the
ferromagnetic Potts model with nearest-neighbor
interactions only, which is (C,O) with
C =in(1+W3), and that of the decoupled fer-
romagnetic sublattices (O, C). The thermal and
magnetic critical indices along the ferromagnetic
phase boundary up to and including the decoupling
point (O, C) take the values yT ———,, yH ——». At
the decoupling point the field K is relevant with
crossover exponent

0=—(2' —2)/yT = —, .

It follows that, in the neighborhood of this point,
the phase boundary shows a cusp of the form
K-(L —C)~. For L & C and E =0 there is a first-
order transition between the ferromagnetic and anti-
ferromagnetic regions. An interesting question is
whether the critical phase exists all the way to the
decoupling point, making it a form of bicritical

I

point, or terminates elsewhere. In this latter case
we expect a single line of first-order transitions join-
ing this point of termination to the decoupling
point, making it a critical end point. To explore
this question, to determine the phase boundaries
themselves, and to verify the prediction of Eq. (2.8)
we turn to an approximate calculation employing
the phenomenological renormalization-group tech-
nique. '

III. FINITE-SIZE CALCULATION

A. Method

In this section we present the result of a finite-
size calculation. The phase diagram of the three-
state Potts model with arbitrary nearest-neighbor
interaction K and ferromagnetic interaction L is ob-
tained. As we have shown above, the existence of a
critical fan is a consequence of the precise depen-
dence on L of the exponent yx at e =0. We shall
numerically check the predicted relation between yz
and the temperature exponent ys~ of the eight-
vertex model. For our calculations we employ an
adapted version of the phenomenological renormali-
zation method.

Consider a Potts system on a strip of m columns
each of height n in the limit m~ ao. Most of our
calculations are based on finite-size scaling proper-
ties of the interface free energy. This quantity may
be obtained as the difference in free energy of sys-
tem with periodic boundary conditions with and
without a step. To be precise, we consider the fol-
lowing Hamiltonian [cf. Eq. (2.1)]:

n m

&=—$ $ IK[cos(8;, —8;J+~)+ cos(8;, 8;+&, b,; )+—1]—
i=1 j=1

+L [cos(8;J
—8;+~ 1 ~

—6;)+ cos(8; I —8;+1 I+& —6;)+ 1]], (3.1)

f„=—Intro

and the interface free energy per spin by

(3.2)

where each site is now labeled by two indices and
i+n:—i, j+m=j, and 5;=0 for i =1, . . . , n —1

and b,„=(2n./3)h. The cases 6,=1 and b, =O yield
periodic boundary conditions with and without a
step, respectively.

A transfer matrix T can be introduced (see the
Appendix) with eigenvalues Ao& ~A, & ~

& . The
dimensionless free energy per column is given by

2„=f„'—f„=ink,o/A, o . (3 3)

In two dimensions the interface free energy satis-
fies the scaling equation

(3 4)

where b is an arbitrary scaling length, and the prime
at the right-hand side indicates that the quantity is
evaluated with scaled interaction parameters. This
relation implies that at a critical point

(3.5)
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On general grounds the interface free energy is ex-

pected to behave like

k„=a.„+O(e "i~)

in the ordered regime and

a„=o(e "~~)

(3.6)

(3.7)

in the disordered regime; we have denoted by g the
correlation length of the system in the thermo-
dynamic limit.

To locate critical points we compare two systems,
of size n and n —p. Since two-sublattice fluctua-
tions dominate in the present model, we take p =2.
The various types of behavior of k„may con-
veniently be described by an effective exponent

in the ordered region. Furthermore, Eq. (3.16)
holds only if A,o and A, 1 are degenerate in the ther-
modynamic limit. This occurs if a„describes the
decay of order-parameter —order-parameter correla-

tions. Otherwise Eq. (3.15) also applies in this case.
Our numerical calculations indicate that either of
these possibilities may be realized in the Potts
model, depending on the nature of the ordered state.
In particular, Eq. (3.16) applies in the antiferroelec-
trically ordered portion of the phase diagram.
However, close to the E-model transition at e =0,
a„shows a minimum as a function of e indicating
that a„approaches a finite, nonzero value as n ~ 00

in the unphysical region e (0.

111K~ /IC~

ln(n In —p)
(3.8)

B. Results

One finds

3'eff-~

jeff—1 ~

—n/g'
yeff -e

(3.9)

(3.10)

(3.11)

~(l) lg~ —1

Kn 7l (3.12)

1.e.,
~(l) ~(l)

lnKg /Kq
y, =— +1

I ln(n /n —p)
(3.13)

Provided the following changes are made, all re-
lations above also hold with Kn rePlaced by Kn, the
inverse correlation length defined in terms of the
two dominant eigenvalues of the transfer matrix

a„=in
I
~oint I

~ (3.14)

In Eqs. (3.6) and (3.7), and similarly for (3.9) and
(3.11), "order" and "disorder" have to be inter-
changed, i.e.,

in the disordered, critical, and ordered regions,
respectively.

Finally, we write y, for the critical exponent
describing the dominant critical behavior associated
with a deviation from criticality due to a change in
some parameter e. The exponent y, may then be
obtained, as usual, from 0„,the derivative of order
I of k„with respect to e, using the relation

a„=a„+an (3.17)

The phase diagram shown in Fig. 1 was obtained
as follows. For ferromagnetic nearest-neighbor in-
teractions (e & 1) the critical curve is the solution
to Eq. (3.8) with y, ran= 1, which thereby reduces to
the usual phenomenological renormalization cri-
terion applied to the interface free energy.

To obtain the boundaries of the critical phase for
antiferromagnetic nearest-neighbor interactions
(e+(1) the following observation was made. Sup-
pose Eq. (3.8) is solved with the effective exponent

y,fr set equal to 1+5. It then follows from Eqs.
(3.9)—(3.11) that for n ~ ao and 5&0, one will ob-
tain the boundary between the disordered and criti-
cal phases. Similarly, for —1 & 5 &0 one will obtain
the boundary between the ordered and critical
phases. The calculations showed fastest conver-
gence with 5 chosen as follows: (i) 5=0 for the
left-hand boundary, and (ii) 5=5„such that the
known critical point e =0, I.=ln2 of the E model
on the boundary between critical and ordered
phases is exactly reproduced. In passing we note
that 5„defined thus depends surprisingly regularly
on n: 5n =1—a/n with a =0.688, 0.642, and 0.638
for n =4, 6, and 8.

Figure 1 shows the critical surface, based on data
points for n =4, 6, and 8. The solid curve is the re-
sult of a three-point power-law extrapolation (where
possible); i.e., three successive points of a given se-
quence a„arefitted to the form

ir„=a„+0(e"i&)

in the disordered region, and

a„=o(e " ~)

(3.15)

(3.16)

Where no such extrapolation was possible the n =8
estimate was used instead. For ordinary critical
points this type of extrapolation is very accurate. 25

Owing to the presence of a marginal exponent in
the critical phase, the dominant singularity due to
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1,2

eK = 0.2
n=4
n=6
n=8
8x t rPPOI otiOn

~K ~L 4-2 6-4 8-6 Exact

TABLE I. Values of the magnetic exponents y&, yD at
the boundaries of the critical fan. Exact values are from
Eqs. (2.9) and (2.10) (and y =2—x).

0.8-

0.2

0.3

1.66
1.95
1.75
1.92

Staggered magnetic exponent

1.867 1.876 1.884
1.932 1.934
1.882 1.882 1.887
1.935 1.931 1.931

1.875
1.944
1.875
1.944

0.6—

1.2 1.6 2.0 2.4

eL

FIG. 6. Effective exponent defined in Eq. (3.8) vs e
for a fixed K. Critical points are identified by y,ff 1.
Arrows indicate boundaries of critical regions as given
in Fig. 1.

0.2

0.3

1.66
1.95
1.75
1.92

Direct magnetic exponent

1.617 1.597 1.591
1.727 1.718 1.717
1.636 1.604 1.595
1.704 1.684 1.680

1.5
1.778
1.5
1.778

corrections to scaling for large n is logarithmic
rather than of the form of (3.17). Still, for small n

this expression is expected to be appropriate.
The results in Fig. 1 seem to indicate that the

critical phase disappears for e & 0.6. We have not
been able to determine the nature of the transition
for 0.6 & e & l. As noted earlier, we expect that ei-

ther the critical fan continues or there is a single
first-order transition. Close to the decoupling point
the critical surface has a cusp and can be
represented to within 1% by

[C L(E)]~ for—E &0
—I2[C L(E)]I& fo—r E &0

where C =in(V 3+1)and

eL
1.4 1.2 I.p 0,8 0.6 0.4 0.2 0

20 I ' I I
'

I I ' I
~ I s ~

b
0
O

1.6— 0

l.2-

y
08-

K

04—

p /'
/

/

p4 i I I ( I i I

I.p I.2 I.4 1.6 I.8 2.0

FIG. 7. Critical index yK at e =0. It is shown as a
function of yigL) and of e~. Results are shown from

4 ~ 6 8
pairs of widths

2
(triangles), 4 (squares), 6 (circles).

The solid line is obtained by extrapolation. The dashed
straight line is the predicted extended scaling relation

Eq. (1.1).

13

In the neighborhood of the pure Potts model to
within 0.1% one has

E(L)=C , (v 3+—1)L—.

Figure 6 displays the behavior of the effective ex-

ponent yeff Eq. (3.8), which is crucial in determin-

ing the phase diagram. We plot y, rr as a function of
L for e =0.2, again for n =4, 6, and 8 and extra-
polated as above. The flat portion in the extrapolat-
ed curve at y,rr ——1 is a clear signature of a critical
phase, and the phase boundaries as obtained above
are indicated by arrows.

Figure 7 is a plot of yx as a function of ysz. The
estimates of ys were obtained by applying Eq. (3.13)
to the second-order derivative of k„with respect to
e . Again there are results for n =4, 6, and 8 and
the power-law extrapolation. The first-order
derivative also might have been used to calculate
y~. However, its behavior is irregular, possibly in-

dicating a vanishing amplitude in Eq. (3.12). The
numerical results for yz match well with the
theoretically predicted straight line. The deviations
for small, positive yz reflect the failure of our
method to produce irrelevant exponents.

The staggered and direct magnetic exponents

yq
——2—xq and y~ ——2—x~ were also calculated, at

the phase boundaries of the critical fan. The direct
and staggered exponents were obtained from the
first and second derivatives of a, respectively. The
results for various values of e are contained in
Table I. Again the numerical results compare
favorably with our theoretical prediction.
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IV. PHYSICAL REALIZATION

Direct physical realizations of the two-
dimensional antiferromagnetic three-state Potts
model are limited to the adsorption of ternary alloys
or square substrates. However, realizations of the
universality class of the six-state clock model are
much less restricted. For example, the triangular
Ising antiferromagnetic can exhibit, in zero field, a
transition in this universality class and is more
readily realized physically due to the triangular
symmetry. As is well known, the antiferromagnetic
triangular Ising model in the form of the lattice gas
to which it is equivalent can be used to describe the
order-disorder transition to the V 3)&v 3 phase ex-

hibited by some noble gases on graphite. Howev-

er, the condition of zero magnetic field implies

equal numbers of occupied and unoccupied sites or
a density n = —, which is far in excess of the densi-

ties n (—, for which the lattice-gas description is

adequate for these systems. A second possibility,
not subject to this difficulty, is a two-component
mixture on a triangular lattice. To be specific, we

consider a mixture of krypton and xenon adsorbed
on graphite in a V3&(v 3 phase. As both kryp-
ton and xenon have been observed to order in
such a phase it is likely that a mixture will also or-
der. The transition to this state is not of interest
here but rather the compositional ordering which
will take place at lower temperatures. The mixture
on the triangular lattice (with lattice constant 4.26
0
A) is readily mapped onto an Ising model with cou-

pling

J(r)= —[ I'xx(r)+ ~xx(r) —2I'xx(r)]/4

where VKx is the strength of the krypton-krypton
interaction at 4.26 A and similarly for the other in-
teractions. If J(4.26) is positive the Ising model is
ferromagnetic and the mixture undergoes a simple
phase separation at low temperatures. However, if
J(4.26) is negative the Ising model is antiferromag-
netic and at low temperatures the system will order
into a phase in which the more numerous com-
ponent occupies two sublattices and the less
numerous component a single sublattice. We thus
have an antiferromagnetic triangular Ising model
with the advantage that the condition of zero field
here merely implies an equal number of krypton
and xenon atoms, a situation easily prepared.

If we use the standard Lennard-Jones 6-12 poten-
tials for the needed interactions ' and the usual
combining rules for the strength eKx

1

=(exxexx)' and range o'ex= i (0'xx+&xrc) we

find J(4.26)/ks ———16 K as desired. The negative

sign indicates that the xenon and krypton atoms
prefer to sit next to one another rather than next to
one of their own species. This preference arises
from the fact that the natural spacing of the xenon
is somewhat larger than the 4.26 A provided by the
graphite, whereas that of the krypton is somewhat
smaller. The preferred separation of a krypton-
xenon pair, then, is quite close to the graphite spac-
ing.

A schematic phase diagram of the system is
shown in Fig. 8. Note again that disordered refers
to the compositionally disordered (v 3Xv3) tri-
angular lattice. The maximum transition tempera-
ture to the ordered states, which occur at composi-

1 2
tions of —, and —,, is set by J(4.26) and can be es-

timated as 1.4
i
J(4.26)

i
/ks-22 K. These tran-

sitions are in the universality class of the three-state
Potts model. The scale of the transitions to the crit-
ical phase at composition —, is set by J(r) evaluated

at the second-neighbor distance of 7.38 A, which
is J(7.38)/ks ——0.7 K. The sign indicates the
second-neighbor interaction is ferromagnetic,
which, as in the Potts antiferromagnet, makes the
transition temperature to the critical phase nonzero.
We expect it to be of the order of 1 K. The signa-
ture of the critical phase would be seen in the
behavior of the exponent P which governs the
disappearance of the scattering intensity from the
superlattice spots upon crossing a continuous-
phase-transition boundary. Whereas P= —, whenev-

er the boundary separating the ordered and disor-
dered phases is crossed, we expect P to vary con-
tinuously with temperature whenever the critical
phase boundary at concentration of —, is traversed.

disordered

/'l~ I A/
0 I/3 (/2 2/3 I

X

FIG. 8. Schematic phase diagram in the
temperature-composition plane of a krypton-xenon mix-
ture adsorbed on graphite in a triangular V 3x V 3 ar-
ray. The compositionally ordered phases are shown;
horizontal lines denote regions of two-phase coexistence,
and the critical phase is indicated by the cross-hatching

1at x=—.
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APPENDIX

($1) . )sn IP It), . . . , tnt)}
'n+I

0» ~ ~ ~ Q» 0»

I
~

I 2' ~2 3~ 3 n-I ~ n-I n) n+2

Note that coinciding dots and circles represent a
Kronecker 5 function.

($1) . )sn+2 I Q I tl ' . tn+2)

In this appendix, various techniques to make the
transfer matrix numerically tractable are described.
A factorization into sparse matrices was carried
out. Denote by (s;,s;+) I

E
I t;,t;+)) the contribu-

tion to the total Hamiltonian associated with the
four spins s;, s;+), t), and t;+) in an elementary
square. The transfer matrix element connecting the
columns s~, . . . , s„and t~, . . . , t„then can be writ-
ten in the form

(s„.. . , sn I
T

I t,."' tn )

= g exp(s;, s;+) I
E

I t„tt+)) .

Sn-4+I) n-kt Sn+I.tn tn+ I

0» ~ ~ ~

0»

'I ~ 'I

SS t2 Sn+I~t
o ~ ~ ~

tn+I

0

2 n+2' n+2

~ ~ ~ Q» 0»

I 3' 2 n-It' n-&-I n+2' n+2

Using the symbolic notation

exp(s;,s;, I
E

I t;,t;, ) =
I+I

Sl+I

(iv) ($), . . . , sn~2IR I ti. 'tn)
S2'i Sn+i'n S2')

o ~ ~ ~

S) Sf+2 s,

one has

(s), . . . ,s„I
T

I ti, . . . , t„)

S2 S3 Sn

The transfer matrix can be factorized into

T=PQ" Q'R, (Al)

~ ~ ~

$),t) sp, t2 s„&,t„& s„,t„
xexp(s), sz

I
E

I
t„,t„+)).

Representing, as above, the s; by large dots and the
t; by circles, one obtains a graph:

where the matrices on the right-hand side are de-
fined as follows:

(i) (s)). . . ) sn I
P

I t), . . . , tn)tn+t)tn ~2)

Note that in the product (Al) there are q" +2 inter-
mediate states of n+2 spins for a general q-state
Potts model. However, the matrix factors decom-

pose into q blocks corresponding to different
values of s) and s„reducing the number of inter-
mediate results to be stored simultaneously in the
computer to q".

For the computation of the largest eigenvalue of
the transfer matrix we used the conjugate gradient
method. The corresponding eigenvector, which is
obtained at the same time, allowed us to calculate
first-order derivatives with perturbation theory.
The numerical solution of the equation ynff =const
(for the calculation of the critical surface) could
thereby be performed very efficiently with Newton's
method. The number of components of the eigen-
vector may be reduced (by a factor q) using color-
permutation symmetry by only calculating one vec-
tor element of all those which are equal by symme-
try. Note that the intermediate states in (Al) lack
this symmetry.
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