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Influence of boundary conditions on random unfrustrated magnetic systems
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The size dependence of the sensitivity of the free energy to a change in the boundary con-
ditions is investigated for disordered unfrustrated systems. Characteristically different
dependencies are found in the high- and low-temperature phases and an estimate of the
lower critical dimensionality of the system may be obtained from the low-temperature
behavior. Results of studies of random Heisenberg and Ising ferromagnets with periodic
and antiperiodic boundary conditions and with random boundary conditions are presented.

I. INTRODUCTION

In a recent paper Banavar and Cieplak' investi-

gated the influence of the boundary conditions on
the free energy of a spin-glass and suggested an
equilibrium characterization of the spin-glass phase.
It is clear that the novel properties of spin-glasses
arise from frustration effects due to random com-

peting exchange interactions. Nevertheless, it
would be useful to carry out similar investigations
for random unfrustrated magnetic systems with a
view of testing some of the concepts in Ref. 1.

Consider a system of E spins in a rectangular box
of length I. and cross-sectional area A. Following
Ref. 1 we denote the free energies of the system
with periodic and antiperiodic boundary conditions,
applied across the ends of the box, by Fp and FAp,
respectively. We define

FAP —Fp

(2)

and

where ( &, denotes a configurational average over
the distribution of the exchange constants.

It was noted in Ref. l that, for a spin-glass, y~
averages out to zero, leaving y as a characteristic
free-energy scale of the sensitivity of the system to a
change of boundary conditions. It was further sug-
gested that in the spin-glass phase the length depen-
dence of y~, for a fixed large A, followed an alge-
braic law and was markedly different from an ex-

ponential decay of y~ found in paramagnets. It was
argued that, knowing the length and area dependen-
ries of y, one could obtain the lower critical
dimensionality (I.CD) of the spin-glass.

In this paper we study y~ and y~ of several ran-
dom unfrustrated magnetic systems. In the sytems
we discuss, y~ does not average out to zero and in
fact provides the characteristic free-energy scale
that determines the nature of the ordered phase. In
Sec. II results of calculations on a classical Heisen-
berg chain are presented. Evidence is given for a
zero-temperature phase transition and the LCD is
found to be 2. Section III contains results of simi-
lar calculations on an Ising (quantum) chain.

Section IV deals with a three-dimensional classi-
cal Heisenberg system with random ferromagnetic
interactions at T =0. Approximate analytical cal-
culations yield results in excellent agreement with
those obtained by studying the size dependence of
y and y numerically. The numerical data on this
simpler system serve as a reference for the analo-
gous data on spin-glasses presented in Ref. 1.

It may be argued that the application of periodic
and antiperiodic boundary conditions to spin-glasses
is somewhat analogous to the application of random
boundary conditions to a ferromagnet. In Sec. V we
discuss this problem and show both for two-
dimensional Ising and Heisenberg systems that the
imposition of a conjugate pair of boundary condi-
tions gives the correct size dependence for y~.

II. HEISENBERG CHAIN WITH RANDOM
EXCHANGE COUPLINGS

Consider a one-dimensional Heisenberg system
with the Hamiltonian
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L —1

H= —g J;;+lS; Si+]+Hs (4)

with

HB= —JL, iSL Sip

where 21 =+1 for periodic (P) and antiperiodic (AP)
boundary conditions, respectively. We assume that

the probability distribution of the exchange cou-
plings J;;+~ is bond independent and not singular.
The spins S; are classical unit vectors. The ex-
change couplings are either all positive or all nega-
tive. In the latter case L is taken to be even so as to
preserve the sublattice symmetry.

Following Blume, Belier, and t.uric we write the
partition function for the system as

ZP AP =
L f dSl f dSLA(Sl, S2)A(S2,S3) A(SL, +S,),

(4ir)
(6)

where

A(S;,S;+l)=exp(PJ;, ;+lSi Si+l')

P= 1/ksT, and dS; represents an element of solid

angle of the ith spin. We are interested in the free-

energy difference per spin, which is given by

kBT ZP
ln

ZAp

&t has been shown by Blume et al. 2 that for isotro-
pic exchange couplings the eigenfunctions 1li„are
the spherical harmonics Yi (S; ) and the correspond-
ing eigenvalues are k„=it(PJ;„+,) Her. e the func-
tions it(x) are spherical Bessel functions of ima-
ginary argument and the eigenvalues do not depend
on m. Since the eigenfunctions f„(S) form a com-
plete set, the kernel of the integral equation (9) can
be written as

We can calculate bf by considering the integral

eigenvalue problem

A S;,S;+) „S;+(4n.

=A,„(PJ;;+i)g„(S;). (9}

A(S;,S;+i)=4m pit(P J, , + i)
l, m

X Yt (S, ) FP(S,.+, ) . (10)

By substituting (10) into (6) and by making use of
the orthogonality of the eigenfunctions we get

L

ZP, AP=

gent't(PJ;,

;,) f dS, Y, (S, )Yt (+S,)
l, mi =1

00 L L
i 1(PJ, +1}= X(21+1)(+1)'g (PJ;,; )=g o(lBJ;,; ) 1+3+ .

I=O i=i i=i i =1 0 i,i+I

The result for the bulk partition function [the first
term of Eq. (11)] is in agreement with that obtained
by Fisher and Tomita and Mashiyama when there
is no disorder in the exchange couplings.

The expansion employed in Eq. (11) does not
hold at T =0 as, at T =0, a11 eigenvalues become
equal. For T+0, we have

aL
y =6kBT

L
(13)

and

I

pansion. On performing the configurational aver-

age we get

At+i(PJ;;+i) (lit(PJ;;+i),
and then

6ksT L il(pJ;, ;+i)

The expansion (12} for hf is exact as T~ao and
can be considered as the leading term in a 1/T ex-

T (b2L 2L)l/21
QLO B

which for L y~1 becomes

b
y =6kBT

Here

(14a)

(14b)
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ii(PJi, z}

io(PJi p)
y =,m &lJ, , l

= coth Ji 2— (15) 2L2 J

and

1/2

b= ii(PJi, z}

io(pJi, z}
7w spy

'ir ( & J1,2a1,2&.—& J1,2a1,2&,')

From Eqs. (13) and (14}, it is clear that both y~
and y~ are exponential functions of L. It is in-

teresting to note that in this model, at nonzero tem-

peratures, the correlation between two spins decays
exponentially as the separation between them in-

creases.
In the limit of high temperatures

(16}

and

(17)

At T =0 the system orders ferromagnetically or
antiferromagnetically, depending on the sign of the
exchange couplings. Antiperiodic boundary condi-
tions impose a twist in the ground-state configura-
tion. The relative angle between neighboring spins
becomes modified by an amount proportional to
m. /L. Thus

1
L

6f= g l J;;+i
—

l
[1—cos(n.a;;+ iL )],l, l+

(18a)

1
Y

L2 (22)

where Y= & l Ji z l ai z&, is a generalization of the
helicity modulus to random systems.

The quantity y~ is identified as the characteristic
free-energy scale for the sensitivity of the system to
a change in the boundary conditions. The power-
law dependence of y~ on L at T=D, taken together
with the exponential dependence at nonzero tem-

peratures, confirms a zero-temperature phase transi-
tion. Furthermore, the L dependence of y~,
which as shown in Sec. IV, holds also in higher di-

mensions, confirms that the LCD of the Heisenberg
spin system ' is 2. It is interesting to note that the
L law for y~ is in accord with the central limit
theorem and shows that the distribution of the free
energies around the mean value narrows more rap-
idly than the rate at which the mean value ap-
proaches zero. It is possible to rewrite Eq. (20) as

which in the L &&1 limit becomes

2 l.~f=, g I J, +i la, +i2L; I

(18b)
III. ISING CHAIN WITH RANDOM

EXCHANGE COUPLINGS

where a;;+ i is a coefficient of proportionality such
that g,. a;;+i L. The requirement ——of minimal

energy imposes the condition
L —1

H= —g J;;+i@,*a;+i+Hs (23)

In analogy with the discussion in Sec. II we now
treat an Ising chain with the Hamiltonian given by

where g denotes a constant. This constant is equal
to L(g,. J;;+i) '. We have assumed that none of
the exchange constants J;;+& is zero. If this is not
the case, the one-dimensional system splits up into
two different subsystems and the usual thermo-
dynamical limit cannot be taken.

In sharp contrast to the situation at T+0, the
T=0 values of y~ and y~ are algebraic functions
of L for sufficiently large L. We find

with

Jfs = Jr., iver. &in, — (24)

where again g=+1 for periodic and antiperiodic
boundary conditions, respectively. Here cr;' denotes
the z-component Pauli matrix at the ith site. If 0.;
stands for one of the two eigenvalues of cr;', then the
partition functions for the two kinds of boundary
conditions read
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ZP, AP g g &irl
I P1,2 I

ir2)
OI

x( IP, I+,)

(35)

where

=X&«I IIP. +1I+«&

I i,i+1+i i+1

e

(2S}

(26)

It is clear that the Ising chain undergoes a zero-
temperature phase transition and, in contrast to the
Heisenberg system, has a LCD of 1. (We have as-

sumed that ( I Jm;„ I ), is independent of length. If,
in fact, due to the nature of the probability distribu-

tion, (
I
J;„I ), has a length dependence, it seems

that in higher dimensions and for reasonable proba-
bility distributions, this spurious length dependence

disappears, restoring the result that the LCD is 1.}

The eigenvalues of P;;+1 are

(pJ ) ii+1+ l, i+1

It is straightforward to show that

L L
z =/A, (PJ;;,)+/A, (PJi;,).

For nonzero temperatures

(PJ;;+1)(!(,+(PJ;;+1)

(27)

(28)

IV. THREE-DIMENSIONAL DISORDERED
HEISENBERG FERROMAGNET

Consider now the three-dimensional Heisenberg

system given by the Hamiltonian

L —1~A ~A

g Ji,i+1Si,kl Si+1,k, l
i =1 k=1 l=l
L ~A —1 ~A

Jk, k + 1 Si, k, I Sik+ 1,I,
i=1 k=1 1=1

and

2kB T L A, (PJ;;+1)I, 1
A, ~(PJ; !~1)

(29)

L ~A ~A —1

l, 1+1Si,k, l i, k, l ~ 1+ B
i=1 k=1 1=1

(37}
It follows that y and y„decay exponentially on
increasing L and are given by

with

and

-L
y~ =2k' T

L

where

b L

y~ =2kB T (L ))1),
L

(30)

(31)

HB 1 g g L 1 Lkl 1k!
k =1 l=1

L ~A

g Jv'a, S,. vw l.S
i =11=1

L ~A

g Jv„1S,. k v„S
i =1 k=1

(38)

a = (tanh (pJ1 2)), ,

b = (tanh (PJ, 2) ),'
(32)

(33}

and

and

L
(34)

At high temperatures

p( J2 ) 1/2

Consider now the situation at T =0. On imposi-
tion of antiperiodic boundary conditions the system

flips at its weakest bond Jm;„. Therefore,

and q takes on the values +1 for periodic and an-

tiperiodic boundary conditions, respectively.
Periodic boundary conditions are imposed across
the planes of area A. The exchange interactions are
assumed to be all positive (ferromagnetic} and for
convenience they have been divided into couplings
within the planes of area A (JI'k+1 and Jl'l"+1) and

the interplanar ones (J;,'+1).k, l

At high temperatures, in the paramagnetic phase,
correlations between spins decay exponentially as
their separation increases. Thus, for large L, the
dominant length dependence of bf, and therefore
also of y and y~, is expected to follow an ex-
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provided the spins are assumed to be of unit length.
Antiperiodic boundary conditions impose a twist in
this configuration. Since in the A planes the boun-

dary conditions remain periodic, the spins within
each plane stay roughly parallel to each other.
They would be exactly parallel if the intraplanar
couplings were much stronger than the interplanar
ones. In our approximation only one-third of the
bonds gets twisted. The twisting angle is of the or-
der of 7TIL Thus.

hf = g g g Ji,'+1[1 cos(7Ta~—&", +1/L)]
i =1k=1 l =1

(40)

where a;+1 are parameters to be chosen so as tok, l

minimize the free-energy difference. In what fol-
lows we make the simplifying approximation

a;+1——1. The size dependence thus obtained is,
however, independent of this approximation. We
find

1 L ~A ~A
bf= (1 cos7TIL) g —g g J;";.+1.

i =1k =11=1

(41)

This yields

y =(1 cos7TIL)(J1'2)—,
and

(42)

AI.
(1 cos7TIL)[ ((Ji'2—) ),

(J1,2 )2]1/2

(43)

For L yy 1 Eqs. (42) and (43) become

(44)

ponential law, similar to the explicit results for the
one-dimensional systems studied in Secs. II and III.

Let us turn now to the T=O situation. With
periodic boundary conditions in the longitudinal
(parallel to L) direction, the ground state corre-
sponds to a configuration in which all spins are
parallel. The corresponding energy is

L ~A ~A
+P y X X(Ji,i+1+Jk,k+1+Jl,1+1) i

i =1k =11=1
(39)

2

gy2 [((Jii,'2) & (Jii', 2 & ]

(45)

Similar results are obtained for a random Heisen-

berg antiferromagnet at zero temperature. Note
that Eqs. (44) and (45), which were derived using
the one-dimensional approximation, hold in any di-
mension, with the exception that at d = 1 the A

factor in (45) disappears.
In spin-glasses, pm averages out to zero, leaving

y~ as the characteristic energy scale of the sensitivi-

ty to changes in boundary conditions. In a spin-
glass numerical calculations' of y~ suggest that
y„-A '~ L . The higher power of L is due to
frustration effects in spin-glasses which lead to a
large ground-state degeneracy. This degeneracy re-
sults in the system being better able to adjust to
changes in the boundary conditions than in the
disordered ferromagnet.

With the use of the present approach it is
straightforward to show that for spiral systems
without any disorder (ferromagnets and antifer-
romagnets may be considered as special cases of
spiral systems) at T =0, y~ -L . This follows
readily from the fact that imposition of antiperiodic
boundary conditions effectively shifts the pitch of
the spiral by 7TIL Since th. e incremental free ener-

gy, by general symmetry arguments, must be even
in 7TIL and must go to zero as 7TIL tends to zero, a
Taylor expansion of bf is expected to have (7TIL )

as its leading term. The LCD of such systems is
therefore equal to 2.

It is useful to test the approximate results, Eqs.
(44) and (45), by carrying out numerical calculations
of y and y for disordered ferromagnets. To ob-
tain the length and area dependencies of y~ and y„
the 23 spin-glass samples, studied in Ref. 1, were in-
vestigated after replacing all of the exchange in-
teractions by their absolute values. The probability
distribution of the exchange couplings for the spin-
glass samples was Gaussian, characterized by zero
mean and unit variance.

Briefly, the ground-state energy of the system
was determined by starting from a random configu-
ration of spins and aligning them sequentially in the
direction of their instantaneous local fields. Since
the ground state of the disordered ferromagnet with
given boundary conditions is unique, only one ini-
tial configuration was needed. The magnetization
and staggered magnetization of the ground state
was monitored during the runs.

Figures 1 and 2 show plots of the length and area
dependencies of y and y~, respectively. The
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dashed curve in Fig. 1 is given by the equation

y~ =yo(1 co—sm/L ), (46)

-2.0—

-5.0

-4.0

4eA
4m 46a

I I

FIG. 1. Plot of in@ vs lnL and vs lnA for a three-
dimensional disordered Heisenberg ferromagnet. The
length dependence is for A =12X12, whereas the area
dependence is for L =4. The dashed curve is given by
the equation y =yo (1—cosm/L ).

as in Eq. (42), while the solid line represents the
asymptotic limit of the above equation [Eq. (44)].
It is seen that the data points lie exactly on the
dashed curve and the asymptotic limit is reached al-
ready for L =6. Note that y is independent of A.
As seen in Fig. 2, y is found to be proportional to
L ~ A '~, in accord with Eq. (44). The coeffi-
cients of proportionality of both y and y are
found to agree with Eqs. (44) and (45) when

(
~
J»

~
),=&2/m. and ( J& 2), =1. These expecta-

tion values are characteristic of the Gaussian proba-
bility distribution considered. The agreement is
within 20% and the effective exchange couplings
seem to have reduced values.

The theoretical results of this section have been
obtained on the assumption that all the exchange
constants are nonzero. Otherwise, the problem be-
comes one of percolation. Studies of the sensitivity
of systems near the percolation threshold to changes
in the boundary conditions will be reported else-
where. We note that with the Gaussian distribution
used in the numerical simulation, the probability
that one of the bonds is exactly zero is infini-
tesimally small. Nevertheless, the weak bonds may
account for the diminished effective exchange cou-
plings. In other aspects the numerical results for
the disordered ferromagnet show that the one-
dimensional approximation works well.

-5.0
V. FERROMAGNET WITH RANDOM

BOUNDARY CONDITIONS

4-5.O

-T.O

FIG. 2. Plot of in@ vs lnL and vs lnA for a three-
dimensional disordered Heisenberg ferromagnet. The
length dependence is for A =12X12, whereas the area
dependence is for L =4.

As discussed in the Introduction, it may be ar-
gued that the imposition of periodic and antiperiod-
ic boundary conditions on a spin-glass is similar to
the imposition of random boundary conditions on a
uniform ferromagnet. It may further be argued
that such boundary conditions do not couple to the
order parameter, and might under all circumstances
yield an exponential decay of the characteristic
free-energy scale of the sensitivity to boundary con-
ditions. While it is not possible to prove that this is
not the case for spin-glasses, the numerical data in
Ref. 1 were consistent with an algebraic decay at
T =0.

In this section we address the much simpler ques-
tion of the effects of random boundary conditions
on a uniform ferromagnet. We present a discussion
of an Ising ferromagnet and numerical data on a
two-dimensional Heisenberg ferromagnet which
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with

L A —1

+ g g S;k Sik+. 1 +Ha
i =1k=1

(47)

A L
Hs ———J g Sc„k.S1 ki)(k) —J g S;w S;1,

(4&)

where ri(k) =+1 randomly. Periodic and an-

tiperiodic boundary conditions could be obtained by
setting all of the g's equal to +1 and —1, respec-
tively. There is no frustration in the bulk Hamil-
tonian given by Eq. (47). However, frustration is
introduced at the boundary whenever

ri(i)ri(j)= —1, where i and j represent nearest-

neighbor sites. Such frustration effects yield a
beyond the bulk contribution to the free energy.

To study the influence of changes in the boun-

dary conditions on the free energy of the system, it
is clearly desirable to choose a conjugate pair of
boundary conditions, such that the amount of boun-

dary frustration with both boundary conditions is
identical. Starting with a given random boundary
condition i)(k), one can readily obtain its partner
i)'(k) by the operation

i)'(k) = —ri(k) . (49)

Clearly, periodic and antiperiodic boundary condi-
tions form a conjugate pair.

We now discuss a d-dimensional Ising ferromag-
net with a conjugate pair of random boundary con-
ditions. As a first step let us consider the system as
being a set of independent Ising chains. A given
chain with an i) of +1 has all of its spina aligned
parallel to each other. A chain with an g of —1, on
the other hand, has as its ground state one domain
wall. In the independent chain approximation the
domain wall can be positioned at any site along the
chain. Taking into account the ferromagnetic cou-
pling between the chains results in the optimal
ground state having all of the domain walls pushed
to the end of the sample. In other words, the

suggest that the sensitivity to appropriately chosen
random boundary conditions may be used to obtain
the correct LCD. %e conclude this section with a
brief discussion of the effects of introducing frus-
tration at the boundary.

The two-dimensional uniform Heisenberg system
with random boundary conditions is described by
the Hamiltonian

L —1 A

SikS, i+1,k
i=1 k=1

ground state of the system is one in which all of the
spins are parallel and the ground-state energy is

higher than the ground-state energy with periodic
boundary conditions by an amount proportional to
the number of —1's in the g(k). The key point,
therefore, is that the energy with any given boun-

dary condition is independent of the length of the
system. One can now consider the energy differ-
ence obtained from the imposition of a pair of con-.

jugate boundary conditions. The characteristic total
free-energy difference at T =0 is proportional to A

and is independent of the length of the system. To
obtain the area dependence, systems with the same
length L and different areas have to be considered.
Let A represent the area of the smallest such sys-
tem. The area dependence is then found by study-

ing systems of area A=Am ' with m=1, 2,
3,. . . . Such a treatment enables one to periodically
repeat the random boundary conditions of the
smallest unit. For example, in d =2 we require that

ri(k+A ) =ri(k) . (50)

1bf-
L

(51)

and is independent of A, in the sense defined by Eq.
(50). Equation (51) again confirms that the LCD of
the Heisenberg ferromagnet is 2.

Note that periodic and antiperiodic boundary condi-
tions satisfy (50) with any A. We arrive then at the
expected result that the LCD of the Ising ferromag-
net is 1.

It is straightforward to generalize the above argu-
ments to define y~ and y~ in the case of a disor-
dered Ising ferromagnet. As discussed in Sec. III,
in the paramagnetic phase the characteristic free-

energy difference would have an exponential depen-
dence on the length. It is interesting to note that if
one did not choose a conjugate pair of boundary
conditions (such that the surface frustration is dif-
ferent in the two cases) one would still obtain an
algebraic law at T =0 which would persist even in
the paramagnetic phase.

A similar analysis can be carried out for a
Heisenberg ferromagnet. Unlike the Ising case, the
ground state, while unique, does not have all of the
spins aligned parallel to each other. %e have per-
formed numerical calculations on a two-
dimensional Heisenberg ferromagnet with several
different sets of conjugate pairs of boundary condi-
tions. In each case, a behavior similar to the one
obtained with periodic and antiperiodic boundary
conditions is observed. In fact, for any given pair
of conjugate boundary conditions we find that
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It is interesting to consider what happens if one
carries out an ensemble average over a set of ran-
dom boundary conditions. Let f„represent the free
energy per spin with a random boundary condition
labeled by v. We define

y=((f„—(f,),)'),' ', (52) -5.0

lie l2 la l6
I

I

4+A
la24 Le32

1

where ( )„denotes an average over the boundary
conditions.

Such a procedure, as discussed earlier in this sec-
tion, produces a boundary frustration so that one
may expect an algebraic law for y at all finite tem-

peratures. It is interesting to note, however, that
one obtains the correct LCD by using y as the
characteristic free-energy scale in the problem.
This follows readily for the Ising model as
y-L 'A '~ [since an ensemble average over the
boundary conditions is being taken we do not use
the restrictive prescription (50) in this procedure].
The total characteristic free-energy scale is indepen-
dent of the length and again results in the LCD be-

ing 1.
Figure 3 shows a plot of the size dependence of y

for the two-dimensional uniform Heisenberg fer-
romagnet at T =0. Since we are able to average
over a limited set (50) of boundary conditions, we
have adopted a weighting scheme. The number of
adjacent pairs of q's having a product of —1 is
enumerated and the number of different ways of ob-
taining such a configuration is determined. A
weighting factor proportional to this number has
been used in obtaining the averages. Substantially
similar results are found when a simple arithmetic
average is performed. The data in Fig. 3 show that

I
3/2 1/2L A

(53)

Following Ref. 1, the characteristic total free-
energy sensitivity of the system to a change in
boundary condjtjons js gjven by yL"-L

-s.a

-6.0

les 48 4ml2 4al6

FIG. 3. Plot of lny vs lnL and vs lnA for a two-
dimensional uniform Heisenberg ferromagnet with ran-
dom boundary conditions. The length dependence is for
A =64, whereas the area dependence is for I.=8.

leading to an LCD of 2 for the Heisenberg system.
We emphasize again that y is not expected to be
useful in distinguishing between the ferromagnetic
and paramagnetic phases. It is further possible that
the correct result for the LCD, as obtained from
(53), is a mere coincidence.
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